首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
基于无线传感器网络的丘陵果园灌溉控制系统   总被引:1,自引:0,他引:1  
王新忠  顾开新  刘飞 《排灌机械》2011,29(4):364-368
为解决目前丘陵地区果树灌溉技术中存在的过度灌溉、浪费水资源等问题,以实现丘陵果园节水灌溉,结合无线传感器网络技术,设计开发了一种基于无线传感器网络的丘陵果园灌溉控制系统.系统以ATmega128L单片机为控制核心,由上位机、汇聚节点、无线传感器节点、土壤水分传感器和电磁阀等组成,其中土壤水分传感器和电磁阀连接到无线传感器节点上,汇聚节点与传感器节点之间数据采用无线方式进行传输,汇聚节点通过RS-232串口线与上位机相连.系统能实时监测葡萄土壤含水率的变化,根据土壤含水率来判断葡萄是否缺水,并发出灌溉指令实施对葡萄精确灌溉,系统实现了葡萄园灌溉的自动化控制.通过试验,选定25 cm深度的土壤含水率为灌溉启动监测量,启动灌溉的监测阈值设定为26.8%;选定50 cm深度的土壤含水率为灌溉停止监测量,系统停止灌溉的监测阈值为45.5%.试验表明:系统可以达到精确灌溉要求,结合葡萄的生存阈值可以实现节水灌溉.  相似文献   

2.
基于无线传感器网络的节水灌溉远程监控系统   总被引:1,自引:0,他引:1  
为了节约农田灌溉用水,提高水资源的使用效率,提出了一种基于无线传感器网络与GPRS网络相结的农田自动节水灌溉远程监控系统,该系统由中央监控计算机、灌溉监测控制器、无线传感器网络、GPRS模块和阀门控制器组成。系统以单片机为控制核心,由无线传感器节点、无线路由节点和无线网关实时监测土壤含水率变化,根据土壤含水率和农田用水规律实施精确灌溉。系统实现了节水灌溉的自动化控制,改善了农业灌溉水资源的高效利用和灌溉系统自动化水平。实验结果表明,整个系统的伸缩性较好,当土壤含水率太高或某种因素导致某些传感器节点损坏,系统中的其他部分仍能持续正常工作,具有自组织重新恢复的功能。监控中心能够实时地显示出各节点的土壤含水率参数和阀门的启停状况,实现节水灌溉的远程监控。  相似文献   

3.
以农业灌溉控制过程为研究对象,基于网络数据库技术设计了一种远程智能灌溉系统平台。智慧灌溉系统平台以传感器技术、网络通讯技术及数据库技术为基础,采用自上而下的方式进行搭建,采用数据采集节点对灌溉区域内的环境参数进行采集和监测,并将数据传输至云服务平台,生成灌溉控制指令后发送至现场控制器节点,控制电磁阀或水泵执行灌溉任务。  相似文献   

4.
基于作物冠层温度变化的无线传感器网络灌溉系统的研究   总被引:3,自引:1,他引:2  
针对我国部分地区农田水资源利用率低,且干旱灾害比较严重等问题,根据作物冠层温度变化的特征判别作物的水分状况,从低成本、低功耗角度出发,研发了红外测温无线传感器节点和灌溉控制节点,设计了无线传感器网络精确灌溉系统.该系统可以在远程控制中心准确实时获取监测作物的需水情况,并能实现精确灌溉,系统的设计开发为精细农业时空差异性与灌溉决策研究提供了参考.  相似文献   

5.
土壤水分无线传感器网络节点设计与测试   总被引:1,自引:0,他引:1  
在研究无线地下传感器网络(wireless underground sensor networks,WUSN)技术应用于农业灌溉时,利用嵌入式处理器和射频模块开发设计了无线地下传感器网络节点和汇聚节点。WUSN节点由传感器、处理器、无线通信和能量供应模块组成,处理器采用MSP430单片机,射频模块采用433MHz频率的H8410通信模块,汇聚节点由RF收发模块、核心控制电路、信息处理、数据存储、液晶显示和电源等部分组成。WUSN节点采集土壤水分信息,并发送给汇聚节点,实现对信息的汇总、分析、处理、存储、显示和传输。对不同的土壤含水率进行试验,得出节点低含水率下无线电信号的路径损耗和误码率最小。同时,通过节点埋藏深度的改变对信号衰减的影响,得出有效传输的最佳WUSN节点埋藏深度。无线地下传感器网络节点的设计在农业信息采集、灌溉等方面具有广阔应用前景。  相似文献   

6.
正农业灌溉智能化系统是利用计算机技术、电子信息技术和物联网遥感技术对农作物灌溉状况进行实时监测、控制和管理,实现了机井水位、农业灌溉用水量的远程和动态监测,以及数据的无线远程采集和监控。与传统的灌溉技术相比,智能遥控灌溉测控系统依托物联网信息技术为机井配置了远程智能监控设备,以高效节水信息化管理系统为平台,建立了完善的现代化农业灌溉管理服务和智能监测体系。通过4G网络互联实现数据共  相似文献   

7.
为将农田灌区地下水位控制在最佳范围,避免严重超采,需要准确了解灌区地下水位的动态变化情况。为此,设计了地下水位自动监测系统,系统主要由灌溉机井水位监测终端、数据监测中心和传输网络组成。灌溉机井水位监测终端为客户端,利用水位传感器测量水压,并换算成水位高度,通过GPRS无线模块接入VPN网络,建立与监控中心服务器的TCP/IP网络连接,把采集到的数据整理后再上传至监控中心;数据监测中心接收、处理、分析和显示从各终端发来的数据,并将数据存入数据库ACCESS2003中。通过对灌区6口机井样本进行实验表明,该系统能够准确实时地监测地下水位的高度,精度达到0.01m,可为灌区合理管理供强有力的数据支持。  相似文献   

8.
大规模用水节点的灌溉物联网监控系统设计   总被引:1,自引:0,他引:1  
针对现有的大部分智能灌溉的农业物联网系统难以满足大范围多布点的实际灌溉监控管理需求的问题,结合现阶段大规模农业灌溉对海量用水节点监控管理的需求,设计基于工业常用的MODBUUS-RTU协议以及TCP协议进行测点数据的查询和检测站点的管理系统,测点传感器可采用任何满足协议要求的流量传感器;设计IOT服务器和WEB服务器2个服务进程,IOT服务器负责从电磁流量计中查询获取数据并上传至数据库,解决协议识别解析和高并发问题,提高系统处理大量监控节点的能力;Web服务器从数据库查询相应的数据信息并进行权限管理,方便系统规模扩展;为了便于系统管理,设计开发具有测点数据查询以及设备管理等功能的配套微信小程序.设计的灌溉物联网系统在实现基本灌溉监控的基础上,综合考虑大规模节点部署、海量数据并发、系统权限控制等现实性问题,为实现节水灌溉提供了切实可行的解决方案.  相似文献   

9.
针对农业灌溉中的水资源浪费问题和灌溉远程控制问题,对物联网相关技术进行研究,设计了基于物联网Android平台的农业远程智能节水灌溉系统,实现了对多传感器节点(空气温湿度、光照、土壤湿度、电磁阀、变频器等)远程采集和控制,以及对多个控制器节点的远程监测与控制。系统不受时间地域限制,用户可以通过Android移动终端实现对智能节水灌溉系统的监测和控制。系统采用CC2 5 3 0作为无线传感器芯片、OK6 4 1 0作为控制器节点芯片。实测结果验证了该设计的可行性和有效性,可为远程智能节水灌溉提供平台支持,能够满足农业节水灌溉的需要。  相似文献   

10.
本文介绍一种基于GPRS、GSM的河渠灌溉水位监测及报警系统。具有体积小,方便野外安装,低电压,低功率,可使用太阳能电池组供电等特点。本系统使用Arduino Pro Min处理传感器获取的水位信息存储于SD卡中,并利用GPRS网络将信息发送给机主,包括水位信息及水位超限警示信息。能够实现农业灌溉水位实时监测无人值守化作业,有效减少农业灌溉劳动量,提高灌溉系统自动化程度。  相似文献   

11.
为充分掌握土壤水分、环境温度、环境湿度与光照情况,实现适时、适地、适量灌溉,施肥与远程管理,设计了基于无线传感器网络技术,结合GPS定位(用于WSN锚节点的定位)技术的果园数字信息采集与管理系统。该系统通过相应的传感器采集果园微气象信息(包括土壤水分、环境温度、环境湿度与光照等),并在无线传感网络的支持下,先结合GPS确定少数锚节点的位置,再根据锚节点计算出未知节点的相对位置,从而确定所有节点的位置信息。采集到的信息经转换后直接接入ES(专家系统),用ES输出辅助决策信息(状态评价结果,包括精确灌溉与环境控制建议等)给用户,实现了果园数字化管理的可视化、便利化。   相似文献   

12.
为了实现快速准确地采集多污水泵站和处理厂信息,提出了基于ZigBee和3G技术的远程多污水处理厂协同监控系统.该系统主要由污水处理厂信息监测网络节点、嵌入式ARM+DSP开发模块3、G/GPRS传输网络与Internet网络、远程服务器控制中心端组成.在污水处理厂现场,使用传感器节点采集各种所需信息,通过ZigBee无线传感网将各种信息上传到上位机,然后上位机通过网关节点集成移动通讯网络,利用3G/GPRS网络实现与Internet的信息交互,完成多泵站和污水处理厂数据的自动采集、无线传输以及Web方式下的参数远程设置和信息实时监测.采用该系统后,污水处理厂的污水处理量最少增加了5.2%,千吨水电耗最少下降了5.4%,剩余污泥量也均比采用前有明显的下降.  相似文献   

13.
以圆草捆打捆机控制系统为研究对象,提出了基于台达工业物联网平台DIACould网络型圆捆机控制系统设计思路,系统由PLC(Programmable Logic Controller)、HMI(Human Machine Interface)、传感网络、电液阀门、网络模块及GPS模块等构成。工作时,传感网络采集打捆机动静器件状态,PLC根据传感网络获取信息,按照逻辑程序发出相应控制命令,HMI人机交互,电液阀门负责输出打捆机各部件动作,网络模块完成云平台信息交互,GPS模块采集位置信息,实现了打捆机作业状态远程监控、位置定位、远程熄火、故障远程报警、工作量云存储及画面监控等。试验结果表明:系统数据实时高效传输,系统稳定运行,可为打捆机控制系统网络化、智能化提供理论支撑与技术支持。  相似文献   

14.
对地域上分散的农业对象实现无线数据传输逐渐成为农业监控系统的研究热点。探讨Z-Stack协议栈下基于2.4GHz频带传输CO2浓度的农业环境节点设计,包括ZigBee协调器节点网络组建ZigBee路由节点和终端入网ZigBee数据传输CO2传感器输出标定以及曲线拟合等,该节点的传感器响应快速,适于安装到有线网络延伸不到的区域。  相似文献   

15.
农业灌溉远程控制系统的设计   总被引:2,自引:1,他引:1  
以黑龙江垦区大面积的水稻灌溉为研究对象,开发了基于嵌入式系统、远程无线传输技术以及数据库技术的农业灌溉远程控制系统。该系统设有中央控制器、水位检测及闸门控制系统、泵群控制系统3个部分,通过GSM网络进行数据通信,按水稻的需水量进行较为精确的自动灌溉,从而节省了水、电及人力资源。  相似文献   

16.
基于WSN的水产品冷链物流实时监测系统   总被引:9,自引:0,他引:9  
为降低水产品物流损耗、提高水产品冷链物流信息化程度,以ZigBee协议为基础,围绕CC2530型无线传感片上系统,设计了基于无线传感网络(WSN)的水产品冷链物流实时监控系统。系统包括用于采集温度数据的监测节点、用于ZigBee网络组织与数据汇聚的协调器节点和用于实时监测、数据存储和网络控制的远程管理系统。冷链环境系统测试表明监测系统能够应用于水产品冷链物流仓储和运输的全过程,监测节点在变温箱温度-18℃时工作可靠。通信性能测试表明使用-3 dBm射频功率在30 m通信范围内丢包率小于8.4%,节点通信能耗低。  相似文献   

17.
叶水势是作物水分状况的最佳度量,是灌溉决策的重要依据。依据Penman-Monteith蒸腾算式计算或依据遥感数据反演的方法因机理算式复杂、待定参数多、可移植性差、测量成本高等原因,难以推广应用。因此,选取易于获取的作物微环境因子作为辅助变量,建立了基于RBF网络的夏玉米叶水势软测量模型,并进行了仿真研究。仿真结果表明,该方法简单实用,估算精度较高,是一种在线估算田间作物水分状况的有效措施。  相似文献   

18.
根据变量穴施水穴播机使用要求,建立了最小施水量数学模型和电磁阀控制时间数学模型.在自行开发的变量穴施水穴播机上进行静态试验,通过改变水箱水量、施水时间,获得不同的施水量.分别采用回归分析和人工神经网络预测2种方法,研究了水箱水量、施水时间及施水量之间的关系,建立了电磁阀控制时间的数学模型.回归试验表明,在水箱水量处于满箱、半箱和1/8箱容积3种状态时,所对应的电磁阀控制时间线性回归模型的调整判定系数R2依次为0.992、0.991和0.998,具有较高的拟合度.对回归方程进行的F检验结果表明,F计算值远大于查表值,回归方程极显著.采用2-5-1型拓扑结构的人工神经网络对施水时间进行预测,结果表明,拟合的最大偏差为3.95ms,平均偏差仅为1.46ms,网络结构具有较高的预测精度.  相似文献   

19.
针对农田环境的特点,介绍了一种基于ZigBee技术的开发,并在此基础上研制了实时在线监控的自动节水灌溉系统。通过无线移动网络(TD-SCDMA)和INTERNET的连接,实现数据远程传输至数据库服务器。远程监控中心下达命令唤醒子站,子站响应命令采集数据并传送到远程监控中心,从而指导灌溉。从硬件和软件方面描述了系统的设计及实现方法。实际应用表明:系统工作性能稳定,数据传输可靠,基本达到了设计要求。  相似文献   

20.
基于无线传感器网络和LabVIEW的粮仓监控系统设计   总被引:2,自引:0,他引:2  
鉴于粮食储备安全的重要性,提出了一种基于无线传感器网络和LabVIEW的粮仓监控系统设计方案。该系统采用无线传感器网络(wireless sensor network,WSN)对粮仓环境进行监测,遵循Zigbee协议将传感器采集的数据以无线方式传输给网关节点;网关节点通过串口将数据传给监控中心;监控中心采用LabVIEW完成数据的实时显示、分析、存储,以及对异常情况的报警,系统实现了对粮仓的智能监控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号