共查询到20条相似文献,搜索用时 15 毫秒
1.
为快速、精准地对农作物信息进行分类和提取,笔者以某研究区农作物作为研究对象,对农作物分类展开研究。利用SVM和RF分类方法,对降维和一阶导数处理后的无人机高光谱遥感影像中的农作物进行分类,并比较了SVM和RF分类结果的精准性。研究结果表明,通过对高光谱影像农作物进行分类,利用RF分类法获得的分类结果精度较高,可以实现对农作物的有效提取,能够为我国农作物生长情况监测、产量估计和病虫害防治提供参考。 相似文献
2.
基于卷积神经网络的无人机遥感农作物分类 总被引:3,自引:0,他引:3
针对采用长时间序列卫星影像、结合物候特征进行农作物精细分类识别精度较低的问题,将深度学习用于无人机遥感农作物识别,提出一种基于卷积神经网络的农作物精细分类方法,利用卷积神经网络提取高分辨率遥感影像中的农作物特征,通过调整网络参数及样本光谱组合,进一步优化网络结构,得到农作物识别模型。研究结果表明:卷积神经网络能够有效地提取影像中的农作物信息,实现农作物精细分类。除地块边缘因农作物种植稀疏、混杂而产生少许错分现象外,其他区域均得到较好的分类效果。经训练优化后的模型对3种农作物总体分类精度可达97.75%,优于SVM、BP神经网络等分类算法。 相似文献
3.
树种信息对林业资源监测和管理具有重要意义,及时准确地掌握树种及长势状况是防护林工程建设与效益评价的基础。为研究利用无人机高光谱数据进行防护林树种分类的效果,选取典型区域使用Matrice600型六旋翼无人机搭载Rikola高光谱成像仪获取高光谱影像,基于支持向量机-递归特征消除算法(SVM-RFE)选取原始波段最佳组合,再结合纹理特征、植被指数和数理统计特征,使用随机森林算法对所有特征进行重要性评估并与分类精度相结合进行特征优化,进而构建高光谱影像全波段、原始波段最佳组合、全部特征变量、基于随机森林(RF)特征优化后特征变量4种分类方案,分别采用最大似然法(MLC)、支持向量机(SVM)、随机森林对防护林优势树种进行分类。结果表明:所提出的基于交叉验证的SVM-RFE算法选出的原始波段组合能更好地还原原始光谱特征;通过RF算法的特征重要性分析与分类精度相结合的方法可以有效选出重要特征,当使用全部特征的85%(包括17个光谱特征、3个纹理特征、5个植被指数和3个数理统计特征)进行分类时,总体精度最高为9593%(Kappa系数为0.9475);所有特征中植被指数特征最重要,3种分类方法中RF算法分类总体精度(OA)最高。 相似文献
4.
基于无人机遥感影像的收获期后残膜识别方法 总被引:1,自引:0,他引:1
针对人工评估农田残膜劳动强度高、效率低等问题,以及收获期后残膜识别困难的问题,提出了一种基于颜色特征的残膜识别方法。为了克服光照对残膜识别精度的影响,首先分析了阳光直射区、阴影区残膜和土壤RGB与HSV颜色分量灰度差异;然后,选择最佳颜色分量进行残膜图像分割,分别对比分析了手动阈值法、迭代阈值法、最大类间方差法、最大熵值法、K-means均值聚类法和脉冲耦合神经网络法的分割效果,结合原始图像残膜分布特点,优选出基于脉冲耦合神经网络的分割法;结合图像形态学算法,最终提取了烟地残膜面积与分布。结果表明,B分量可从背景中分割出直射区残膜,但不能分割阴影区残膜; S分量可从背景中分割出直射区和阴影区残膜;基于S分量的脉冲耦合神经网络分割法效果最佳,利用该方法对不同时期的农田残膜进行识别,6叶期、烟叶收获后、烟杆拔除后和冬季空闲期的识别率分别为96.99%、69.47%、93.55%和88.95%,地膜覆盖周期的平均识别率为87.49%。本文方法可快速准确地识别出秋后的农田残膜,提供残膜时空分布信息及变化特征,可为农田环境健康评估提供决策依据。 相似文献
5.
6.
7.
为探索在无人机遥感影像下可以对盐碱地信息精确分类的方法.选取甘肃省景泰川电力提灌灌区一期灌区为研究区,通过运用Trimble UX5固定机翼无人机采集研究区遥感数据,结合ENVI软件应用监督分类的五种分类器(平行六面体、最小距离、神经网络、最大似然、支持向量机)执行分类,对分类结果进行精度对比,并将典型区域盐碱地面积进... 相似文献
8.
基于无人机遥感的灌区土地利用与覆被分类方法 总被引:9,自引:0,他引:9
为研究无人机可见光遥感技术在灌区土地利用和覆被分类中的有效性,以河套灌区五原县塔尔湖镇为试验区域,用TEZ固定翼无人机搭载索尼A5100型相机进行航拍试验。应用Agisoft Photo Scan软件对无人机遥感系统获取的可见光高分辨率原始单张影像数据进行拼接处理。除目视提取的特殊用地与水域及水利设施用地外,通过试误法确定分割尺度300、形状权重0.4、紧致度权重0.5为无人机遥感影像数据的最佳分割参数。通过对剩余各地物在光谱、形状、纹理特征参量中表现的特异性,分别建立决策树、支持向量机、K-最近邻分类规则集提取土地利用类型试验。结果表明,支持向量机能较准确地提取各地物的特征,总体精度为82.20%,Kappa系数为0.765 9;决策树分类方法的总体精度为74.00%,Kappa系数为0.667 5;K-最近邻分类方法的总体精度为71.40%,Kappa系数为0.610 7。采用支持向量机结合决策树分类法创建的决策树模型,可以将总体精度提高到84.20%,Kappa系数达到0.790 0。因此无人机可见光遥感技术可以用于提取灌区土地利用类型,但存在农、毛渠错分为交通运输用地的情况,渠系的提取还需进一步研究。 相似文献
9.
在监测和管理林业资源的过程中准确的树种信息能够发挥非常重要的作用,及时了解树种及其生产情况能够帮助相关人员更好地开展林业建设。为了探索在树种分类识别中无人机高光谱影像的应用,笔者结合研究实例,探讨树种分类识别中应用无人机高光谱影像的方法和结果。仿真结果表明:与仅利用光谱特征分类相比,在分类特征中融入数理统计特征、植被指数特征以及纹理特征,能够极大地提升单个树种的分类精度;相比于SVM和MLC分类器,RF分类器拥有更好的分类效果和更高的分类精度,能够有效地适用于研究区树种分类;在树种分类识别中应用无人机高光谱影像,能够取得非常准确的识别结果。 相似文献
10.
基于无人机遥感与植被指数的冬小麦覆盖度提取方法 总被引:14,自引:0,他引:14
基于开源飞控Pixhawk开发了一套集成稳定云台、位置与姿态系统(Position and orientation system,POS)数据采集模块的无人机多光谱遥感图像采集系统,同步采集520~920 nm范围内的红、绿和近红外波段信息。以冬小麦为例,分别在越冬期、拔节期、挑旗期和抽穗期进行飞行实验,飞行高度55 m,多光谱影像地面分辨率2.2 cm。采用监督分类与植被指数统计直方图相结合的方式,提出了一种田间尺度小麦覆盖度快速提取的方法,给出归一化植被指数(Normalized difference vegetation index,NDVI)、土壤调节植被指数(Soil-adjusted vegetation index,SAVI)及修正土壤调节植被指数(Modified soil-adjusted vegetation index,MSAVI)对应的植被像元与土壤像元的分类阈值,分别为0.475 6、0.705 6和0.635 0。同时利用基于同步采集的地面分辨率可达0.8 cm的高清可见光遥感图像提取了相应时期的冬小麦覆盖度参考值。结果表明,基于无人机多光谱遥感技术及植被指数法可以较好地提取冬小麦越冬期、拔节期、挑旗期和抽穗期的植被覆盖度信息。与SAVI、MSAVI相比,基于NDVI分类阈值的提取效果最好,绝对误差最小。 相似文献
11.
基于无人机高光谱成像遥感系统,在400~1 000 nm波段内采集低矮、混杂生长的荒漠草原退化指示物种的高光谱图像信息。分别在退化指示物种的开花期、结实期和黄枯期进行飞行实验,飞行高度30 m,高光谱图像地面分辨率2. 3 cm。采用特征波段提取与深度学习卷积神经网络相结合的方式,提出一种荒漠草原物种水平分类的方法,结合植物物候给出了中国内蒙古中部荒漠草原物种分类的推荐时相,总体分类精度和Kappa系数平均值分别达到94%和0. 91。研究结果表明,无人机高光谱成像遥感技术及深度卷积神经网络可以较好地实现荒漠草原退化指示物种的分类,与基于径向基核函数的支持向量机、基于主成分分析的深度卷积神经网络分类法相比,基于特征波段选择的深度卷积神经网络分类法效果最好,分类精度最高。无人机搭载高光谱成像仪低空遥感和卷积神经网络法提供了一种草原物种水平分类的途径。 相似文献
12.
基于无人机影像技术的小麦长势遥感监测 总被引:1,自引:0,他引:1
随着精准农业的发展,农作物长势监测越来越重要.传统的小麦长势监测主要依靠人工采样进行,作业效率低、监测范围小、耗费人力物力大.为有效提高小麦长势监测效率,引入无人机影像技术,以曹妃甸地区的小麦为研究对象,利用无人机影像技术和高光谱影像采集传感器完成对曹妃甸地区小麦叶面积指数、叶片生物量、叶绿素含量及叶片氮含量等长势参数... 相似文献
13.
基于无人机遥感与随机森林的荒漠草原植被分类方法 总被引:2,自引:0,他引:2
荒漠草原是草原中最旱生的类型,属于草原的极限生态状态,也是气候变化和生态系统演变的预警区。利用无人机高光谱遥感技术快速、准确地提取荒漠草原草地植被类型,对动态监测草原生态安全和合理开发草地畜牧业具有重要意义。以无人机搭载高光谱成像系统采集内蒙古荒漠草原遥感图像,获得具有高空间分辨率和高光谱分辨率的图像;通过光谱连续统去除变换,增强草地植被之间的光谱差异,并构建植被指数;采用分步波段选择法选择荒漠草原植被的特征波段,实现高光谱数据降维;构建融合光谱特征、植被特征、地形特征和纹理特征等24个变量的随机森林分类模型,并与支持向量机(SVM)、K-最近邻(KNN)和最大似然分类(MLC)法进行比较。结果表明,在4种分类方法中随机森林分类算法分类效果最好,总体分类精度达到91.06%,比SVM、KNN和MLC等机器学习算法分别高7.9、15.61、18.33个百分点,Kappa系数达到0.90,比SVM、KNN和MLC算法分别高0.13、0.23和0.26。无人机高光谱低空遥感和随机森林算法的结合为荒漠草原草地植被分类提供了新途径。 相似文献
14.
城镇土地利用规划是城镇化健康有序推进的基础,规划实施监测是其实施的保障。遥感和GIS相结合的方法可快速监测城镇土地利用规划实施情况,保障土地利用规划实施的动态管理。利用0.5 m分辨率的World View-2卫星遥感影像,采用面向对象的影像分析方法,针对基于知识规则分类特征选取及阈值确定难点,将CART决策树与面向对象分类方法结合,实现参与分类最优对象特征的选择以及特征阈值的自动确定。在分类基础上,对每个规划图斑计算地类规划实施完成率,实现对土地利用规划实施过程进行监测评价。最后,以北京市房山区某区域为研究区,进行了试验验证。结果表明:最终分类总体精度达0.89,Kappa系数为0.87,表明构建的分类算法基本能满足城镇土地利用规划监测的需求。研究区东北部土地利用规划实施情况比西部好,公共绿地、水域等地类需重点调查监测,同时二类居住用地的建筑密度偏高,绿化率偏低。 相似文献
15.
研究采用无人机搭载多光谱传感器采集遥感影像图,对采集到的影像进行光谱分析,可以发现不同类型的高原夏菜具有不同的光谱特征。课题组采用面向对象法对影像图上的高原夏菜进行分类,采用Kappa系数进行衡量,当系数大于0.9时,分类精度可达90%以上,与目视解译误差率在7.5%以内。因此,采用面向对象的分类方式处理遥感影像,可以对高原夏菜种植种类及面积统计进行智能化监测。 相似文献
16.
基于卷积注意力的无人机多光谱遥感影像地膜农田识别 总被引:1,自引:0,他引:1
监测地膜覆盖农田的分布对准确评估由其导致的区域气候和生态环境变化有着重要作用,基于DeepLabv3+网络,通过学习面向地膜语义分割的通道注意力和空间注意力特征,提出一种适用于判断农田是否覆膜的改进深度语义分割模型,实现对无人机多光谱遥感影像中地膜农田的有效分割。以内蒙古自治区河套灌区西部解放闸灌区中沙壕渠灌域2018—2019年4块实验田的无人机多光谱遥感影像为研究数据,与可见光遥感影像的识别结果进行对比,同时考虑不同年份地膜农田表观的变化,设计了2组实验方案,分别用于验证模型的泛化性能和增强模型的分类精度。结果表明,改进的DeepLabv3+语义分割模型对多光谱遥感影像的识别效果比可见光高7.1个百分点。同时考虑地膜农田表观变化的深度语义分割模型具有更高的分类精度,其平均像素精度超出未考虑地膜农田表观变化时7.7个百分点,表明训练数据的多样性有助于提高地膜农田的识别精度。其次,改进的DeepLabv3+语义分割模型能够自适应学习地膜注意力,在2组实验中,分类精度均优于原始的DeepLabv3+模型,表明注意力机制能够增加深度语义分割模型的自适应性,从而提升分类精度。本文提出的方法能够从复杂的场景中精准识别地膜农田。 相似文献
17.
黄土丘陵沟壑区遥感影像信息面向对象分类方法提取 总被引:4,自引:0,他引:4
探索了基于面向对象分类方法提取黄土丘陵沟壑区高分辨率遥感影像土地信息的途径。以燕沟典型小流域为例,基于ALOS的多光谱、全色立体影像并辅以数字高程模型DEM和NDVI数据,进行面向对象的多尺度分割,利用阈值逐次提取与该区生态系统恢复、农业生产和生活实际密切相关的灌丛、林地、草地、耕地、果园、居住地和水体共7种土地利用类型,得到的分类精度为77.73%。 相似文献
18.
基于无人机遥感的高潜水位采煤沉陷湿地植被分类 总被引:4,自引:0,他引:4
为了掌握采煤沉陷湿地植被的类别和空间分布,促进矿区土地利用、管理和修复,以山东省济宁市东滩煤矿3304工作面为研究区,以无人机多光谱影像为数据源,分别采用面向对象的分类方法和监督分类方法对研究区湿地植被进行分类。基于优选的面向对象尺度分割参数,确定分类规则后构建面向对象分类模型,对湿地植被进行分类,生成植被分布图。同时,利用野外获取的322个采样点进行精度验证。结果表明:与基于像元的监督分类方法相比,面向对象分类方法显著提高了影像分类精度。监督分类方法总体精度为44. 3%,Kappa系数为0. 4;面向对象分类方法总体精度达到84. 2%,Kappa系数为0. 8。该研究为采煤沉陷区湿地调查与开采沉陷影响下地表植被空间分布规律研究提供了方法与基础数据。 相似文献
19.
叶片氮素含量是评价植被生长状况的重要指标,快速、准确监测核桃树冠层氮素含量的变化,对及时掌控树体长势、实施精准管理具有重要意义。本研究通过低空无人机遥感平台搭载GS-2型成像光谱仪,获取了果实膨大期5年生核桃林地的高光谱遥感影像数据。利用ENVI 5.3软件对观测范围内的核桃、土壤以及阴影区域进行识别提取,根据不同地物的波谱差异寻找核桃与土壤、阴影区域之间无交集且差异较大的波段区间,确定冠层的范围,并通过支持向量机方法验证其提取精度;根据NDVI、RVI和DVI植被指数筛选指示冠层氮素含量的特征敏感波段,分析了9种光谱参数对核桃冠层氮素含量的估算能力及其相关性,并将筛选的特征敏感波段作为BP神经网络模型的输入变量,进行了核桃冠层氮素含量的估算。结果表明:当B100 (550.7)处的光谱反射率大于0.10,且 B233 (779.4) 处的光谱反射率大于0.70时,可有效识别和确定核桃树冠层范围,制图精度高达96.43%。在分析核桃树冠层氮素含量与NDVI、RVI、DVI植被指数相关关系的基础上,确定了B33 (440.6)、B165 (660.7)、B186 (697.0)和B347 (986.4)为指示氮素含量的特征敏感波段。9种光谱参数中,以B347 (986.4)和B186 (697.0)重构的NDVI(986.4,697.0) 在核桃林地冠层氮素含量的诊断中更接近实测值,估算模型精度最高。基于BP神经网络建立的估算模型较9种光谱参数具有更高的估算精度,测试集R 2 达0.805,具有一定的估算可靠性。 相似文献
20.
基于时序植被指数的县域作物遥感分类方法研究 总被引:3,自引:0,他引:3
准确地获取农作物种植面积信息是农业管理部门及时掌握农作物生产信息的基础。基于时序植被指数的作物遥感分类方法,可以充分发挥遥感技术周期短、速度快和宏观性强的特点,克服单时相遥感数据的“同物异谱”和“异物同谱”导致的混分问题。以河北省曲周县作物遥感分类为例,在研究待分类作物的最佳NDVI阈值区间的基础上,探讨了基于时序植被指数的农作物分类知识规则建立方法。分类结果显示研究区2014年各类作物的种植面积分别为:冬小麦27 776.61 hm 2、夏玉米27 776.61 hm 2、春玉米2 582.73 hm 2、棉花6 485.94 hm 2、谷子 277.65 hm 2。 用总体分类精度、Kappa系数和统计数据对分类精度进行了验证,总体分类精度为89.166 7%,Kappa系数为0.857 4,与统计数据的相对误差分别为冬小麦-0.80%、夏玉米-0.32%、春玉米-3.15%、棉花-2.71%、谷子4.12%。研究结果表明该方法可为县域农作物种植面积遥感调查提供技术依据。 相似文献