首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic Analysis of Resistance to Soil-Borne Wheat Mosaic Virus Derived from Aegilops tauschii. Euphytica. Soil-Borne Wheat Mosaic Virus (SBWMV), vectored by the soil inhabiting organism Polymyxa graminis, causes damage to wheat (Triticum aestivum) yields in most of the wheat growing regions of the world. In localized fields, the entire crop may be lost to the virus. Although many winter wheat cultivars contain resistance to SBWMV, the inheritance of resistance is poorly understood. A linkage analysis of a segregating recombinant inbred line population from the cross KS96WGRC40 × Wichita identified a gene of major effect conferring resistance to SBWMV in the germplasm KS96WGRC40. The SBWMV resistance gene within KS96WGRC40 was derived from accession TA2397 of Aegilops taushcii and is located on the long arm of chromosome 5D, flanked by microsatellite markers Xcfd10 and Xbarc144. The relationship of this locus with a previously identified QTL for SBWMV resistance and the Sbm1 gene conferring resistance to soil-borne cereal mosaic virus is not known, but suggests that a gene on 5DL conferring resistance to both viruses may be present in T. aestivum, as well as the D-genome donor Ae. tauschii.  相似文献   

2.
Pre-harvest sprouting (PHS) causes significant yield loss and degrade the end-use quality of wheat, especially in regions with prolonged wet weather during the harvesting season. Unfortunately, the gene pool of Triticum durum (tetraploid durum wheat) has narrow genetic base for PHS resistance. Therefore, finding out new genetic resources from other wheat species to develop PHS resistance in durum wheat is of importance. A major PHS resistance QTL, Qphs.sicau-3B.1, was mapped on chromosome 3BL in a recombinant inbred line population derived from ‘CSCR6’ (Triticum spelta), a PHS resistant hexaploid wheat and ‘Lang’, a PHS susceptible Australian hexaploid wheat cultivar. This QTL, Qphs.sicau-3B.1, is positioned between DArT marker wPt-3107 and wPt-6785. Two SCAR markers (Ph3B.1 and Ph3B.2) were developed to track this major QTL and were used to assay a BC2F8 tetraploid population derived from a cross between the durum wheat ‘Bellaroi’ (PHS susceptible) and ‘CSCR6’ (PHS resistant). Phenotypic assay and marker-assisted selection revealed five stable tetraploid lines were highly PHS resistant. This study has successfully established that PHS-resistance QTL from hexaploid wheat could be efficiently introgressed into tetraploid durum wheat. This tetraploid wheat germplasm could be useful in developing PHS resistant durum cultivars with higher yield and good end-use quality.  相似文献   

3.
Leaf rust caused by the fungus Puccinia triticina is one of the most important diseases of wheat (Triticum aestivum) worldwide. The use of resistant wheat cultivars is considered the most economical and environment-friendly approach in controlling the disease. The Lr38 gene, introgressed from Agropyron intermedium, confers a stable seedling and adult plant resistance against multiple isolates tested in Europe. In the present study, 94 F2 plants resulting from a cross made between the resistant Thatcher-derived near-isogenic line (NIL) RL6097, and the susceptible Ethiopian wheat cultivar Kubsa were used to map the Thatcher Lr38 locus in wheat using simple sequence repeat (SSR) markers. Out of 54 markers tested, 15 SSRs were polymorphic between the two parents and subsequently genotyped in the population. The P. triticina isolate DZ7-24 (race FGJTJ), discriminating Lr38 resistant and susceptible plants, was used to inoculate seedlings of the two parents and the segregating population. The SSR markers Xwmc773 and Xbarc273 flanked the Lr38 locus at a distance of 6.1 and 7.9 cM, respectively, to the proximal end of wheat chromosome arm 6DL. The SSR markers Xcfd5 and Xcfd60 both flanked the locus at a distance of 22.1 cM to the distal end of 6DL. In future, these SSR markers can be used by wheat breeders and pathologists for marker assisted selection (MAS) of Lr38-mediated leaf rust resistance in wheat.  相似文献   

4.
Late maturity α-amylase (LMA) is a genetic defect that is fairly widely spread in bread wheat (Triticum aestivum L.) germplasm, and recently detected in durum cultivars, which can result in unacceptably high α-amylase activity (low falling number) in ripe grain. LMA has also been observed at unexpectedly high frequency and severity in synthetic hexaploid wheats derived from the interspecific hybridisation of Triticum durum (AABB) and Aegilops tauschii (DD). Since synthetic hexaploids represent an important new source of resistances/tolerances to a range of biotic and abiotic stresses for wheat breeders, there is a pressing need to understand the mechanisms involved in LMA in synthetics and develop strategies for avoiding its adverse effects on grain quality. The objectives of this study were to firstly, compare the LMA phenotype of synthetics that varied for plant height, secondly, to characterise the LMA phenotype in groups of synthetics derived from the same durum parents and finally to determine whether LMA in primary synthetics is associated with the QTL previously reported in conventional bread wheat. More than 250 synthetic hexaploids, a range of durum cultivars and a doubled haploid population derived from Worrakatta (non-LMA) × AUS29663 (high LMA synthetic) were phenotyped and genotyped with markers reported to be linked to LMA in conventional bread wheat and markers diagnostic for the semi-dwarfing gene, Rht1. More than 85% of synthetics were prone to LMA, approximately 60% ranked as very high. Genetic control of LMA in synthetic hexaploids appeared to involve QTL located on 7B, and to a lesser extent 3B, similar to bread wheats. However, the LMA phenotype of many synthetic hexaploids appeared to be more extreme than could be explained by comparisons with bread wheat even taking into account the apparent absence of Rht1 in most genotypes. Other mechanisms, possibly triggered by the interaction between the AABB and DD genomes cannot be excluded. The presence of wild type rht1 in most synthetic hexaploids and their extreme height is difficult to reconcile with the semi-dwarf, Rht1, stature of many of the durums used in the interspecific hybridisation process. Mechanisms that could explain this observation remain unclear.  相似文献   

5.
The spikes of club wheat are significantly more compact than spikes of common wheat due to the action of the dominant allele of the compactum (C) locus. Little is known about the location of C on chromosome 2D and the relationship between C and to other spike-compacting genes. Thus, a study was undertaken to place C on linkage maps and a chromosome deletion bin, and to assess its relatedness to the spike compacting genes zeocriton (Zeo) from barley and soft glume (Sog) from T. monococcum. Genetic mapping was based on recombinant inbred lines (RILs) from a cross between the cultivars Coda (club) and Brundage (common) and F2 progeny from a cross between the club wheat Corrigin and a chromosome 2D substitution line [Chinese Spring (Ae. tauschii 2D)]. The C locus was flanked by Xwmc144 and Xwmc18 in the RIL population and it was completely linked to Xcfd116, Xgwm358 and Xcfd17 in the F2 population. C could not be unambiguously placed to a chromosome bin because markers that were completely linked to C or flanked this locus were localized to chromosome bins on either side of the centromere (C-2DS1 and C-2DL3). Since C has been cytogenetically mapped to the long arm of chromosome 2D, we suspect C is located in bin C-2DL3. Comparative mapping suggested that C and Sog were present in homoeologous regions on chromosomes 2D and 2Am, respectively. On the other hand, C and Zeo, on chromosome 2H, did not appear to be orthologous.  相似文献   

6.
Durum or macaroni wheat (Triticum turgidum L., 2n = 4x = 28; AABB) is an allotetraploid with two related genomes, AA and BB, each with seven pairs of homologous chromosomes. Although the corresponding chromosomes of the two genomes are potentially capable of pairing with one another, the Ph1 (Pairing homoeologous) gene in the long arm of chromosome 5B permits pairing only between homologous partners. As a result of this Ph1-exercised disciplinary control, durum wheat and its successor, bread wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD) show diploid-like chromosome pairing and hence disomic inheritance. The Ph mutants in the form of deletions are available in bread wheat (ph1b) and durum wheat (ph1c). Thus, ph1b-haploids of bread wheat and ph1c-haploids of durum wheat show extensive homoeologous pairing that has been shown by us and several others. Here we study the effect of ph1b allele of bread wheat on chromosome pairing in durum haploids, whereas we studied earlier the effect of ph1c allele in durum haploids that we synthesized. In durum wheat, the ph1b-haploids show much higher (49.4% of complement) pairing than the ph1c-haploids (38.6% of complement). Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the USDA or imply approval to the exclusion of other products that also may be suitable.  相似文献   

7.
Fusarium head blight (FHB) is a destructive disease of wheat worldwide. FHB resistance genes from Sumai 3 and its derivatives such as Ning 7840 have been well characterized through molecular mapping. In this study, resistance genes in Wangshuibai, a Chinese landrace with high and stable FHB resistance, were analyzed through molecular mapping. A population of 104 F2-derived F7 recombinant inbred lines (RILs) was developed from the cross between resistant landrace Wangshuibai and susceptible variety Alondras. A total of 32 informative amplified fragment length polymorphism (AFLP) primer pairs (EcoRI/MseI) amplified 410 AFLP markers segregating among the RILs. Among them, 250 markers were mapped in 23 linkage groups covering a genetic distance of 2,430 cM. In addition, 90 simple sequence repeat (SSR) markers were integrated into the AFLP map. Fifteen markers associated with three quantitative trait loci (QTL) for FHB resistance (P < 0.01) were located on two chromosomes. One QTL was mapped on 1B and two others were mapped on 3B. One QTL on 3BS showed a major effect and explained up to 23.8% of the phenotypic variation for type II FHB resistance.  相似文献   

8.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease of wheat (Triticum aestivum) in China and worldwide, causing severe yield losses annually. Wild emmer (T. dicoccoides) accession IW72 collected from Israel is resistant to powdery mildew at the seedling and adult stages. Genetic analysis indicated that the resistance was controlled by a single dominant gene, temporarily designated MlIW72. The F2 population and F3 families derived from a hybrid between IW72 and susceptible durum wheat line Mo75 were used for molecular mapping of the resistance gene. MlIW72 was linked with SSR loci Xgwm344, Xcfa2040, Xcfa2240, Xcfa2257 and Xwmc525 on the long arm of chromosome 7A. In addition, two STS markers, MAG2185 (derived from RFLP marker PSR680) and MAG1759 (developed from EST CD452874), were mapped close to MlIW72. All these markers were physically located in the terminal bin 0.86–1.00 of 7AL. The chromosome location and genetic mapping results suggested that the powdery mildew resistance gene identified in wild emmer accession IW72 might be a new allele at the Pm1 locus or a new locus closely linked to Pm1.  相似文献   

9.
The Guinea yams, Dioscorea cayenensis Lam. and D. rotundata Poir. (D. cayenensisD. rotundata complex), represent a highly important crop, widely distributed in the humid and semi-humid tropics. The ploidy levels of 170 accessions of the core set of Guinea yams from West African countries was determined using flow cytometry with propidium iodide staining. One hundred and eight of the genotypes were found to be tetraploid, 47 were hexaploid and five were octoploid. One mixoploid individual containing tetraploid and hexaploid nuclei was also detected. A deeper analysis considering each separate taxon revealed that while for D. rotundata the majority of individuals were tetraploid, for D. cayenensis this ploidy level was not detected in any of the accessions. Also, no association between ploidy level and place of cultivation was found for the evaluated germplasm. The obtained data is highly valuable for breeding programs of Guinea yam, especially for the optimization of future hybridization experiments directed to the genetic improvement of this economically important crop.  相似文献   

10.
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer, 7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations, seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK. To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found in the present study will facilitate the selection of interim-maintainer.  相似文献   

11.
The wheat (Triticum aestivum L.) gene Lr34/Yr18 conditions resistance to leaf rust, stripe rust, and stem rust, along with other diseases such as powdery mildew. This makes it one of the most important genes in wheat. In Canada, Lr34 has provided effective leaf rust resistance since it was first incorporated into the cultivar Glenlea, registered in 1972. Recently, molecular markers were discovered that are either closely linked to this locus, or contained within the gene. Canadian wheat cultivars released from 1900 to 2007, breeding lines and related parental lines, were tested for sequence based markers caSNP12, caIND11, caIND10, caSNP4, microsatellite markers wms1220, cam11, csLVMS1, swm10, csLV34, and insertion site based polymorphism marker caISBP1. Thirty different molecular marker haplotypes were found among the 375 lines tested; 5 haplotypes had the resistance allele for Lr34, and 25 haplotypes had a susceptibility allele at this locus. The numbers of lines in each haplotype group varied from 1 to 140. The largest group was represented by the leaf rust susceptible cultivar “Thatcher” and many lines derived from “Thatcher”. The 5 haplotypes that had the resistance allele for Lr34 were identical for the markers tested within the coding region of the gene but differed in the linked markers wms1220, caISBP1, cam11, and csLV34. The presence of the resistance or susceptibility allele at the Lr34 locus was tracked through the ancestries of the Canadian wheat classes, revealing that the resistance allele was present in many cultivars released since the 1970s, but not generally in the older cultivars.  相似文献   

12.
This study was conducted to determine the genetic control of resistance to loose smut caused by Ustilago tritici race T33 in two durum recombinant inbred line populations (DT662 × D93213 and Sceptre × P9162-BJ08*B) and to identify molecular markers linked to the resistance. Resistance in both populations was controlled by single genes. Two SSR markers were linked with loose smut resistance in the Sceptre × P9162-BJ08*B population. In DT662 × D93213, two AFLP, two wheat SSRs and one SCAR markers were linked to resistance. The SCAR marker, 3.2 cM distal to the smut resistance locus (Utd1) on chromosome 5BS, accounted for up to 64% of the variability in disease reaction; the other markers were proximal to Utd1 at genetic distances ranging from 5.9 to 35.9 cM. SSR markers Xgwm234 and Xgwm443 segregated in both crosses suggesting a common resistance gene. The SCAR and SSR markers can be used effectively for marker assisted selection to incorporate loose smut resistance into durum cultivars.  相似文献   

13.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Schwabe), is an important wheat disease. In addition to head blight, F. graminearum also causes Fusarium seedling blight (FSB) and produces the mycotoxin deoxynivalenol (DON) in the grain. The objectives of this study were: (1) to compare the relationship between resistance of wheat lines to F. graminearum in the seedlings and spikes and (2) to determine whether the quantitative trait loci (QTL) for FSB were the same as QTLs for FHB resistance and DON level reported for the same population previously (Somers et al. 2003). There was no relationship between FSB infection and FHB index or DON content across the population. A single QTL on chromosome 5B that controlled FSB resistance was identified in the population; the marker WMC75 explained 13.8% of the phenotypic variation for FSB. This value implies that there may be other QTL with minor effects present, but they were not detected in the analysis. Such a QTL on chromosome 5B was not reported previously among the QTLs associated with FHB resistance and DON level in this population. However, because of recombination, some lines in the present study have Fusarium resistance for both seedling and head blight simultaneously. For example, DH line HC 450 had the highest level of resistance to FSB and FHB and was among the ten lines with lowest DON content. This line is a good candidate to be used as a parent for future crosses in breeding for Fusarium seedling resistance, together with breeding for head blight resistance. This approach may be effective in increasing overall plant resistance to Fusarium.  相似文献   

14.
Photoperiod response is of great importance for optimal adaptation of bread wheat cultivars to specific environments, and variation is commonly associated with allelic differences at the Ppd-D1 locus on chromosome 2D. A total of 926 Chinese wheat landraces and improved cultivars collected from nine wheat growing zones were tested for their genotypes at the Ppd-D1 locus using allele-specific markers. The average frequency of the photoperiod-insensitive Ppd-D1a allele was 66.0%, with the frequencies of 38.6 and 90.6% in landraces and improved cultivars, respectively. However, the Ppd-D1a allele was present in all improved cultivars released after 1970 except for spring wheats in high latitude northwestern China, and winter wheats in Gansu and Xinjiang. The presence of the Ppd-D1a allele in landraces and improved cultivars increased gradually from north to south, illustrating the relationship between photoperiod response and environment. Ppd-D1a in Chinese wheats is derived from three sources, Japanese landrace Akagomughi and Chinese landraces Mazhamai and Youzimai. The current information is important for understanding the broad adaptation of improved Chinese wheat cultivars. F. P. Yang and X. K. Zhang contributed equally to this work.  相似文献   

15.
The indica variety Dular has a high level of resistance to rice stripe virus (RSV). We performed quantitative trait locus (QTL) analysis for RSV resistance using 226 F2 clonal lines at the seedling stage derived from a cross between the susceptible japonica variety Balilla and the resistant indica variety Dular with two evaluation criteria, infection rate (IR) and disease rating index (DRI). The experiments were performed in both 2004 and 2005. Based on IR, three putative QTLs were detected and had consistent locations in the 2 years, one QTL was detected in the RM7324–RM3586 interval on chromosome 3. The other two QTLs were linked and located in the RM287–RM209 and RM209–RM21 intervals on the long arm of chromosome 11, and accounted for 87.8–57.8% of the total phenotypic variation in both years. Based on DRI, three putative QTLs were also detected and had consistent locations in both years. One of them was located in the RM1124–SSR20 interval on the short arm of chromosome 11, while the other two linked QTLs had the same chromosomal locations on chromosome 11 as those detected by IR, and accounted for 55.7–42.9% of total phenotypic variation in both years. In comparison to the mapping results from previous studies, one of the two linked QTLs had a chromosomal location that was similar to Stv-b i , an important RSV resistance gene, while the other appeared to be a newly reported one.  相似文献   

16.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

17.
The Lr56/Yr38 translocation consists primarily of alien-derived chromatin with only the 6AL telomeric region being of wheat origin. To improve its utility in wheat breeding, an attempt was made to exchange excess Ae. sharonensis chromatin for wheat chromatin through homoeologous crossover in the absence of Ph1. Translocation heterozygotes that lacked Ph1 were test-crossed with Chinese Spring nullisomic 6A tetrasomic 6B and nullisomic 6A-tetrasomic 6D plants and the resistant (hemizygous 6A) progeny were analyzed with four microsatellite markers. Genetic mapping suggested general homoeology between wheat chromosome 6A and the translocation chromosomes, and showed that Lr56 was located near the long arm telomere. Thirty of the 53 recombinants had breakpoints between Lr56 and the most distal marker Xgwm427. These were characterized with additional markers. The data suggested that recombinants #39, 157 and 175 were wheat chromosomes 6A with small intercalary inserts of foreign chromatin containing Lr56 and Yr38, located distally on the long arms. These three recombinants are being incorporated into adapted germplasm. Attempts to identify the single shortest translocation and to develop appropriate markers are being continued.  相似文献   

18.
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S 1300 S 1300 sp 1300 sp 1300 and S 135 S 135 sp 135 sp 135 , respectively. S 135 is dominant to S 1300 , but coexistence of sp 1300 and sp 135 fails to suppress S locus. Both S 1300 and S 135 can be suppressed by sp 135 , while sp 1300 can suppress S 135 but not S 1300 . The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and for dissecting the mechanism of SI/SC in B. napus.  相似文献   

19.
Wild Aegilops species related to cultivated wheat (Triticum spp.) possess numerous genes of agronomic interest and can be valuable sources of resistance to diseases, pests and extreme environmental factors. These genes can be incorporated into the wheat genome via intergeneric crossing, following, where necessary, the development of chromosome addition and substitution lines from the resulting hybrids. The transfer of a single segment from an alien chromosome can be achieved by translocations. The Aegilops (goatgrass) species, which are the most closely related to wheat, exhibit great genetic diversity, the exploitation of which has been the subject of experimentation for more than a century. The present paper gives a survey of the results achieved to date in the field of wheat–Aegilops hybridisation and gene transfer. The Aegilops genus consists of 11 diploid, 10 tetraploid and 2 hexaploid species. Of these 23 Aegilops species, most of the diploids (Ae. umbellulata Zhuk., Ae. mutica Boiss., Ae. bicornis (Forssk.) Jaub. & Spach, Ae. searsii Feldman & Kislev ex Hammer, Ae. caudata L., Ae. sharonensis Eig, Ae. speltoides Tausch, Ae. longissima Schweinf. & Muschl.) and several polyploids (Ae. ventricosa Tausch, Ae. peregrina (Hack. In J. Fraser) Marie & Weiller, Ae. geniculata Roth, Ae. kotschyi Boiss., Ae. biuncialis L.) have been used to develop wheat–Aegilops addition lines. Wheat–Aegilops substitution lines were developed using several species, including Ae. umbellulata, Ae. caudata, Ae. tauschii, Ae. speltoides, Ae. sharonensis, Ae. longissima and Ae. geniculata. Translocations carrying genes responsible for useful agronomic traits were developed with Ae. umbellulata, Ae. comosa, Ae. ventricosa, Ae. longissima, Ae. speltoides and Ae. geniculata. A large number of genes were transferred from Aegilops species to cultivated wheat, including those for resistance to leaf rust, stem rust, yellow rust and powdery mildew, and various pests (cereal cyst nematode, root knot nematode, Hessian fly, greenbug). Many molecular markers are linked to these resistance genes. The development of new molecular markers is also underway. There are still many untapped genetic resources in Aegilops species that could be used as resistance sources for plant breeding.  相似文献   

20.
Grain hardness plays an important role in determining both milling performance and quality of the end-use products produced from common or bread wheat. The objective of this study was to characterize allelic variations at the Pina and Pinb loci in Xinjiang wheat germplasm for further understanding the mechanisms involved in endosperm texture formation, and the status of grain texture in Chinese bread wheat. A total of 291 wheat cultivars, including 56 landraces, and 95 introduced and 140 locally improved cultivars, grown in Xinjiang, were used for SKCS measurement and molecular characterization. Among the harvested grain samples, 185 (63.6%), 40 (13.7%), and 66 (22.7%) were classified as hard, mixed and soft, respectively. Eight different genotypes for the Pina and Pinb loci were identified, including seven previously reported genotypes, viz., Pina-D1a/Pinb-D1a, Pina-D1a/Pinb-D1b, Pina-D1b/Pinb-D1a, Pina-D1a/Pinb-D1p, Pina-D1a/Pinb-D1q, Pina-D1a/Pinb-D1aa, Pina-D1a/Pinb-D1ab, and a novel Pinb allele, Pinb-D1ac. This new allele, detected in Kashibaipi (local landrace) and Red Star (from Russia) has a double mutation at the 257th (G to A substitution) and 382nd (C to T substitution) nucleotide positions of the coding region. Pina-D1b, Pinb-D1b, and Pinb-D1p were the most common alleles in Xinjiang wheat germplasm, with frequencies of 14.3%, 38.1% and 28.6% in hard textured landraces, 25.5%, 56.9% and 11.8% in hard introduced cultivars, and 24.8%, 47.8% and 26.5% in hard locally improved cultivars, respectively. The restriction enzymes ApaI, SapI, BstXI and SfaNI were used to identify Pinb-D1ab or Pinb-D1ac, Pinb-D1b, Pinb-D1e and Pinb-Dg, respectively, by digesting PCR products of the Pinb gene. The unique grain hardness distribution in Xinjiang bread wheat, as well as the CAPs markers for identification of the Pinb alleles provided useful information for breeding wheat cultivars with optimum grain textures. Liang Wang and Genying Li—contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号