首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
切纵流双滚筒联合收获机脱粒分离装置   总被引:4,自引:0,他引:4  
提出了一种喂入量为4~5 kg/s的履带式切纵流双滚筒联合收获机的总体配置方案,论述了切纵流双滚筒脱粒分离装置切流脱粒滚筒、切流凹板、过渡口、纵轴流滚筒和纵轴流凹板等结构与运动参数的设计。田间试验与性能测试表明:该机收获水稻时喂入量达到4.86 kg/s时,整机损失率为1.47%,破碎率为0.2%,各项技术指标达到了设计要求。  相似文献   

2.
斜置切纵流联合收获机脱粒分离装置结构参数优化   总被引:5,自引:0,他引:5  
为满足我国现阶段高产水稻的收获要求,对自行研制的履带式斜置切纵流联合收获机进行了结构改进,构建了载荷测试系统,并在田间开展了三因素三水平的正交试验,分析了切纵流滚筒转速、切流滚筒凹板筛结构形式、斜置纵轴流螺旋喂入头与导流罩径向间隙等因素对脱粒分离性能的影响,使用极差分析法对斜置切纵流联合收获机脱粒分离装置的结构参数进行了优化。优化结果表明:切流滚筒转速和纵轴流滚筒转速分别为862、806 r/min,切流凹板筛过渡段为导向、分离孔式,螺旋喂入头与导流罩径向间隙为50 mm时,整机的脱粒分离性能较优。脱粒分离总损失率为0.62%,脱粒分离总功耗为40.42 k W。  相似文献   

3.
大喂入量水稻联合收获机脱粒清选装置的设计与试验   总被引:1,自引:0,他引:1  
为适应我国现阶段高产水稻的收获要求,自主研发了大喂入量履带式全喂入联合收获机。论述了切流脱粒分离装置、锥形螺旋喂入装置、斜置纵轴流脱粒分离装置和双出风口多风道离心风机清选装置等主要工作部件的结构与设计参数,提出了配套动力90~100k W、可承载6~7t的履带式行走底盘技术方案,突破了传统履带式底盘承载能力≤5t的限制。田间试验结果显示:该机收获产量9 000kg/hm2水稻时,总损失率为1.2%,含杂率1.0%,破碎率0.9%,机具生产率0.8 hm2/h,其各项技术性能指标均符合设计要求。该斜置切纵流全喂入履带式联合收获机喂入量达到了8.89kg/s,喂入量明显提高。该研究为大喂入量联合收获机的设计提供了参考。  相似文献   

4.
在切纵流双滚筒脱粒分离性能试验装置上,进行喂入量为6kg/s的水稻脱粒分离性能试验,研究其最佳脱粒分离的结构参数和运动参数。试验结果表明,切纵流双滚筒联合收割机收获水稻的最佳组合方式为:切流滚筒间隙27mm,纵轴流滚筒间隙14mm,切流滚筒线速度为25.9 5m/s,纵轴流滚筒线速度为28.23m/s,纵轴流滚筒齿杆间距为140mm。并对切流滚筒脱粒分离籽粒的轴向分布、纵轴流滚筒脱粒分离籽粒的轴向和径向分布进行了研究,为后续清选装置的研究提供了设计依据。  相似文献   

5.
针对谷子机械收获过程中谷码率高、破损率高、未脱净损失率高的问题,设计了一种纵轴流双柔性碾搓式谷子脱粒装置。该装置采用纵轴流脱粒滚筒,脱粒滚筒上通过安装柔性橡胶辊降低了谷子籽粒破损率,从而实现谷子柔性低损伤脱粒,橡胶圈外表面的波浪形凸起对谷子具有很好的碾搓脱粒性能。柔性凹板筛由空心圆柱旋转筛分单元两两相互交错组成,每组两排空心圆柱旋转筛分单元相互交错配合,形成适合谷子籽粒分离的U形孔,凹板筛支撑装置具有微动性与柔性凹板筛配合形成柔性微动凹板筛,有利于谷子籽粒分离和降低谷码率。选取喂入量、滚筒转速和脱粒间隙为试验因素,以谷码率、破损率、未脱净损失率和功耗为指标,进行了三元二次回归正交旋转组合试验确定了喂入量、滚筒转速和脱粒间隙的最佳参数组合。结果表明:当喂入量1.4 kg/s、滚筒转速735 r/min和凹板间隙9 mm时,谷子籽粒破损率为0.35%,谷码率为1.78%,未脱净损失率为0.64%,功耗为10.6 kW。  相似文献   

6.
4LQZ-6型切纵流联合收获机   总被引:2,自引:0,他引:2  
提出了4LQZ-6型切纵流联合收获机的收获工艺和总体结构,论述了切流脱粒分离装置、强制喂入装置、纵轴流脱粒分离装置和风筛式清选装置等主要工作部件的结构与设计参数。田间性能测试表明:该机收获产量6605 kg/hm2小麦时总损失率为0.2%,破碎率和含杂率均为0.1%,机具生产率为1.47 hm2/h;收获产量8021 kg/hm2水稻时总损失率为1.7%,破碎率和含杂率分别为0.9%和0.8%,机具生产率为2.27 hm2/h,各项技术指标达到了设计要求。  相似文献   

7.
纵轴流脱粒分离装置脱出物的径向分布规律   总被引:1,自引:0,他引:1  
为了研究联合收获机上纵轴流脱粒分离装置脱出物的径向分布规律,在自行研制的切纵轴流脱粒分离清选试验台上,分别采用梯形板齿和钉齿纵轴流脱粒滚筒进行水稻试验研究,分析得出了纵轴流脱粒分离装置脱出物的径向分布规律。通过对比可知,纵轴流滚筒采用钉齿时脱出物径向分布更均匀,在相同喂入量的前提下有利于清选。该规律为纵轴流脱粒分离清选装置的设计提供依据。  相似文献   

8.
单切双横流脱粒分离装置参数试验与优化   总被引:4,自引:0,他引:4  
李耀明  周伟  徐立章  孙韬  唐忠 《农业机械学报》2015,46(5):62-67,92
为解决全喂入式联合收获机收获秆青叶茂难脱高产水稻时脱粒分离损失大且容易出现堵塞的问题,设计了单切双横流脱粒分离装置,在单切双横流脱粒分离装置试验台上,通过对比试验分别对凹板筛栅条轴向间距、顶盖导向板个数和滚筒轴间距进行了优选,得到优选结构参数为:第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流凹板筛栅条轴向间距分别为10 mm、16 mm和16 mm,第Ⅱ横轴流和第Ⅲ横轴流顶盖导向板的个数都为4个,第Ⅰ切流和第Ⅱ横轴流以及第Ⅱ横轴流和第Ⅲ横轴流滚筒轴间距分别为645 mm和667.5 mm;在得到的优选结构参数下,以喂入量、脱粒间隙和滚筒转速为试验因素进行正交试验,并运用模糊综合评价法和极差分析得出试验范围内切双横流水稻脱粒分离装置的优选工作参数为:喂入量为5 kg/s,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流脱粒间隙分别为40 mm、35 mm和40 mm,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流滚筒转速分别为550 r/min、600 r/min和750 r/min。在此参数下,得到单切双横流脱粒分离装置的性能指标为:未脱净率0.05%,夹带损失率0.36%,脱粒总损失率0.41%,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流脱粒滚筒功耗分别为3.33 k W、21.26 k W和12.58 k W,脱粒滚筒总功耗37.17 k W,脱出物杂余质量分数14.37%。  相似文献   

9.
脱粒分离是谷物联合收获机的主要作业环节,脱粒滚筒又是其中的主要工作部件,其工作参数直接影响着联合收获机的整机性能。为此,设计了一种新型高效纵轴流小麦脱粒滚筒装置,以解决大喂入量状态下小麦收获机所出现的效率低、含杂率高及损失率严重等问题。该滚筒主要由导料月牙、喂入叶片、喂入锥体、纹杆座组合、滚筒壳体,以及排草板等组成。以含杂率、损失率为检测指标,通过正交试验找出最佳参数组合为:滚筒转速800r/min、凹板间隙15mm、滚筒倾角8°,在此参数下谷物的含杂率为0.11%、损失率为0.29%,收获质量符合农艺要求。该机构的设计为纵轴流滚筒技术的提升提供了理论支持。  相似文献   

10.
横轴流双滚筒脱粒分离装置设计与试验   总被引:7,自引:2,他引:5  
详细论述了一种横轴流双滚筒脱粒分离装置的总体结构、脱粒滚筒与凹板的设计方案,脱粒滚筒采用短纹杆-板齿结构,分离滚筒采用带螺旋叶片钉齿滚筒结构.室内台架试验表明,该装置可适合较大喂入量、难脱水稻脱粒分离,具有脱净率高、夹带损失率小、脱出物中含杂率小且分布均匀等特点.田间性能测试表明:当收获单产11 625 kg/hm~2的梗稻,喂入量为4.32 kg/s时,该机总损失率为1.94%、脱粒损失率0.89%、破碎率0.84%、含杂率0.20%.各项技术指标均达到了设计要求.  相似文献   

11.
半喂入联合收获机回转式栅格凹板脱分装置设计与试验   总被引:2,自引:0,他引:2  
针对半喂入联合收获机在收获高产水稻时容易发生脱粒滚筒堵塞、影响作业效率等问题,设计了可沿脱粒滚筒圆弧方向循环运转的回转式栅格凹板脱粒分离装置。对被脱物质点进行了受力分析,建立了回转式凹板的动力学微分方程;在自行设计的回转式栅格凹板脱分装置试验台上进行了二次旋转组合试验,建立了脱粒滚筒转速x1、回转栅格凹板线速度x2、夹持喂入链速度x3对损失率y1、破碎率y2、含杂率y3和脱分选功耗y4等工作性能指标的回归分析模型,并进行了多目标优化计算。结果表明:动态的回转栅格凹板可有效防止脱粒滚筒堵塞;最佳工作参数组合为x1=550 r/min,x2=1 m/s,x3=1.2 m/s,对应y1=2.14%、y2=0.2%、y3=0.6%。田间对比试验表明:具有回转式栅格凹板脱分装置的试验机收获高产稻时可全幅快速顺畅作业,工作效率比固定式栅格凹板的对比机提高30%以上。经法定机构检测,各项性能指标符合国家标准规定。  相似文献   

12.
纵轴流玉米脱粒分离装置喂入量与滚筒转速试验   总被引:2,自引:0,他引:2  
在玉米籽粒直收过程中,脱粒滚筒转速与联合收获机的额定喂入量相匹配才能发挥出最佳的作业效果。为了获得不同喂入量时玉米联合收获机最优的滚筒转速范围,设计了一种零部件可更换、结构参数和工作参数均可调的纵轴流玉米脱粒分离装置,并在自主研制的试验台上以脱粒滚筒转速、喂入量为影响因素,以籽粒破碎率、未脱净率为性能指标进行玉米脱粒试验。通过台架试验、回归分析和单变量求解,最终确定了不同喂入量的最优滚筒转速范围:喂入量为8 kg/s时,最优的滚筒转速为254~486 r/min;喂入量为10 kg/s时,最优的滚筒转速为278~466 r/min;喂入量为12 kg/s时,最优的滚筒转速为313~445 r/min。在以上条件下籽粒破碎率均小于5%,未脱净率小于2%,达到了国家和相关标准的要求。  相似文献   

13.
阐述了切-双纵轴流脱粒分离装置的结构组成及工作原理,基于切-双纵流联合收获机,以喂入量、切流滚筒间隙及滚筒转速为影响因子,脱粒破碎率及脱粒损失率为指标,进行田间性能试验,并利用极差分析分别对破碎率、脱粒损失率单影响因子进行分析。结果表明:对脱粒破碎率影响的主次因素为BCA,即切流滚筒转速纵轴流滚筒转速喂入量,最佳组合为切流滚筒间隙25/30mm、滚筒转速907/1 043r/min、喂入量10.2 kg/s;对脱粒损失率影响的主次因素为BAC,即切流滚筒间隙喂入量滚筒转速,最佳组合为切流滚筒间隙25/30mm、喂入量10.2kg/s、滚筒转速953/1 096r/min。  相似文献   

14.
针对目前全喂入联合收获机收获羊草种子过程中存在损失率大、含杂率高的问题,根据清选作业流程,结合羊草种子自身物理特性,搭建羊草种子风筛清选装置,并对清选部件、喂料装置、接料装置进行设计优化。进行风筛清选装置室内性能试验研究,通过单因素试验,得出清选性能随各因素变化的规律,利用响应面试验建立各因素与含杂率和损失率的关系,并对各因素及其交互作用进行分析。最后得出较优工作参数组合为:振动筛转速275 r/min,风机转速985 r/min,喂入量0.087 kg/s,在此参数组合下试验的含杂率为27.3%,损失率为3.3%,风筛清选装置满足设计要求,可为研发羊草等禾本科牧草种子全喂入联合收获机提供参考。  相似文献   

15.
以4LZ―1.0Q型全喂入稻麦联合收割机为例,系统分析了稻麦联合收获中脱分性能与装置部件各参数之间的相关性,指出该类收获机的脱分机构设计要点为:合理选定脱粒滚筒、凹板筛、上盖板的结构形式和组配关系能保证脱分作业顺畅性;合理设计钉齿滚筒结构参数和线速度能有效控制脱净率与破碎率;优化栅条凹板筛的筛孔大小、筛分面积等参数选择以提高脱分效率;优化上盖板升角、重叠量等参数以降低脱分功耗等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号