首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context

One approach to maintain the resilience of biotic communities is to protect the variability of abiotic characteristics of Earth’s surface, i.e. geodiversity. In terrestrial environments, the relationship between geodiversity and biodiversity is well recognized. In streams, the abiotic properties of upstream catchments influence stream communities, but the relationships between catchment geodiversity and aquatic biodiversity have not been previously tested.

Objectives

The aim was to compare the effects of local environmental and catchment variables on stream biodiversity. We specifically explored the usefulness of catchment geodiversity in explaining the species richness on stream macroinvertebrate, diatom and bacterial communities.

Methods

We used 3 geodiversity variables, 2 land use variables and 4 local habitat variables to examine species richness variation across 88 stream sites in western Finland. We used boosted regression trees to explore the effects of geodiversity and other variables on biodiversity.

Results

We detected a clear effect of catchment geodiversity on species richness, although the traditional local habitat and land use variables were the strongest predictors. Especially soil-type richness appeared as an important factor for species richness. While variables related to stream size were the most important for macroinvertebrate richness and partly for bacterial richness, the importance of water chemistry and land use for diatom richness was notable.

Conclusions

In addition to traditional environmental variables, geodiversity may affect species richness variation in streams, for example through changes in water chemistry. Geodiversity information could be used as a proxy for predicting stream species richness and offers a supplementary tool for conservation efforts.

  相似文献   

2.
We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.  相似文献   

3.
Large wood (LW) is critical to the structure and function of streams and forests are the main LW source to stream channels. To assess the influence of forest cover changes at different spatial scales on in-stream LW quantity, we selected eighteen catchments (2nd–4th order) in Southeastern Brazil with forests at different levels of alterations. In each catchment we quantified the pattern of forest cover (% cover and relative catchment position), the physical characteristics of catchments (elevation and slope), the characteristics of channels (wetted channel width and depth), the abundance and volume of in-stream LW, and the frequency of LW pools. We used simple and multiple linear regression to assess the response of LW variables to landscape and stream reach variables. Most of the LW was relatively small; 72 % had a diameter <20 cm, and 66 % had a length <5 m. Although percent forest cover at reach scale had substantial support to explain LW variables, the best predictors of LW variables were forest cover at broader scales (LW abundance and LW pool frequency were best predicted by forest at intermediate distance at the catchment scale and LW volume was best predicted by forest cover at the drainage network scale), suggesting that downstream transport is an important process in addition to local processes in our study area. These findings have important management implications because although low forested reaches receive less LW from local forests (or no LW in the case of deforested stream reaches), they are receiving LW from upstream forested reaches. However, the material is generally small, unstable and likely to be easily flushed. This suggests that not only should riparian forest conservation encompass the full drainage network, but forests should also be allowed to regenerate to later successional stages to provide larger, higher quality LW for natural structuring of streams.  相似文献   

4.
The biological integrity of stream ecosystems depends critically on human activities that affect land use/cover along stream margins and possibly throughout the catchment. We evaluated stream condition using an Index of Biotic Integrity (IBI) and a habitat index (HI), and compared these measures to landscape and riparian conditions assessed at different spatial scales in a largely agricultural Midwestern watershed. Our goal was to determine whether land use/cover was an effective predictor of stream integrity, and if so, at what spatial scale. Twenty-three sites in first-through third-order headwater streams were surveyed by electrofishing and site IBIs were calculated based on ten metrics of the fish collection. Habitat features were characterized through field observation, and site HIs calculated from nine instream and bank metrics. Field surveys, aerial photograph interpretation, and geographic information system (GIS) analyses provided assessments of forested land and other vegetation covers at the local, reach, and regional (catchment) scales. The range of conditions among the 23 sites varied from poor to very good based on IBI and HI scores, and habitat and fish assemblage measures were highly correlated. Stream biotic integrity and habitat quality were negatively correlated with the extent of agriculture and positively correlated with extent of wetlands and forest. Correlations were strongest at the catchment scale (IBI with % area as agriculture, r2=0.50, HI with agriculture, r2=0.76), and tended to become weak and non-significant at local scales. Local riparian vegetation was a weak secondary predictor of stream integrity. In this watershed, regional land use is the primary determinant of stream conditions, able to overwhelm the ability of local site vegetation to support high-quality habitat and biotic communities.  相似文献   

5.

Context

In agricultural landscapes, riparian forests are used as a management tool to protect stream ecosystems from agricultural activities. However, the ability of managers to target stream protection actions is limited by incomplete knowledge of scale-specific effects of agriculture in riparian corridor and catchment areas.

Objectives

We evaluated scale-specific effects of agricultural cover in riparian corridor and catchment areas on stream benthic macroinvertebrate (BMI) communities to develop cover targets for agricultural landscapes.

Methods

Sixty-eight streams assigned to three experimental treatments (Forested Riparian, Agricultural Riparian, Agricultural Catchment) were sampled for BMIs. Ordination and segmented regression were used to assess impacts of agriculture on BMI communities and detect thresholds for BMI community metrics.

Results

BMI communities were not associated with catchment agricultural cover where the riparian corridor was forested, but were associated with variation in catchment agriculture where riparian forests had been converted to agriculture. Trait-based metrics showed threshold responses at greater than 70% agricultural cover in the catchment. Increasing agriculture in the riparian corridor was associated with less diverse and more tolerant BMI communities. Eight metrics exhibited threshold responses ranging from 45 to 75% agriculture in the riparian corridor.

Conclusions

Riparian forest effectively buffered streams from agricultural activity even where catchment agriculture exceeds 80%. We recommend managers prioritize protection of forested riparian corridors and that restore riparian corridors where agricultural cover is near identified thresholds be a secondary priority. Adoption of catchment management actions should be effective where the riparian corridor has been converted to agriculture.
  相似文献   

6.
Landscape and site-scale data analyses aid the interpretation of biological data and thereby help us develop more cost-effective natural resource management strategies. Our study focused on environmental influences on stream assemblages and we evaluated how three classes of environmental variables (geophysical landscape, land use and cover, and site habitat), influence fish and macroinvertebrate assemblage richness in the Brazilian Cerrado biome. We analyzed our data through use of multiple linear regression (MLR) models using the three classes of predictor variables alone and in combination. The four MLR models explained dissimilar amounts of benthic macroinvertebrate taxa richness (geophysical landscape R 2 ≈ 35 %, land use and cover R 2 ≈ 28 %, site habitat R 2 ≈ 36 %, and combined R 2 ≈ 51 %). For fish assemblages, geophysical landscape, land use and cover, site habitat, and combined models explained R 2 ≈ 28 %, R 2 ≈ 10 %, R 2 ≈ 31 %, and R 2 ≈ 47 % of the variability in fish species richness, respectively. We conclude that (1) environmental variables differed in the degree to which they explain assemblage richness, (2) the amounts of variance in assemblage richness explained by geophysical landscape and site habitat were similar, (3) the variables explained more variability in macroinvertebrate taxa richness than in fish species richness, and (4) all three classes of environmental variables studied were useful for explaining assemblage richness in Cerrado headwater streams. These results help us to understand the drivers of assemblage patterns at regional scales in tropical areas.  相似文献   

7.
Variability in biodiversity is often assessed based on species richness, and this adherence to a single index has been typical in studies of ecology, biogeography, and conservation in the past two decades. More recent studies have suggested that species richness alone is insufficient as a measure of biodiversity, mainly because it is not necessarily correlated with other measures of biodiversity. We examined (1) if nine indices embracing species diversity, functional diversity, and taxonomic distinctness of stream macroinvertebrate assemblages show congruent patterns, and (2) if these indices show similar relationships to landscape characteristics. Not all indices varied similarly and were thus not significantly correlated. There were three principal components that effectively described variation in the correlation structure of the nine indices. These three components were: (1) diversity and evenness indices, (2) two indices of taxonomic distinctness, and (3) species richness and functional richness. Four of the nine biodiversity indices examined showed no significant relationships to landscape-catchment characteristics, and even the significant correlations between the remaining five indices and explanatory variables were rather weak. However, species richness showed a rather strong quadratic relationship to catchment area. Our study provided a number of suggestions for future biodiversity studies at the landscape scale. First, given that different indices describe different components of biodiversity and are not strongly correlated, multiple indices should be considered in any study describing stream biodiversity. Second, despite the study was restricted to near-pristine streams, all indices showed considerable variation. Thus, this natural variability should be accounted for prior to the examination of anthropogenic effects on stream biodiversity. Third, landscape-catchment variables may have only limited value in explaining variability in biodiversity indices, at least in regions with no strong anthropogenic gradients in land-use.  相似文献   

8.

Context

Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.

Objectives

Determine the degree to which physical and chemical characteristics of the instream habitat of low-order Amazonian streams change in response to past local- and catchment-level anthropogenic disturbances.

Methods

To do so, we collected field instream habitat (i.e., physical habitat and water quality) and landscape data from 99 stream sites in two eastern Brazilian Amazon regions. We used random forest regression trees to assess the relative importance of different predictor variables in determining changes in instream habitat response variables.

Results

Multiple drivers, operating at multiple spatial scales, were important in determining changes in the physical habitat and water quality of the sites. Although we found few similarities in modelled relationships between the two regions, we observed non-linear responses of specific instream characteristics to landscape change; for example 20 % of catchment deforestation resulted in consistently warmer streams.

Conclusions

Our results highlight the importance of local riparian and catchment-scale forest cover in shaping instream physical environments, but also underscore the importance of other land use changes and activities, such as road crossings and upstream agriculture intensification. In contrast to the property-scale focus of the Brazilian Forest code, which governs environmental regulations on private land, our results reinforce the importance of catchment-wide management strategies to protect stream ecosystem integrity.
  相似文献   

9.
There has been an increasing interest in evaluating the relative condition or health of water resources at regional and national scales. Of particular interest is an ability to identify those areas where surface and ground waters have the greatest potential for high levels of nutrient and sediment loadings. High levels of nutrient and sediment loadings can have adverse effects on both humans and aquatic ecosystems. We analyzed the ability of landscape metrics generated from readily available, spatial data to predict nutrient and sediment yield to streams in the Mid-Atlantic Region in the United States. We used landscape metric coverages generated from a previous assessment of the entire Mid-Atlantic Region, and a set of stream sample data from the U.S. Geological Survey. Landscape metrics consistently explained high amounts of variation in nitrogen yields to streams (65 to 86% of the total variation). They also explained 73 and 79% of the variability in dissolved phosphorus and suspended sediment. Although there were differences in the nitrogen, phosphorus, and sediment models, the amount of agriculture, riparian forests, and atmospheric nitrate deposition (nitrogen only) consistently explained a high proportion of the variation in these models. Differences in the models also suggest potential differences in landscape-stream relationships between ecoregions or biophysical settings. The results of the study suggest that readily available, spatial data can be used to assess potential nutrient and sediment loadings to streams, but that it will be important to develop and test landscape models in different biophysical settings.  相似文献   

10.
Understanding the relative influence of environmental and spatial variables in driving variation in species diversity and composition is an important and growing area of ecological research. We examined how fire, local vegetation structure and landscape configuration interact to influence dung beetle communities in Amazonian savannas, using both hierarchical partitioning and variance partitioning techniques to quantify independent effects. We captured a total of 3,334 dung beetles from 15 species at 22 savanna plots in 2003. The species accumulation curve was close to reaching an asymptote at a regional scale, but curves were variable at the plot level where total abundance ranged from 17 to 410 individuals. Most plots were dominated by just three species that accounted for 87.7% of all individuals sampled. Hierarchical partitioning revealed the strong independent and positive effect of percentage forest cover in the surrounding landscape on total dung beetle abundance and species richness, and richness of uncommon species and the tunneler guild. Forest cover also had a negative effect on community evenness. None of the variables that related to fire affected community metrics. The minimal direct influence of fire was supported by variance partitioning: partialling out the influence of spatial position and vegetation removed all of the individual explanation attributable to fire, whereas 8% of the variance was explained by vegetation and 28% was explained by spatial variables (when partialling out effects of the other two variables). Space-fire and vegetation-fire joint effects explained 14 and 10% of the dung beetle community variability, respectively. These results suggest that much of the variation in dung beetle assemblages in savannas can be attributed to the spatial location of sites, forest cover (which increased the occurrence of uncommon species), and the indirect effects of fires on vegetation (that was also dependent on spatial location). Our study also highlights the utility of partitioning techniques for examining the importance of environment variables such as fire that can be strongly influenced by spatial location.  相似文献   

11.
Linking Land-use, Water Body Type and Water Quality in Southern New Zealand   总被引:3,自引:0,他引:3  
Land-use and vegetation cover have been linked to the nutrient levels (nitrogen, phosphorus) of surface waters in several countries. However, the links generally relate to streams and rivers, or to specific types of standing water, for example shallow lakes in a geologically defined region. We measured physical variables and nutrient chemistry of 45 water bodies representative of the wide range of lentic wetland environments (swamps, riverine wetlands, estuaries, reservoirs, shallow lakes, deep lakes) in Otago, New Zealand, and related these to catchment variables and land-use in order to assess the potential influence of catchment modification on water quality of these diverse wetlands. Catchment boundaries and land cover were derived from maps using ArcView GIS software. Our predictions that concentrations of nutrients and other components of water quality would correlate positively with the nature and intensity of catchment modification were confirmed in multivariate analyses. Physical and chemical measures were positively related to the extent of modification in the catchment (percentage of the catchment in pasture, planted forest, scrub and urban areas), and negatively related to lack of catchment modification (more of the catchment in bare ground, tussock grassland and indigenous forest). The strong negative correlations between nutrient concentrations, suspended sediment, water colour and the percentage of tussock cover in the catchment imply that increased conversion of the␣native tussock grassland to pastoral farming in␣Otago will increase nutrient concentrations and␣reduce water quality of the diverse lentic ecosystems.  相似文献   

12.
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In this study we investigate those specific landscape metrics which are functionally linked to indicators of stream ecological condition, and in particular, identify those characteristics that exacerbate or mitigate changes in ecological condition over and above impervious surface. The approach used addresses challenges associated with redundancy of landscape metrics, and links landscape pattern and composition to an indicator of stream ecological condition across a broad area of the eastern United States. Macroinvertebrate samples were collected during 2000–2001 from forty-two sites in the Delaware River Basin, and landscape data of high spatial and thematic resolution were obtained from photointerpretation of 1999 imagery. An ordination-derived ‘biotic score’ was positively correlated with assemblage tolerance, and with urban-related chemical characteristics such as chloride concentration and an index of potential pesticide toxicity. Impervious surface explained 56% of the variation in biotic score, but the variation explained increased to as high as 83% with the incorporation of a second land use, cover, or configuration metric at catchment or riparian scales. These include land use class-specific cover metrics such as percent of urban land with tree cover, forest fragmentation metrics such as aggregation index, riparian metrics such as percent tree cover, and metrics related to urban aggregation. Study results indicate that these metrics will be important to monitor in urbanizing areas in addition to impervious surface.  相似文献   

13.
Summary

Carrots of cv. Panther F1 were grown in climate chambers at 9, 12, 15, 18 and 21°C, constant diurnal temperatures at three different periods of the year. The effect of varying solar radiation and temperatures were evaluated on growth, sensory attributes and chemical composition. Higher levels of light significantly increased most chemical and physical variables of the carrot roots. Temperature was the most important factor determining the variation in sensory and chemical variables, whereas for morphological features like root weight, root length and diameter measurements, light was more important than temperature. Principal component analysis (PCA) of chemical and physical variables explained 85% of the total variation by the first three principal components, the first component (PCI) being defined by physical variables, explained 46% of the variation, while the temperature related PC2 explained 32% of the variation. Prediction of sensory variables by chemical or physical variables by means of partial least square (PLS) was higher at low light intensity than at high light intensity.  相似文献   

14.
Biotic communities are structured by both regional processes (e.g., dispersal) and local environmental conditions (e.g., stress). We examined the relative importance of landscape position (position within the hydrologic flow system and distance from other lakes) and local environmental factors in determining the assemblage structure of lake-dwelling snails and fingernail clams in a boreal landscape. Both landscape position and local environmental factors were highly influential in structuring the molluscan assemblages. In canonical correspondence analysis, 53.6% of snail and 48.2% of fingernail clam assemblage composition were accounted for by both sets of variables. The pure effects of landscape position were higher than those of environmental variables, and a considerable amount of variability was shared by the two sets of variables. In regression analysis, 95.5% of snail and 62.2% of fingernail clam species richness was accounted for by the explanatory variable groups, with most of the variability being related to shared effects, followed by landscape position. The effects of landscape position on species composition suggest that passive dispersal increases the similarity of molluscan assemblages in adjacent lakes. This process does not lead to an overall homogenisation of assemblage composition across the landscape, however, because local conditions set a strong environmental filter, excluding species that arrive at an unsuitable lake. These environmental filters may reflect either extinction probability (area, productivity) or species niche differences (calcium levels, abiotic stress). Landscape position may also be important in maintaining the species richness of lake-dwelling molluscan assemblages. By providing potential colonists, nearby source lakes are likely to be important in countering local extinctions. Our test of the relative importance of landscape position and local drivers of assemblage structure was partly confounded by their co-variation. Nevertheless, studying the relationship between landscape position and local variables is useful because it can tell us about the importance of local and regional processes in shaping lake communities.  相似文献   

15.
We present a parametric model for estimating the areas within watersheds whose land use best predicts indicators of stream ecological condition. We regress a stream response variable on the distance-weighted proportion of watershed area that has a specific land use, such as agriculture. Distance weighting functions model the declining influence of landscape elements as a function of their flowpath distances, first to the stream channel (to-stream distance), and then down the channel to the location at which stream condition was sampled (in-stream distance). Model parameters specify different distance scales over which to-stream and in-stream influences decline. As an example, we predict an index of biotic integrity (IBI) for the fish communities in 50 small streams of the Willamette Basin of Oregon, USA, from distance-weighted proportions of agricultural or urban land use in their watersheds. The weighting functions of best-fitting models (R 2 = 0.57) represent landscape influence on IBI as extending upstream tens of kilometers along the stream channel network, while declining nearly to zero beyond a distance of 30 m from the channel. Our example shows how parametric distance weighting can identify the distance scales, and hence the approximate areas within watersheds, for which land use is most strongly associated with a stream response variable. In addition, distance-weighting parameters offer a simple and direct language for comparing the scales of landscape influence on streams across different land uses and stream ecosystem components.  相似文献   

16.
Artificial neural networks were used to quantify the distribution of macroinvertebrate functional feeding groups (FFGs) in relation to physical variables and to land-cover in the Adour–Garonne stream system (SW France; 116,000 km2). The relative abundances of 5 FFGs were calculated from macroinvertebrate data recorded at 165 sampling sites. Each site was characterized using 5 physical variables (elevation, stream order, stream width, distance from the source, slope) and 3 land-cover variables (% forested, % urban areas, % agricultural areas). The sites were first classified using the Self-Organizing Map algorithm (SOM), according to the physical and land-cover variables. Two major clusters of sites corresponded to anthropogenically modified and natural areas, respectively. Anthropogenically modified areas were clearly divided into agricultural and urban landscapes. Each major cluster was divided into 3–4 subsets of sites according to a topographic gradient of physical variables. To examine the variability of the communities, FFG proportions at the 165 sites were examined on the SOM trained with physical and land-cover variables. When the riverine landscape was natural, FFG patterns responded to the upstream–downstream gradient in physical variables. When the landscape was altered by agriculture or urbanization, the effects of land-cover on FFGs overcame the influence of the physical variables. The categorization of the landscape into forested, agricultural, and urban areas was relevant to detect changes in FFG patterns. In light of increasing development along riparian zones, the use of SOMs to detect responses of FFGs to landscape alterations at regional scales exemplifies an effective technique for assessing river health based on ecological indicator groups.  相似文献   

17.

Context

The colonization of restored river reaches by benthic macroinvertebrates and fish depends strongly on the proximity of source sites. Central European river networks have been fragmented over decades and populations of sensitive species have been eradicated from large parts of the catchments.

Objectives

Identification of remaining source sites (i.e., near-natural river stretches with populations of sensitive organisms) allows to protect them and reconnect them to degraded or restored stretches. We developed an approach to identify source sites of fish and benthic invertebrates and applied it to large parts of Germany.

Methods

The approach is based on identifying source sites from sampling data (5919 benthic invertebrate and 2584 fish monitoring sites) depending on the occurring number of sensitive species. For river stretches that have not been sampled we conducted statistical modeling with environmental data (e.g. land use, river habitat data) using boosted regression trees to identify source sites characterized by similar environmental conditions.

Results

The results are presented as maps on the level of the federal states. Statistical modeling allowed identification of stream type-specific environmental parameters and their thresholds. The maps allow a visual estimation of the recolonisation potential for river sections considered for restoration.

Conclusions

The results provide valuable insight into the perspective of restoration in different regions. For restoration planning we suggest application on a catchment level using environmental data with higher resolution and consideration of additional parameters (e.g. fine sediment input) in lowland regions.
  相似文献   

18.
Riparian communities have been well-studied along individual streams, but not within the context of networks of which streams are a part. To study networks, hydrologists use Horton–Strahler ordering to assign streams to discrete categories in which increasing numerical value (ω) reflects increasing size of the stream and complexity of the network. A key use of this classification method has been to demonstrate scaling relations between hydrogeomorphic variables and order. These relations now provide a foundation to determine how ecological processes are associated with the geometry and topology of river networks. We used geographic information systems (GIS) to map and measure the stream network and riparian vegetation of the Whitewater River basin of eastern Kansas, USA. With the resulting data, we tested if (1) riparian vegetation scaled with order, and (2) riparian vegetation at confluences of two streams differed from that found along constituent streams. Most characteristics of riparian vegetation scaled with order. In confluence zones, density and diversity of riparian vegetation generally were equivalent to that of the largest constituent stream. Scaling relations between riparian vegetation and order provide a framework to quantify the role of riparian vegetation in the water balance of stream networks and a tool to predict area and distribution of riparian vegetation from network topology.  相似文献   

19.

Context

The world is becoming increasingly urbanized, with more than half of the global population now living in cities. Understanding the factors impacting natural communities in fragmented landscapes is therefore crucial for predicting how the remaining ecosystems will respond to global change. Ground-active arthropods, which are important in nutrient cycling, are likely sensitive to habitat changes resulting from urbanization.

Objectives

We addressed two questions: (1) What is the relative importance of local and landscape factors in shaping ground-active arthropod communities in urban woodlands? (2) How does body size (as a surrogate for dispersal ability) affect sensitivity to landscape-level factors?

Methods

In the summers of 2010 and 2011, we sampled ground-active arthropod communities in 19 woodlands in the Chicago metropolitan region using pitfall traps. We also assessed local plant and soil characteristics, as well as landscape-level variables using GIS.

Results

Redundancy analyses and variation partitioning revealed that local factors, particularly invasive woody-plant cover and soil nitrate, had the most influence on arthropod communities, explaining 12% of the total variation. Of the landscape-level variables, landscape richness, which is one measure of landscape fragmentation, explained the most variation; however, the shared variance between landscape and local variables was responsible for half (16%) of the total explained variation (32%). Landscape factors alone explained only 4% of variation. No relationship between arthropod body size and landscape variables was observed, but several groups (e.g. ants and ground beetles) were correlated with landscape-level factors.

Conclusions

Our research shows that both local and landscape variables are important in influencing ground-active arthropods, but the majority of explained variance is attributed to the covariation between landscape richness, invasive woody-plant cover, and soil nitrate. We therefore conclude that landscape fragmentation is likely affecting the ground-active arthropods through its positive influence on invasive woody plants and soil nitrogen.
  相似文献   

20.
The potentials for the use of large wood (LW) in stream restoration projects were quantified for streams in Central Europe (total stream length assessed 44,880 km). Two different restoration methods were investigated: recruitment (passively allowing natural LW input) and placement (active introduction of large wood pieces into streams). The feasibility and potential effects of each method were studied for three different scenarios, according to the land-uses to be permitted on the floodplain: (a) only natural-non woody vegetation, forest, and fallow land occur on the floodplain, (b) including pasture and meadow, (c) including pasture, meadow, and cropland. Hydromorphological data were used to identify stream sections where LW recruitment or placement are feasible, and the likely effects of both restoration methods on channel hydromorphology were predicted. Passive recruitment is feasible for only a small percentage of the total channel length in the study area (~1% for all three scenarios). Active placement of LW can be used in much higher extent: 6.5% if only natural non-woody vegetation, forest, and fallow land can occur on the floodplain, 20.2% if stream segments bordered by pasture and meadow are included, and 32% if cropland is included in addition. There are differences between (1) the lower-mountainous area, where a large number of channel segments can be restored yielding an improvement from a moderate/good to a good/excellent morphological status and (2) the lowlands, where only a small number of channel segments can be restored yielding an improvement from a bad to a moderate morphological state. The latter upgrading might be sufficient to reach a ‘good ecological status’ as defined by the EU Water Framework Directive. The results of this study show the suitability of large wood recruitment and placement as appropriate methods to markedly improve the hydromorphological state of a large proportion of the streams in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号