首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
基于单片机的奶牛精确饲喂装备设计与试验   总被引:2,自引:0,他引:2       下载免费PDF全文
设计了以计算机为信息管理平台,以单片机为数据处理和控制平台,利用无线射频识别技术进行个体识别的奶牛精确饲喂装备.建立了装备的工作参数并进行了精度验证.通过一个月的饲喂试验表明,该装备技术可显著提高奶牛产奶量及其品质,使奶牛平均日单产提高3.9 kg,且牛奶平均脂肪含量为3.74 g/(100 g),平均蛋白含量为2.9...  相似文献   

2.
自走式奶牛精确饲喂机控制系统   总被引:6,自引:0,他引:6  
以计算机为信息管理平台,运用无线通信技术、射频识别技术及单片机等,设计了根据奶牛个体生理特征信息进行精确投料的控制系统.实现了奶牛精确饲喂技术中的智能识别、信息无线传输、双模行进及精确给料.该系统实现了奶牛养殖的自动化、精细化、智能化.实验表明:饲喂机的最佳行进速度为0.6 m/s,系统响应时间0.4s,识别率96%,计量误差小于2%.  相似文献   

3.
双模自走式奶牛精确饲喂装备设计与试验   总被引:4,自引:0,他引:4  
基于射频识别技术,设计了以计算机为信息管理平台,以单片机为控制平台,利用无线传输技术进行数据传输的双模自走式奶牛精确饲喂装备,实现了饲喂装备的双模行进、个体牛只饲喂信息无线传输以及精确饲喂.通过一个月的饲喂试验表明,该技术及装备可显著提高奶牛产奶性能,个体奶牛平均日单产奶量提高3.0 kg,平均蛋白质质量分数为3.1% ~3.3%.  相似文献   

4.
FR-200型奶牛智能化精确饲喂机器人的研制   总被引:2,自引:0,他引:2  
为了提高个体奶牛产奶量及奶品质量,我国正积极研发推广先进的、有利于奶牛福利的智能化养殖设备。为此,研制了FR-200型奶牛智能化精确饲喂机器人,它可沿轨道吊挂,按程序自动运行、定位、识别奶牛,为每头奶牛分别精确配比并混合分送饲料,实现每天多次有规律饲喂,并能更改喂饲曲线,记忆和下载投送记录。这种饲喂方式能提高奶牛对饲料的消化吸收能力,有效改善奶牛瘤胃pH值,大大降低工作人员劳动强度。  相似文献   

5.
智能化个体奶牛精确饲喂机设计与实验   总被引:1,自引:0,他引:1  
要实现奶牛高产必须保证奶牛瘤胃pH值的稳定,要实现瘤胃pH值稳定必须对个体奶牛精饲料量进行精确饲喂,精饲料的数量对瘤胃pH值波动具有重要影响.设计了基于射频识别技术和单片机技术的个体奶牛精确饲喂机,可以实现个体奶牛精饲料量的精确饲喂.通过一个月饲喂实验表明,个体奶牛日产量提高了4kg.  相似文献   

6.
为了提高奶牛精确饲喂技术水平、降低成本、减少工作量、提高个体奶牛产奶量,在前期完成自走式奶牛精确饲喂机机械结构设计和牛场信息管理系统设计的基础上,通过单片机控制系统的设计,实现奶牛饲喂数据的接收、牛只的个体精确识别、装备的行进及精确投料,实现了个体奶牛的自动化及智能化饲喂。试验调试验证表明:饲喂机的最佳行进速度为0.6m/s,识别距离达65cm,系统响应时间为0.4s;个体奶牛识别率96%,个体牛只识别正确率100%,给料误差小于2%。  相似文献   

7.
针对水貂饲喂环节劳动强度大、环境差,水貂饲喂机械化水平不高的问题,设计了一种水貂养殖轨道式双排自动饲喂车,该饲喂车主要包括控制系统、行走系统、输料饲喂系统、饲喂支撑架收展系统。详细分析了饲喂过程中控制系统的控制要求,研究了控制实现方法和动作过程,通过光电传感器与PLC准确控制所有电机的工作状态定位转换,实现饲喂电机工作参数的人机交互调整;设计了导向轮定轨结构,优化缩短了饲料输送管路;模仿人工饲喂时手与手臂的动作形式,设计了自动饲喂投食结构,并进行了机构运动学分析,确定了具体结构及运动参数;设计了饲喂车收展结构,并通过作业条件分析确定了结构参数。样机试验结果表明,自动饲喂车以0.6 m/s速度行进,以预设的200、400、600 g为投喂量,饲喂车实际投喂质量变化范围分别为165~210 g、355~427 g、567~622 g,饲料堆放质量变异系数分别为6.53%、3.78%、2.74%,漏喂率均为0%,满足实际饲喂要求。该自动饲喂车提高了饲喂效率,节约了劳动成本,增加了饲喂车载料量。  相似文献   

8.
基于奶牛精确养殖技术装备的牛场信息管理系统设计   总被引:1,自引:0,他引:1  
为更好的实现对奶牛精饲料的精确饲喂,与牛场现有信息系统进行衔接,本文提出一种用于原型法进行设计、使用VB.NET2008语言进行程序开发、以Access2007数据库系统为后台数据库、以无线传输方式完成数据传送的牛场信息管理系统,该系统在完成数据进行处理和传输的同时,兼顾牛场、职工、牛只、生产等信息的集成管理功能,通过对牛场信息进行有效、快速的管理,提高信息处理的效率和管理水平,降低工作人员劳动强度,为实施奶牛精确饲喂奠定了良好基础。  相似文献   

9.
奶牛精确饲喂装置检测系统的研究   总被引:1,自引:0,他引:1  
精确饲喂装置检测系统的核心技术是奶牛个体采食量检测技术.系统采用了螺旋输送料技术、非接触式的无线射频识别(RFID)技术和称重传感器技术.采食活动前,系统核对奶牛个体信息和启动螺旋输料系统进行投料,收集奶牛个体的采食数据,在上位机中利用Visval Basic 6.0 编写系统应用软件,实现对采食数据的接收、显示、存储和分析处理.  相似文献   

10.
为实现母猪饲喂合理化,采用模块化设计方法,开发了新型母猪精确饲喂设备。其主要结构包括进出口门及其控制机构、下料的精确计量以及控制机构、饲喂通道的框架结构及材料和称重机构。实际应用表明,饲喂设备下料准确度得到了提高,进出口门的耐冲击力和设备的抗腐蚀能力有了增强,设备的整体性能明显改善。  相似文献   

11.
基于虚拟仪器的奶牛采食量检测系统   总被引:1,自引:0,他引:1  
提出了一种基于Lab Windows/CVI虚拟仪器平台的奶牛采食量自动检测系统设计方案.根据奶牛采食行为特征,采用压电式传感器获取奶牛采食信号,对这些信号进行采集,在上位机虚拟仪器平台上完成信号的再次处理、进一步的分析以及人机界面的构建.基于虚拟仪器的奶牛采食量检测系统充分利用了PC资源,使用方便,结果准确.  相似文献   

12.
奶牛个体智能化精料变量补饲系统设计与试验   总被引:2,自引:0,他引:2  
设计了一种以槽轮为计量机构、以嵌入式系统为控制系统的奶牛个体精料变量补饲系统。该系统利用无线射频识别技术识别奶牛身份,根据个体奶牛的基础日粮采食量及其产奶量的差异,实现4种精饲料的精准配料、自动计量、混合与投放。检测结果表明,该系统的投料响应时间为1.47s、同步投料时间为15.15s、门禁栏杆开启时间为3.92s、系统读卡距离为523cm、报警料位高度为21.5cm,系统射频识别正确率为100%,并且4种饲料的混合质量良好,计量误差小于5%,能够满足奶牛的饲喂要求,同时具有奶牛补料数据在线查询和打印功能。  相似文献   

13.
针对固态发酵饲料在饲喂现场生产的需求和特点,设计了自动发酵饲喂一体设备。该设备由上料发酵系统、控制系统、饲喂系统构成:上料机构将饲料和菌液混合均匀送至发酵桶,发酵完成后自动下料至饲喂车;饲喂车能够准确定位到不同饲喂对象的食槽并进行定量布料;操作者只需在人机交互界面设置上料体积、发酵时长、饲喂对象等参数,整个发酵饲喂过程无需人工干预。饲喂系统由48V/100A·h的蓄电池供电,充电一次可连续工作4d。试验结果表明,发酵桶上料和饲喂车排料的料体积误差均不大于6%,饲喂车定位误差平均值11.75mm,发酵时间、饲喂对象等参数控制准确。设备运行稳定可靠,发酵和饲喂之间无缝对接,显著减小了劳动强度,满足发酵饲料现场固态发酵并饲喂的要求。  相似文献   

14.
在奶牛场管理中,根据奶牛繁殖过程的生命周期性,从其生物特性和生理特点等各个管理角度出发,在.NET环境下,采用MVC设计模式来构造奶牛繁殖智能提醒系统,并应用到奶牛场,从而为奶牛生产者提供技术支持,以实现牛场生产过程的数字化和智能化.  相似文献   

15.
在奶牛补饲精饲料的过程中,为避免发生奶牛间的竞争行为,保证奶牛安稳舒适地进行采食,本文采用机电一体化技术,设计了一种能自动识别奶牛身份的门禁围栏装置。该装置具有奶牛位置检测功能,可自动控制门禁栏杆的启停,读卡距离为52.3 cm,门禁栏杆开启时间为3.92 s。该设计能有效防止其它奶牛对正在进行补饲的个体奶牛的干扰,满足了奶牛饲养的福利性要求,并提高了精饲料的利用率。   相似文献   

16.
奶牛饲喂技术与设备的现状分析   总被引:1,自引:0,他引:1  
谭春林  坎杂  曾明军  李景彬 《农机化研究》2007,(12):240-242,245
随着我国奶牛养殖业的高速发展,对奶牛饲喂机械化设备的需求较为迫切.为此,介绍了传统饲喂、TMR饲喂和饲喂机器人等3种饲喂技术,并对其配套设备的优缺点进行了分析,指出了以个体奶牛体况的精细化饲养来实现数字化养殖是将来的发展趋势.  相似文献   

17.
奶牛体温植入式传感器与实时监测系统设计与试验   总被引:2,自引:0,他引:2  
针对接触式奶牛体温检测方法测量精度低、实时性差,且易引起交叉感染等问题,设计了奶牛体温植入式传感器,并开发了相应的体温实时监测系统,利用无线传感网络实现奶牛体温信号的智能化监测。奶牛体温植入式传感器利用PT1000铂电阻作为温度测量探头,综合利用ADS1256模数转换器、MSP430控制芯片,对采集到的电压进行滤波处理,提高了测量精度。结合433M无线信号模块与ZigBee网络设计了项圈节点,作为将奶牛的体温数据从体内传到体外的中继节点,其中从奶牛体内传输到项圈节点使用433M无线信号模块,项圈节点再到远程监控中心使用2.4GHz的ZigBee网络,从而达到稳定、可靠传输的效果,实现了奶牛体温的高精度实时监测。分别对传感器准确性、稳定性、反应速度、传输性能及系统丢包率进行试验,结果表明,传感器温度测量误差在0.05℃以内,12h内温度最大波动为0.02℃,在15s内稳定,植入式传感器射频(RF)信息能有效传输至项圈节点,单个牛场内,整体系统的丢包率不超过1.2%,可高精度、实时检测奶牛的体温变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号