首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study examined the mechanical properties of worsted fabrics woven using various rapier weaving looms. For this purpose, the warp and weft yarn tensions during weaving were measured on the three types of rapier looms, and the fabric mechanical property changes due to the warp and weft tension differences were measured and analyzed according to the fabric position and particular rapier loom using the KES-FB system. The warp tension variation along the loom width direction in P-GTX loom showed the lowest value compared to FAST and THEMA looms. The warp tensions on the central part of the three types of looms were much higher than those on the left and right sides of the looms. The extensibility and bending rigidity of the fabric woven by P-GTX rapier loom showed lower values than those of FAST and THEMA looms, which appears to have originated from the low warp and weft weaving tensions of P-GTX rapier loom. On the other hand, the compressional property and shear modulus showed compromised results due to lateral deformation by compression and constraint deformation of the warp and weft by shear. The friction coefficient of the fabric surface woven by FAST loom showed the lowest value due to the flatter surface by the high warp tension. The mechanical properties of the fabric loaded by a high warp tension on the central part of the loom were also affected by the high weft yarn crimp due to the wider spacing between warp yarns by the higher warp tension during weaving, which makes the surface of the central part of the fabric flatter and smoother than the edge part of the fabric.  相似文献   

2.
This study examined the effects of the total porosity, pore size, and cover factor on the moisture and thermal permeability of woven fabrics made from DTY (draw textured yarns) and ATY (air jet textured yarns) composite yarns with hollow PET (polyethylene terephthalate) yarns. The wicking of the hollow composite yarn fabrics was found to be superior to that of the high twisted yarn fabrics, which may be due to the high porosity in the hollow composites yarns, but this was not related to the cover factor. The drying characteristics of the hollow composite yarn fabric with high porosity were inferior compared to the high twisted yarn fabrics due to the large amounts of liquid water in the large pores, which resulted in a longer drying time of the fabric. The thermal conductivity of the hollow composite yarn fabrics decreased with increasing measured pore diameter due to the bulky yarn structure. The effects of the hollowness of the yarn on the thermal conductivity were more dominant than those of the yarn structural parameters. The air permeability increased with increasing measured pore diameter but the effects of the cover factor on the air permeability were not observed in the hollow composite yarn fabrics. The effects of porosity on the moisture and thermal permeability of the woven fabrics made from the hollow composite filaments were found to be critical, i.e., wicking and air permeability increase with increasing porosity. In addition, the drying rate increased with increasing porosity and the thermal conductivity decreased with increasing pore diameter, but were independent of the cover factor.  相似文献   

3.
Mechanical properties and the long-term degradation properties of the recycled PET yarns are typically lower than the virgin PET yarns due to the contaminants coming from non-PET bottles, labels and caps etc. For environmental reasons, recycling of post-consumer polyester bottles into textile fibers has become commercially attractive. We studied mechanical and chemical recycling processes and examined their effects on yarn properties such as tensile properties, thermal characteristics, hydrolysis and photo-degradation. It was found that the virgin and the chemical recycled yarns with sufficient purification show similar processability, physical and mechanical properties, and long-term degradation behavior. The results provide useful information on recycled PET yarns for processability and serviceability for the high-end use.  相似文献   

4.
The effects of yarn number and liquid ammonia (L/A) treatment on the physical properties of woven fabrics prepared with pure hemp spun yarns were investigated. As a result of L/A treatment, the crystal structure of hemp fiber was changed from cellulose I to the mixtures of cellulose III and cellulose I and its crystallinity was slightly decreased by 13 %. The crease recovery of hemp fabric treated with L/A was improved upto 78 %. The washing shrinkage of hemp fabric treated with L/A decreased significantly to less than 0.4 %, while the washing shrinkage of hemp fabric prepared with the fined yarn was superior to that of hemp fabric prepared with the coarsed yarn. Especially, the wicking speed and drying ratio of hemp fabrics treated with L/A were higher than those of the untreated as yarn number increased. However, it was found that there is no significant effect on the UV protection of the L/A treated hemp fabrics.  相似文献   

5.
The purpose of this study was to classify various fabrics into some meaningful groups and to predict the fabrics’ acoustic characteristics using their mechanical properties. Two hundred seventeen fabrics, fifty one knitted fabrics, fifty nine woven fabrics and one hundred and seven vapor permeable water repellent fabrics, were used as test specimen. Fabric frictional sounds of the specimen were measured with a MAFN(Measuring Apparatus for Fabric Noise, Patent: No, 2001-73360). Sound Pressure Level(SPL), psychoacoustic parameters such as Loudness(z) and Sharpness(z) of the specimen were obtained by the sound quality system. KES-FB system was used for mechanical property measurements. Cluster analysis was used to classify the specimen and discriminant analysis was used to predict the clusters. Linear regression analysis was used to suggest the equations to predict the acoustic properties using mechanical properties.  相似文献   

6.
Based on the requirements of extensive green roofs, ploylactide (PLA) fibers, cotton fibers, polyester (PET), and low-melting-point LMPET fibers are combined and produced culture mediums for Crassulaceae plants. The resulting mediums are tested for their physical properties and found to be light weight, which is a required condition for plant growth. These features contribute to efficient construction and maintenance. In addition, the optimal cooling effect of the culture mediums is 9.6 °C, which significantly reduces the amount of heat that invades indoor spaces. The decrease in the amount of heat indoors results in a lower demand for air conditioning so as to achieve energy conservation. The results derived from this study help in the promotion of green roofs, thereby slowing down the urban heat island effect and global warming.  相似文献   

7.
To investigate the aluminum deposition on the chemically recycled polyethylene terephthalate (CR-PET) fabrics by DC magnetron sputtering, effects of sputtering parameters (sputtering power and deposit time) on the properties of the Al deposited CR-PET fabric were examined. The variations in the properties such as wettability, optical and thermal insulation property of the CR-PET fabric sputtered under various sputtering parameters were discussed. Wettability of the Al deposited CR-PET fabrics decreased with an increase of sputtering power and deposit time, and then they leveled off above a certain condition. The light reflectance of the Al deposited CR-PET fabrics showed a maximum point with proper sputtering power and deposition time. The thermal insulation property of the Al deposited CR-PET fabrics improved with sputtering power and deposit time.  相似文献   

8.
The purpose of the research was to examine the effect of three different levels of enzyme treatment on the physical characteristics and the end-use suitability of the lyocell fabrics made with four different types of commercial wood pulp. The appropriate enzyme concentration for obtaining an optimum as well as consistent physical characteristics and fabric hand trait was 3 g/l for the concentration levels tested in the present investigation. Weight loss was more affected by higher enzyme concentration than other physical properties. H2 was least affected by enzyme treatment for all three physical properties and fabric hand. 5 g/l concentration exhibited little difference from 3 g/l in the physical characteristics, whereas the KES-FB values indicated a significant loss of fabric hand in most PHVs with the 5 g/l concentration level. Among different garment parameters, all four fabric types were relatively inappropriate for the men’s slacks (MS) fabric due to the lower hand value of koshi required by the MS parameter. However, despite the relatively low koshi values, high fukurami values required for men’s dress shirt (MWDS) resulted in the highest THV among the four garment parmeters. The four fabric types, which represent the usage of four different wood pulps, in general seem to exhibit a higher applicability to women’s winter thin dress (WWTD) than women’s winter suit (WWS) garment parameter.  相似文献   

9.
Effects of enzymatic and atmospheric plasma treatments individually and their combinations on knitted PET fabrics were investigated in terms of hydrophilicity, surface modification and moisture management properties. Cutinase from Humicola Insolens, lipase from Candida SP and atmospheric plasma with air and argon gases were applied to PET fabrics. To evaluate results, moisture management tester (MMT) and scanning electron microscopy (SEM) were utilized. Wicking heights of samples were measured by wicking test method. Improved moisture management properties were observed with environmentally benign processes compared to the untreated ones. Especially combined treatments have given the same or slightly better results than those of conventional alkaline treatments. Fabrics treated with plasma and then followed by enzymatic incubations have significantly improved the wetting time, absorption rates and spreading speed results.  相似文献   

10.
土壤有机质、氮、磷及铁、硼含量与茎粗、皮厚和出麻率呈负相关,虽略利于优质却降低产量;水解氮对优质高产均不利。钾、锰、锌与株高呈正相关、与有效株呈负相关,不利高产优质和原麻含胶率的降低。土壤容重和p H 与株高之外其它经济性状呈正相关,有益高产优质,而总孔度的作用相反。土壤毛孔度和比重都有利优质,但前者与株高呈负相关、与有效株呈正相关,后者则反之。  相似文献   

11.
Dyeing and color fastness properties of a reactive disperse dye containing an acetoxyethylsulphone group on PET, Nylon, silk and N/P fabrics were examined. The reactive disperse dye exhibited almost the same dyeing properties on PET fabric as a conventional disperse dye except the level of dye uptake. The most appropriate pH and dyeing temperature for the dyeing of Nylon fabric were 7 and 100°C respectively. The build-up on Nylon fabric was good and various color fastnesses were good to excellent due to the formation of the covalent bond. Application of the reactive disperse dye on silk fabric at pH 9 and 80°C yielded optimum color strength. The rate of dyeing on Nylon fabric was faster than that on PET fabric when both fabrics were dyed simultaneously in a dye bath, accordingly color strength of the dyed Nylon was higher. The reactive disperse dye can be applied for one-step and one-bath dyeing of N/P mixture fabric with good color fastness.  相似文献   

12.
A series of some novel hybrid materials prepared via a sol-gel process have been synthesized from methyltrimethoxysilane and titanium n-butoxide with heterocyclic thiazole azo dyes. Silica/titania/thiazole azo dyes hybrid materials were synthesized via a sol-gel process with a precursor system. Alternatively, the heterocyclic thiazole azo dyes were catalytically processed by means of hydrolysis-condensation reactions with appropriate amounts of a mixture of vinyltriethoxysilane, methyltrimethoxysilane, and titanium n-butoxide at a fixed molar ratio. The structure of these hybrid silica/titania/thiazole dye materials was characterized by Fourier transform infrared (FT-IR) analysis. The surface morphology of processed PET/PA6 nonwoven fabrics was evaluated by scanning electron microscopy (SEM). SEM images showed uniform dyeing, thereby confirming the reaction of the hybrid materials with the PET/PA6 nonwoven fabrics. The water contact angle, washing fastness, color evenness, air permeability, and weatherability characteristics of the as-prepared dyed PET/PA6 nonwoven fabrics were subsequently evaluated. Results revealed improved weatherability and good water repellency. Further, it was also revealed that dyeing and finishing could be achieved in a single bath, which is advantageous to reduce processing costs.  相似文献   

13.
The accumulation and autoxidation of residual oily soil from human sebum is regarded as a major reason for the aging and yellowing of clothing and household textiles. In this study, the yellowing degree of cotton fabrics soiled with human sebum components and aged under various environmental conditions (various temperatures, humidities and light intensities etc.) were investigated. The representative sebum components including olive oil, squalene, oleic acid and cottonseed oil were selected and their chemical changes were studied by FTIR analysis. The results showed that, olive oil, squalene, oleic acid and cottonseed oil could caused more significant fabric-yellowing than other components in human sebum, and the yellowing degree could become higher with increasing temperatures, humidities and/or light intensities of aging environments. The chemical structures of olive oil, squalene and oleic acid changed remarkably after aging treatment. The aging products contained hydroxyl groups and carbonyl groups, and the conjugated C=O group was considered to be the chemical species leading to the yellowing of sebum-soiled fabrics.  相似文献   

14.
Dimethylaminopropyl methacrylamide (DMAPMA) was grafted onto PET/wool blend fabrics by continuous UV irradiation. Union dyeing of the photografted fabrics was investigated using three reactive dyes of α-bromoacrylamide reactive groups. The influence of grafting yield, DMAPMA concentration, NaCl amount, pH value, and dyeing temperature on the dyeability was evaluated. The dyeability of both PET and wool components was improved significantly by the DMAPMA photografting and successive reactive dyeing. Although the dyeability of the PET component in the blend substantially was improved with higher grafting, equal dyeability between PET and wool was difficult to achieve due to more facile grafting and higher reactivity of the wool component compared with the modified PET component. However, the color fastness of the PET/wool blend fabric was excellent for all three colors. This study may offer a way to achieve union dyeing of PET/wool blend fabrics.  相似文献   

15.
During commercial sterilization of whole white potatoes, mild to severe breakage sometimes occurs. Physical properties of potatoes were measured before and after sterilization. These included major diameter, minor diameter, density, dry matter content, amylographic viscosity, compressive breaking strength, and tensile breaking strength. The experimental data were evaluated in terms of mean values from 33 different truckloads sampled at a commercial canning facility (60 tubers sampled per load). These properties were statistically compared to the incidence of breakage in sterilized potatoes. The results did not show significant relationships between any of the raw potato properties and the incidence of breakage. However, several properties of the sterilized potatoes (major diameter, peak viscosity, peak viscosity temperature) were linearly related to breakage (R2 = 0.84).  相似文献   

16.
A durable aroma finishing for PET fabric was carried out by adopting poly(vinyl acetate) (PVAc) nanoparticles containing lavender oil (LO) in core. Relatively small size of PVAc nanoparticles (ca. 244 nm of mean particle diameter) was expected to resist the frictional destruction of the particles, which is frequently observed in cases of microcapsules. PVAc nanoparticles containing LO in core were prepared by emulsification-diffusion method and their application as an aroma releasing agent for PET fabrics was assessed through the observation of releasing profiles of LO in ethanol for experimental acceleration. Melamine-formaldehyde (MF) microcapsules containing LO were also prepared and treated on fabrics for comparison. PVAc nanoparticles treated on PET fabric showed higher initial releasing amount, which was ascribed to the enhanced surface area. After 2 days of releasing, PET fabric treated with PVAc nanoparticles showed slower and more stable releasing profile and reached about 12 ppm of cumulative release after 16 days, which was under two thirds of that with MF microcapsules. PVAc nanoparticles can be used as an agent for durable aroma finishing of PET fabrics.  相似文献   

17.
This paper reports the effect of microencapsulated phase change materials (MPCMs) and silicon carbide (SiC) by a direct composite coating on outdoor winter fabrics by examining the changes in the mechanical and physical properties that occur before and after the composite coating. Pretreated waterproof breathable nylon was coated with PCMs 20 wt% (20PCM) and PCMs 20 wt%/SiC 20 wt% (SC-20PCM). The far-infrared (FIR) emissivity was measured using a Fourier transform infrared spectroradiometer. The cross-section morphology, mechanical properties and changes in pore size were examined by scanning electron microscopy (SEM), a Kawabata evaluation system for fabrics (KES-F) and porometry, respectively. SEM revealed the successful embedding of MPCMs and SiC into the coating layer. The KES-F system showed that the application of coating additives onto the fabrics made them stiffer and slightly heavier but decreased their pore size. The FIR emissivity was only marginally improved from 0.88 to 0.9.  相似文献   

18.
In this study, the dimensional and some physical properties of plain knitted fabrics made from 50/50 bamboo/cotton blended yarns are investigated. In order to see the differences and similarities, the results are then compared with those for similar fabrics knitted from 50/50 conventional viscose/cotton and 50/50 modal/cotton blended yarns. Each fabric type was produced with three different stitch lengths. After all fabrics were dyed under identical dyeing conditions, they were subjected to dry and full relaxation treatments. For dimensional properties of fabrics, course, wale and stitch densities were measured. Then, by calculating statistically best-fit lines passing both through the experimental points and the origin, dimensional constants i.e. k values were predicted in terms of the fiber types. The result show that each fabric type knitted from bamboo/cotton, viscose/cotton and modal/cotton blended yarns behaves in a similar manner. However, in both dry and fully relaxed states, the modal/cotton knitted fabrics tend to have slightly higher k values than the bamboo/cotton and viscose/cotton knitted fabrics. For physical properties, fabric weight per unit area, thickness, bursting strength, air permeability and pilling were evaluated. The results show that the weight, thickness and air permeability values are independent of the fiber type. Plain knitted fabrics from modal/cotton blended yarns have the highest bursting strength values. Plain knitted fabrics from bamboo/cotton blended yarns tend to pill less.  相似文献   

19.
Effects of needle-punching and thermo-bonding on tensile property, air permeability, puncture resistances and EMI shielding effectiveness were discussed for carbon-reinforced composite and glass-reinforced composite. The result shows that, needle-punching significantly improves static and dynamic puncture resistances. As increase of needle-punched density, static and dynamic puncture resistances show firstly increasing and then decreasing trend. Thermo-bonding almost has no influence on static puncture resistance, but effectively decreases dynamic puncture resistance. Comparatively, carbon-reinforced composite shows higher static and dynamic puncture resistances than glass-reinforced composites when being needle-punched at 200 needles/cm2. Meanwhile, carbon-reinforced composite has superior EMI shielding effectiveness to 40–60 dB at frequency of above 1 GHz, reaching 99.99 % shielding efficacy.  相似文献   

20.
The paper focuses on the application of ultrasonic energy in textile laundering. In recent years, there has been an increasing interest in ultrasonic energy application in textile industry; however, the effect of ultrasonic laundering on the thermophysiological properties of knitted fabrics has not been studied yet. This study was conducted by using polylactic acid (PLA), cotton, polyethylene terephthalate (PET), and poly acrylic (PAC) fibres containing yarns and their blends. Knitted fabrics, single pique, were made from these yarns by using weft knitting machine. The fabrics were washed ten times for 15 and 60 minutes under 40 °C by using conventional and ultrasonic washing methods. The main aim was to determine the effect of washing methods on the thermophysiological properties of the fabrics. It is also aimed to analyse and evaluate the thermophysiological properties of the PLA fabrics. The incorporation of 100 % PLA and cotton/PLA yarns into single pique knitted fabrics has been attempted to produce for the first time and studied their thermal comfort properties. The results show that the washing processes have a critical importance for the tested fabrics in terms of thermal conductivity, thermal resistance, thermal absorbtivity, water vapour permeability, and heat loss. It has been also demonstrated that the fabric cleaning by using ultrasonic method enhanced the properties of tested fabrics such as thermal conductivity and % recovery. It was also noted that 15 minutes ultrasonically washed fabrics had significantly lower thermal resistance as compared to conventionally washed fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号