首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the theory of 1-D photonic crystal was obtained and explained through the transfer matrix and plane wave method. Here the photonic crystal composed of SiO2/TiO2 thin film was assumed to be coated on fabric, the corresponding reflection and outer color can be calculated and found in the chromaticity diagram. Based on the numerical calculation of 1-D photonic crystal on fabric, if the thin film layer number varied, the reflection would change as well, and the color varied accordingly. For a certain layer number, the incident angle also influenced the observed color result. It illustrated that the constitution and observing angle of photonic crystal both influenced the structural color. The theoretical deduction and numerical calculation of photonic crystal on fabric would be very significant for designing our future structural color effect on textiles.  相似文献   

2.
Nylon 6 fabric with self-cleaning properties was prepared by corona discharge pre-treatment and coating with TiO2 nanoparticles (NPs) using pad-dry-cure technique. The self-cleaning property was studied by discoloration of methylene blue (MB), ketchup, tea and coffee stains from the corona+TiO2 treated nylon-6 fabric. Color difference (ΔΕ*), reflectance (R) and K/S of MB stain were investigated by diffuse reflectance spectrophotometry. The MB stain was almost completely removed from the corona+TiO2 treated nylon surface after 24 h under UV light/daylight irradiation. Both of these phenomena (corona and TiO2) led to an increase in the discoloration of stains under UV and daylight irradiations. The EDS analysis showed an increase in the concentration of deposited TiO2 NPs coating after corona treatment. The FE-SEM images revealed that the surface of nylon 6 was coarser after the corona treatment. Also, the FE-SEM micrographs exhibited that a uniform layer of TiO2 NPs was formed on the corona treated nylon fabric. The corona+TiO2 treated nylon illustrated antibacterial activity against E. coli and B. subtillis microorganisms. The EDS and FE-SEM analysis confirmed that after 5 washing cycles, the amount of TiO2 NPs was higher on the surface of corona+TiO2 treated nylon than that of the fabric only treated with TiO2 without corona pretreatment. This result justifies that the corona+TiO2 treated nylon fabric with appropriate self-cleaning property can be applied cost-effectively in the textile industry.  相似文献   

3.
Cotton fabrics were dyed with three commercial vat dyes in order to provide camouflage in Vis-NIR regions and imitate reflectance profile of greenish leaves. To investigate the effect of nano particles on camouflage properties of dyed fabric, nano particles of TiO2 were applied on dyed fabrics using pad-dry-cure method. The nano TiO2 padded dyed fabrics were investigated using scanning electron microscopy (SEM). Reflectance curves of coated dyed samples with different concentrations of nano TiO2 were measured. Results showed that in both of the standard shades, nano TiO2 increases the reflectance value in NIR region and with increasing the concentration of nano TiO2, the reflectance curves of samples tend to show the maximum reflection of greenish leaves (deciduous leaves) in NIR region. Chromatic values (CIE1976 L*, a*, and b*) and color difference (according to CIECMC color difference ΔE*cmc (2:1)) of each of the coated samples were measured using the reflection spectrophotometer. By considering the influence of white color of nano TiO2 on green shade of dyed cotton fabrics and increasing the color difference (between coated samples and the standard shades of the 1948 U.S army pattern) in visible range, optimum concentrations of nano TiO2 for development of camouflage properties on cotton fabrics in both NIR and visible region were determined. These values for NATO and forest green shades were 0.75 % and 0.5 %, respectively. Fastness results showed that both of the samples have acceptable color fastness. The effect of washing and exposure to light on camouflage properties of coated dyed fabrics in visible (in term of chromatic values) and NIR region (in term of spectral reflectance) was investigated when those were coated in optimum concentrations of nano TiO2. The results showed that the effect of after treatments (washing and exposure to light) on surface color spectral characteristics and camouflage properties was inconsiderable.  相似文献   

4.
Anatase TiO2 nanoparticles was in-situ formed on the cotton fabric by using tetrabutyl titanate (TBT) as a precursor through the normal pressure hydrothermal method. X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV visible spectra (UV-VIS), ATR-IR were used as the characterization techniques. Photocatalytic performance of TiO2 on the fabric surface was evaluated by methylene blue (MB), 4 kinds of the common living stains and three dyes under ultraviolet and visible light radiation. XRD analysis found that the TiO2 loaded on the fabric was mainly anatase crystalline phase with particle size of 6.4 nm. SEM observed that a large number of nano TiO2 particles are distributed on the fabric surface. UV-VIS test indicated that theTiO2-coated fabric possessed an obvious absorption for ultraviolet. ATR-IR analysis indicated that the nano-TiO2 possesses a strong affinity with the hydroxyl group of the cotton fabric, and the soaping tests showed that the TiO2 was firmly bonded with the fabrics. The treated fabrics have good degradation ability for MB aqueous solution, and could degrade azo, anthraquinone and phthalocyanine dyes. The order of degradation of the common life stains was: pepper oil> tea > coffee > soy sauce.  相似文献   

5.
PET fabric was first modified with silane coupling agent KH-560, and then was loaded with a layer of nano-scaled TiO2 particles using tetrabutyl titanate as precursor by low temperature hydrothermal method, followed by dyeing with Disperse Blue 56. The morphology, crystalline phase, chemical modification, thermal stability and optical property of PET fiber before and after treatments were studied by scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric and diffuse reflectance spectrum techniques. The properties of tensile, air permeability, luster, ultraviolet (UV) protection, photocatalytic activity, K/S value and color fastness were also measured. It was found that compared with the TiO2-coated fabric without modification with KH-560, the loading of TiO2 nanoparticles on the surface of the TiO2-coated fabric modified with KH-560 was obviously improved. The pure anatase TiO2 nanoparticle was grafted onto the fiber surface. The onset decomposition temperature increased. The absorbing capability to ultraviolet radiation was enhanced. The properties of tensile, air permeability, luster, K/S value and color fastness changed slightly. The UV protection ability and photodegradation of methyl orange under UV illumination were enhanced to some extent.  相似文献   

6.
Nano-TiO2 based multilayer nanocomposite films were fabricated on cationically modified woven cotton fabrics by layer-by-layer molecular self-assembly technique. Cationization process was used to obtain cationic surface charge on cotton fabrics. Attenuated total reflectance Fourier transform infrared spectroscopy analyses were used to verify the presence of cationic surface charge and multilayer films deposited on the fabrics. Scanning electron microscope micrographs of poly(sodium 4-styrene sulfonate)/TiO2, nano polyurethane/TiO2, and TiO2/poly(diallyldimethylammonium chloride) multilayer films deposited on cotton fabrics were taken. With nano-TiO2 based multilayer film deposition, the protection of cotton fabrics against UV radiation is enhanced. The UV protection durability of the self-assembled multilayer films deposited on the cotton fabrics was analyzed after 10 and 20 washing cycles at 40 °C for 30 min. Air permeability and whiteness value analysis were performed on the untreated and multilayer film deposited cotton fabrics. The effect of layer-by-layer deposition process on tensile strength properties of the warp and weft yarns was determined.  相似文献   

7.
In order to develop ultraviolet protection and yellowing resistance silk fabric, the silk fabric was treated with dispersive TiO2/La(III) composite solution. The morphology, microstructure, ultraviolet protection and whiteness of the treated silk fabric were characterized by means of transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction and ultraviolet transmittance. Furthermore, the mechanism of the ultraviolet protection was investigated. The results show that the TiO2/La(III) composite particles disperse uniformly. The TiO2/La(III) particles can not only be treated onto the surface of the silk fabric but also can be treated into the interior of the silk fabric successfully. The result of Fourier transform infrared spectra and X-ray diffraction demonstrates that there are hydrogen bonds between the silk fabric and composite particles, and crystallinity of the treated silk fabric decrease when compares to the untreated silk fabric. The ultraviolet protection factor of the TiO2/La (III) treated silk fabric is significantly higher than that of the untreated silk fabric. The main ultraviolet shielding effect of TiO2 treated silk fabric is absorption. The La(III) treated SF has a bad ultraviolet shielding effect, but it has a certain reflection and absorption.  相似文献   

8.
Cellulose acetate (CA) films containing anatase type titanium dioxide (TiO2) nanoparticles were prepared by solution casting. The film surface was modified by UV irradiation using a grid type UV irradiator. The UV irradiation caused slight increase in photodegradation of the CA films with TiO2 compared to the CA film alone. However, CA films irrespective of TiO2 content did not show a significant enzymatic degradation by a cellulase fromAspergillus niger without UV irradiation. Upon UV irradiation, the biodegradability remarkably improved even in the CA film without TiO2. The irradiation of CA films decreased both the water contact angle and the degree of substitution (DS) implying the decrease in acetyl groups of the CA film surface due to the photo-scission of the acetyl group and photooxidation, resulting in more facile biodegradation of the surface film layer. The substantial enhancement in biodegradation of the UV irradiated CA film containing TiO2 was attributed to the increased hydrophilicity, lowered DS and zeta potential due to the photoscission and the photooxidation effect of UV light. Also the increased surface area of the CA film due to the photocatalysis of TiO2 particles may encourage the facile biodegradation.  相似文献   

9.
Depositing of TiO2 nanoparticles on cellulose fiber surface has potential technological applications in the field of photocatalysis. With this motivation, multilayers composed of lignosulfonates (LS) and TiO2 nanoparticles were constructed on cellulose fiber surface via layer-by-layer (LBL) self-assembly technique. X-ray photoelectron spectroscopy (XPS), zeta potential measurement and atomic force microscopy (AFM) were used to characterize the LS/TiO2 multilayers on cellulose fiber surface. Moreover, the photocatalytic activities of modified cellulose fibers (decomposition of methyl orange and antibacterial test) were investigated. The decomposition efficiency of methyl orange for a (LS/TiO2)5 multilayer modified cellulose fibers was 74.7 % under 5 h UV irradiation. Photocatalytic decomposition efficiency of methyl orange by LS/TiO2 multilayer modified cellulose fibers under the same UV irradiation time increased linearly with the number of bilayers. Antibacterial tests results revealed that the cellulose fibers modified with LS/TiO2 multilayers exhibited excellent antibacterial activity against E.coil. The degree of E.coil growth inhibition for a (LS/TiO2)5 multilayer modified cellulose fiber reached as high as 93 %. In addition, the effect of LS/TiO2 multilayers on properties of handsheets made from modified cellulose fibers was also considered. The air permeability of the handsheet prepared from fibers modified with TiO2/LS multilayers had 6.1–24.3 % higher compared with that of handsheet prepared from original fibers. The wetting properties measurement results demonstrated that the water contact angle of handsheet oscillated with the increasing number of layers depended on building block which was in the outermost layer.  相似文献   

10.
The application of poly (p-phenylene-2, 6-benzobisoxazole) (PBO) fiber as reinforcement in composite material was restricted by its photo-degradation, therefore, some measures should be considered to protect PBO fiber against UV aging. In this study, A series of multilayer coating for (POSS/TiO2)n was prepared on PBO fiber surface via LbL assembly technique for enhancement of UV resistance. TiO2 as UV absorbing material was used to relieve UV-degradation of PBO. Surface elemental composition, surface morphology, mechanical and interfacial properties, and UV resistance of uncoated and coated PBO fibers were investigated. These experimental results show multilayer coating of (POSS/TiO2)n was uniform deposition on fiber surface after treatment, tensile strength decreased to certain extent, interfacial shear strength increased in a small range and UV resistance is obvious enhanced. After the same accelerated aging time under UV irradiation, the retention of tensile strength and intrinsic viscosity of coated PBO fibers were much better than that of untreated PBO fibers.  相似文献   

11.
In the research self-cleaning coatings based on photocatalytically active nano titanium dioxide (TiO2) were prepared. When applied directly to cellulose fiber surfaces, TiO2 coatings form weak bonds with fibers. Therefore 3-glycidooxypropyl-trimethoxysilane was used as a coupling agent. It had been applied on the surface of cellulose fibers before the TiO2 coating was performed. In this case, the silane is in the interface region, where it can be most effective as an adhesion promoter. Silane coupling agents have unique chemical and physical properties not only to enhance bond strength, but more importantly to prevent de-bonding at the interface during composite aging and use as well. The coupling agent provides a stable bond between two otherwise poorly bonding surfaces. Surface properties of these coatings have been examined, such as surface morphology and surface microstructure. TiO2 nanoparticles were irreversibly attached to the surface of monodisperse silica (SiO2) spheres and to the surface of Lyocell fibers coated with an epoxy-containing silane coupling agent. Analysis using scanning electron microscopy showed uniform distribution of nanoparticles in the resulting coatings. Fourier transform infrared spectroscopy revealed changes in the surface microstructure occurring after different modifications. In addition, the influence of photocatalytic activity on the mechanical properties of Lyocell fibers was determined. In addition to that, the results indicated that SiO2 and the coupling agent provide a protection against high oxidizing power of TiO2 under exposure to daylight irradiation.  相似文献   

12.
Facile embedding of TiO2 nanoparticles onto cotton fabric has been successfully attained by ultraviolet light irradiations. The adhesion of nanoparticles with fibre surface, tensile behaviour and physicochemical changes before and after ultraviolet treatment were investigated by scanning electron microscopy, energy dispersive X-ray and inductive couple plasma-atomic emission spectroscopy. Experimental variables i.e. dosage of TiO2 nanoparticles, temperature of the system and time of ultraviolet irradiations were optimised by central composite design and response surface methodology. Moreover, two different mathematical models were developed for incorporated TiO2 onto cotton and tensile strength of cotton after ultraviolet treatment and used further to testify the obtained results. Self-clean fabric through a synergistic combination of cotton with highly photo active TiO2 nanoparticles was produced. Stability against ultraviolet irradiations and self-cleaning properties of the produced fabric were evaluated.  相似文献   

13.
Producing fabric with multifunctional properties has been recently a center of research and utilizing nanoparticles is an efficient approach to gain this purpose. Here, nano TiO2 photo catalyst and polysiloxane softener were utilized as stabilizer on the acrylic fabric to obtain soft handle, hydrophilic, and self-cleaning features on the fabric. The effect of various concentrations of nano TiO2 and polysiloxane on the fabric handle, water droplet absorption time, and self-cleaning properties of the fabric has been mathematically modeled based on the response surface methodology (RSM). The optimized treatment conditions indicated that treated acrylic fabric with 2.19 % polysiloxane and 0.68 % nano TiO2 produced the rigidity of 26.8 g.cm, water absorption time of 15.8 s and self-cleaning of ΔE T *=18.1. Also increasing the concentration of polysiloxane enhanced both wettability and photoactive properties of nano TiO2 treated acrylic fabrics. Further, the nano TiO2/polysiloxane treated acrylic fabrics is significantly enable to absorb the light with wavelength lower than 400 nm and improve discoloration of C.I. Reactive Yellow 1.  相似文献   

14.
PP/POSS and PP/SiO2 composite non-woven fabrics filled with polyhedral oligomeric silsesquioxanes (POSS) and SiO2 respectively using a convenient blending method were prepared through melt-blown process with corona charging. The morphology of the composite fibers and the distribution of POSS and SiO2 nanoparticles in PP matrix were investigated by field-emission scanning electron microscope (FSEM) and transmission electron microscope (TEM), respectively. POSS and SiO2 can act as nucleating agent and accelerate the crystallization process during nonisothermal cooling. The shear storage modulus G??, loss modulus G??, and complex viscosity ??* of non-woven fabric reduce when 1 wt % POSS was added and increase for PP5/POSS composite non-woven fabric compared with pure PP non-woven fabrics. However, all G??, G?? and ??* of PP/SiO2 non-woven fabric decrease with increasing SiO2 content owing to plasticization by SiO2. Both stress and elongation at break of the PP/POSS melt-blown non-woven fabrics are improved compared with PP non-woven fabrics, however decrease when SiO2 was added, as compared to the neat PP non-woven fabric. The onset temperature of decomposition for both the PP/POSS and PP/SiO2 composite non-woven fabrics is higher (5?C10 °C) than pure PP and char content is increased with increasing POSS and SiO2.  相似文献   

15.
In this study, a new finishing technique is introduced through treatment of wool fabric with graphene/TiO2 nanocomposite. Graphene oxide/titanium dioxide nanocomposite first applied on the wool fabric by hydrolysis of titanium isopropoxide in graphene oxide suspension and then this coating chemically converted by sodium hydrosulfite to graphene/TiO2 nanocomposite. The homogenous distribution of the graphene/TiO2 nanocomposite on the fiber surface was confirmed by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray mapping. X-ray diffraction patterns proved the presence of titanium dioxide nanoparticles with a crystal size of 127 Å on the treated wool fabric. Also, the defect analysis based on X-ray photoelectron spectroscopy (XPS) established the composition of the nanocomposite. Other characteristics of treated fabrics such as antibacterial activity, photo-catalytic self-cleaning, electrical resistivity, ultraviolet (UV) blocking activity and cytotoxicity were also assessed. The treated wool fabrics possess significant antibacterial activity and photo-catalytic self-cleaning property by degradation of methylene blue under sunlight irradiation. Moreover, this process has no negative effect on cytotoxicity of the treated fabric even reduces electrical resistivity and improves UV blocking activity.  相似文献   

16.
Bi2WO6 particles were prepared and then coated on the polyester fabric. Surface morphology, crystal structure, and chemical structure of the Bi2WO6 particle coated polyester fabric were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Photocatalytic activity was evaluated by the degradation of methylene blue (MB) under ultraviolet light irradiation. Influences of the different concentrations of Bi2WO6 on the deposit weight and the photocatalytic activity of the Bi2WO6 particle coated polyester fabric were investigated. In addition, UV protection of the Bi2WO6 particle coated polyester fabric was examined. The results show that Bi2WO6 particles are uniformly coated on the surface of the polyester fabric. The Bi2WO6 particles coated on the polyester fabric are irregular and are orthorhombic. In addition, the Bi2WO6 particle coated polyester fabric exhibits excellent photocatalytic activity and UV protection. The average degradation efficiency of MB in the presence of the Bi2WO6 particle on the polyester fabric coated with 10 g/l Bi2WO6 reaches 98.6 % after being illuminated for 7 h. Therefore, the Bi2WO6 particle coated polyester fabric shows excellent photocatalytic stability for dyes degradation.  相似文献   

17.
TiO2 contents in yarns can influence color yield so that dyeing quality of industrial poly ethylene terephthalate (PET) yarns can be improved through the adjustment of TiO2 contents. To evaluate the dyeing performance of color yield, the chips which included the different TiO2 contents of 330, 550, and 1,100 ppm respectively were used to produce the yarns of different TiO2 content by a spin-draft machine. The physical and structural properties of the yarns were measured to investigate effect of the TiO2 contents on them. Dye uptake and dyeing rate were also evaluated using a colorimeter to compare the yarns having different TiO2 contents. The experimental results showed that there were no appreciable variation in physical and structural properties among the yarn samples and no difference were observed among the dyed fabric samples with regard to dyeing uptake and dyeing rate. However, the color yield of dyed fabrics increased as TiO2 contents decreased in the yarns especially when the fabric samples were dyed to pale shade. The physical reasoning could be proposed on why the yarns having low TiO2 contents appeared to have higher color yield after dyeing.  相似文献   

18.
Nano-SiOx suspension was prepared for its unique optical performance to improve the anti-ultraviolet property of cotton fabric in this paper. The experimental results showed that UV-resistance property of thus treated fabrics had been enhanced significantly. The spectrum of absorption, reflection, and transmittance of the treated fabric was analyzed during the optimized processing. The mechanical property of the treated fabric displayed a little increase compared with the original untreated fabric. The morphology of the treated fabric was studied by SEM. The UPF (Ultraviolet Protection Factor) of the fabric treated with nano-SiOx suspension reached 62, much higher than that of the original untreated fabric. Moreover, after 50 home launderings, the UV-blocking property of treated fabric changed little due to the strong affinity between the nano-SiOx particles and cotton fiber.  相似文献   

19.
Leather finishing processes using toxic organic solvent based produce volatile organic compounds (VOC), chronic exposure to this chemicals effect on workers' health causing many diseases especially lung cancer. So, polyurethane waterbased was synthesized for application in leather finishing instead of organic solvent based because it’s economic and safety for industry and workers. Preparation of water-based polyurethane (PU) depends on the reaction of polyethylene glycol (PEG, 300) with isophorone diisocyanate (IPDI) and the reaction of IPDI-1,4-butanediol (BDO) together with dimethylolpropionic acid (DMPA), was synthesized by poly-addition polymerization reaction. PU was then modified with different amounts of silicon dioxide nanoparticles (1-5 % SiO2), used as a binder in leather finishing. Leather coated was characterized physically, chemically and thermally by FTIR, GPC, DLS, TEM, SEM and TGA. The results revel that, water vapor permeability (WVP) of leather coated with PU modified with SiO2 showed improvement due to the existence of SiO2 particles which increases the interspaces of the polyurethane coating. SEM showed that when the amount of SiO2 nanoparticles increases, there is uniform nanoparticles accumulated can be observed. EDX prove the presence of Si and O2 elements and the formation of SiO2 nanoparticles. Mechanical properties discussed that tensile strength; tear strength and elongation at break % increase with increase SiO2 concentration until 3 % SiO2 nanoparticles. TGA showed an improvement of thermal stability of coated leather modified with SiO2. Therefore, this study succeeded in preparation of safe, ecofriendly of water-based polyurethane binders which modified with SiO2 for using in leather finishing.  相似文献   

20.
Fluorinated polyacrylate latexes are preferably potential materials for use in the textile finishing due to their special surface property and especially economical, low-toxic characteristics compared to fluorinated polyacrylate solutions. A novel cationic fluorine-containing polyacrylate soap-free latex (CFMBD) with core-shell structure was accordingly developed by co-polymerizing dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), butyl acrylate (BA), and dimethylaminoethyl methacrylate (DM) using a cationic reactive emulsifier, maleic acid double ester-octadecyl poly(ethyleneoxy)20 ether-ethylene trimethyl ammonium chloride (R303). Then CFMBD was utilized to treat the cotton fabric. Results showed that the as-prepared latex had due structure and its particles had uniform spherical core-shell structure with an average diameter of 125 nm. The core-shell CFMBD latex film thus had two T g and its thermal property was improved due to the introduction of DFMA. CFMBD could form a smooth resin film on the treated fabric/fiber surface under FESEM observation. XPS analysis indicated the fluoroalkyl groups had the tendency to enrich at the film-air interface. Hydrophobicity of the CFMBD treated fabric was slightly superior to that of the fabric treated by general emulsion but their oleophobicity was identical. Contact angles of water and diiodomethane on the CFMBD treated fabric surface could attain 133.5 ° and 105.5 °, respectively. However, washing durability of the treated fabric by CFMBD showed improvement compared to the general emulsion. In addition, CFMBD didn’t influence whiteness of the treated fabric but would make it slightly stiff at high doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号