首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine the relationship between plasma beta-endorphin (EN) concentrations and exercise intensity and duration in horses. ANIMALS: 8 mares with a mean age of 6 years (range, 3 to 13 years) and mean body weight of 450 kg. PROCEDURE: Horses were exercised for 20 minutes at 60% of maximal oxygen consumption (VO2max) and to fatigue at 95% V02max. Plasma EN concentrations were determined before exercise, after a 10-minute warmup period, after 5, 10, 15, and 20 minutes at 60% VO2max or at the point of fatigue (95% VO2max), and at regular intervals after exercise. Glucose concentrations were determined at the same times EN concentrations were measured. Plasma lactate concentration was measured 5 minutes after exercise. RESULTS: Maximum EN values were recorded 0 to 45 minutes after horses completed each test. Significant time and intensity effects on EN concentrations were detected. Concentrations were significantly higher following exercise at 95% VO2max, compared with those after 20 minutes of exercise at 60% VO2max (605.2 +/- 140.6 vs 312.3 +/- 53.1 pg/ml). Plasma EN concentration was not related to lactate concentration and was significantly but weakly correlated with glucose concentration for exercise at both intensities (r = 0.21 and 0.30 for 60 and 95% VO2max, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: A critical exercise threshold exists for EN concentration in horses, which is 60% VO2max or less and is related to exercise intensity and duration. Even under conditions of controlled exercise there may be considerable differences in EN concentrations between horses. This makes the value of comparing horses on the basis of their EN concentration questionable.  相似文献   

2.
OBJECTIVE: To determine plasma endotoxin concentration in horses competing in a 48-, 83-, or 159-km endurance race and its importance with regard to physical, hematologic, or serum and plasma biochemical variables. ANIMAL: 3 horses. PROCEDURE: Weight and rectal temperature measurements and blood samples were obtained before, during, and after exercise. Blood samples were analyzed for plasma endotoxin concentration; serum antiendotoxin antibody titers; thromboxane B2 (TxB2) and 6-keto-prostaglandin F1alpha (PGF1alpha) concentrations; tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) activities; WBC, plasma protein, lactate, serum electrolyte, and calcium concentrations; PCV; and creatine kinase activity. RESULTS: Detection of plasma endotoxin increased during exercise for horses competing at all distances but occurred more frequently in the 48- and 83-km groups. Plasma lactate concentration was significantly greater when endotoxin was concurrently detected. Endotoxin in plasma was not significantly associated with success of race completion. Plasma TxB2 and PGF1alpha concentrations and serum IL-6 activity significantly increased with exercise. Horses that had an excellent fitness level (as perceived by their owners) had greater decreases in serum antiendotoxin antibody titers during exercise than did horses perceived as less fit. In horses with better finish times, TxB2 and PGF1alpha concentrations were significantly greater and TNFalpha activity was significantly less than that of slower horses. CONCLUSIONS AND CLINICAL RELEVANCE: Endotoxemia developed during endurance racing, but was significantly correlated with increased plasma lactate concentration and not with other variables indicative of endotoxemia. Plasma TxB2 and PGF1alpha concentrations and serum TNFalpha activity may be associated with performance success.  相似文献   

3.
OBJECTIVE: To compare effects of oral supplementation with an experimental potassium-free sodium-abundant electrolyte mixture (EM-K) with that of oral supplementation with commercial potassium-rich mixtures (EM+K) on acid-base status and plasma ion concentrations in horses during an 80-km endurance ride. ANIMALS: 46 healthy horses. PROCEDURE: Blood samples were collected before the ride; at 21-, 37-, 56-, and 80-km inspection points; and during recovery (ie, 30-minute period after the ride). Consumed electrolytes were recorded. Blood was analyzed for pH, PvCO2, and Hct, and plasma was analyzed for Na+, K+, Cl-, Ca2+, Mg2+, lactate, albumin, phosphate, and total protein concentrations. Plasma concentrations of H+ and HCO3-, the strong ion difference (SID), and osmolarity were calculated. RESULTS: 34 (17 EM-K and 17 EM+K treated) horses finished the ride. Potassium intake was 33 g less and Na+ intake was 36 g greater for EM-K-treated horses, compared with EM+K-treated horses. With increasing distance, plasma osmolarity; H+, Na+, K+, Mg2+, phosphate, lactate, total protein, and albumin concentrations; and PvCO2 and Hct were increased in all horses. Plasma HCO3-, Ca2+, and Cl- concentrations were decreased. Plasma H+ concentration was significantly lower in EM-K-treated horses, compared with EM+K-treated horses. Plasma K+ concentrations at the 80-km inspection point and during recovery were significantly less in EM-K-treated horses, compared with EM+K-treated horses. CONCLUSIONS AND CLINICAL RELEVANCE: Increases in plasma H+ and K+ concentrations in this endurance ride were moderate and unlikely to contribute to signs of muscle fatigue and hyperexcitability in horses.  相似文献   

4.
Blood samples from the jugular vein and muscle biopsies (gluteus medius) in 25 Standardbred trotters were obtained 5-10 min after racing. The biopsies were analysed for fibre type composition and enzymatic profile and blood samples for plasma lactate and ammonia concentrations. Muscle characteristics, plasma lactate and ammonia concentrations after racing were compared with each horse's individual performance index (IPI). The IPI is calculated annually from the individual horse's racing performance (% placing 1, 2 or 3, total annual earnings, average earning per start, and best racing record), respectively, converted to and expressed as a percentage deviation from the average record of the same sex and age group. The IPI values were 100-116. Plasma lactate concentrations were 15.0-42.7 mmol/l (mean 31.3 mmol/l) and ammonia concentrations 65-210 micromol/l (mean 141 micromol/l) after racing. Fibre type composition varied among horses (range 9-27% for Type I, 32-54% for Type IIA, and 27-46% for Type IIB). Fibre type composition, enzyme activities, plasma lactate and ammonia responses to racing were not correlated to IPI. Ten of the horses also performed a submaximal test on the track, consisting of 5 incremental 1000 m heats at approximate speeds of 9.1, 9.5, 10.0, 10.5, and 11.1 m/s. Immediately after each heat a blood sample was drawn from the jugular vein for plasma lactate analysis. Plasma lactate response to exercise differed between horses, but no correlation was seen with IPI. Muscle characteristics, plasma lactate and ammonia concentrations after racing and lactate response to a submaximal track test did not correlate with current race performance expressed as IPI in a group of horses with average or better performance capacity at the time of testing. Analysis of lactate and ammonia in blood after racing is not a valuable tool to predict an individual performance index.  相似文献   

5.
Hypocalcemia and hypomagnesemia are common in horses with sepsis and endotoxemia. We hypothesize that endotoxemia triggers a systemic inflammatory response that results in hypocalcemia and hypomagnesemia. The goal of this study was to determine the effect of endotoxin (lipopolysaccharide [LPS]) administration to healthy horses on serum parathyroid hormone (PTH), ionized calcium (Ca2+) and total calcium (tCa), ionized magnesium (Mg2+) and total magnesium (tMg), phosphate (Pi), potassium (K+), sodium (Na+), chloride (Cl-), and insulin concentrations, and on the urinary excretion of these electrolytes. Twelve mares were infused with Escherichia coli LPS (30 ng/kg/h i.v.) for 1 hour. Six mares were infused with saline (controls). In LPS-infused horses, heart rate increased significantly from (mean +/- SD) 40.0 +/- 1.3 to 70.0 +/- 9.0 beats/min, respiratory rate from 12.7 +/- 1.0 to 21.1 +/- 3.0 breaths/min, body temperature from 37.4 +/- 0.3 to 38.9 +/- 0.6 degrees C, and tumor necrosis factor-alpha concentrations from 6.6 +/- 3.5 to 507 +/- 260 pg/mL (P < .05). White blood cell count decreased significantly from 7570 +/- 600 to 1960 +/- 560 cells/ microL. Serum concentrations of Ca2+ decreased from 6.5 +/- 0.3 to 6.0 +/- 0.3 mg/dL, of Mg2+ from 0.53 +/- 0.06 to 0.43 +/- 0.04 mM, of tMg from 0.78 +/- 0.05 to 0.62 +/- 0.08 mM, of K+ from 4.3 +/- 0.4 to 3.0 +/- 0.5 mEq/L, and of Pi from 3.4 +/- 0.5 to 1.7 +/- 0.5 mg/dL (all P < .05). PTH increased significantly from 1.3 +/- 0.4 to 6.0 +/- 5.2 pM; however, in some horses (n=2), PTH did not increase despite hypocalcemia. Insulin increased significantly from 9.4 +/- 3.6 to 50.5 +/- 9.6 microIU/mL (n=3). Urinary fractional excretion of Ca2+ decreased significantly from 4.7 +/- 1.4 to 1.7 +/- 1.2%, of Mg2+ from 36.6 +/- 6.5 to 11.7 +/- 7.3%, and of K+ from 37.9 +/- 11.3 to 17.7 +/- 6.2%. Fractional excretion of Pi increased from 0.02 +/- 0.02 to 0.14 +/- 0.07% and of Na+ from 0.26 +/- 0.13% to 1.2 +/- 0.5%. No changes were found in serum tCa, Na+, and Cl- concentrations. In conclusion, endotoxemia in horses resulted in electrolyte abnormalities that included hypocalcemia, hypomagnesemia, hypokalemia, hypophosphatemia, and increased serum PTH and insulin concentrations.  相似文献   

6.
Physical exercise is known to affect calcium homeostasis in horses, but there is little information on the hormonal regulation of calcium metabolism during exercise. In order to evaluate the effects of exercise and training on calcium homeostasis and intact plasma parathyroid hormone, 7 untrained Standardbred horses were studied in a 6 week training programme. These horses were accustomed to running on the treadmill 3 weeks before onset of training and were exercised on a high-speed treadmill with an initial incremental standardised exercise test (SET 1: 6 incremental steps of 5 min duration each; first step 5 m/s, increase 1 m/s). SET 1 was followed by a lactate-guided training programme (6 weeks in total) with 2 types of exercise in alternating order with a day of rest after each work day: high-speed exercise (HSE) of 15 min duration, starting at VLa4, continuous increase in speed every 60 s by 0.3 m/s (14 incremental steps); and low-speed exercise (LSE) at a constant velocity at VLa2.5, duration approximately 60-90 min. The whole training programme consisted of 8 HSE and 8 LSE sessions. HSE and LSE were calculated to require the same energy expenditure. A final SET (SET 2) finished the training programme. Blood samples for lactate, plasma total calcium [Ca], blood ionised calcium [Ca2+], blood pH, plasma inorganic phosphorus [P(i)] and plasma intact parathyroid hormone [PTH] were collected before, during and after SETs 1 and 2, before and after the first and eighth HSE and LSE. During SETs 1 and 2, HSEs 1 and 8 there was a decrease in ionised Ca2+ and pH and a rise in lactate, intact PTH and P(i). LSEs 1 and 8 resulted in an increase in pH, whereas lactate, ionised Ca2+, total Ca, P(i) and intact PTH were not affected. No changes in calcium metabolism were detected during training. Results of this study suggest that intact PTH is a mediator in counter-regulation of exercise-induced hypocalcaemia.  相似文献   

7.
To test the hypothesis that the parathyroid hormone (PTH) response to hypercalcaemia is influenced by circadian rhythms, the Ca2+ -PTH curve was studied in six dogs after infusion of CaCl2 (0.66 mEq/kg/h) at daytime (09:00 h) and at night-time (21:00 h). Plasma Ca2+ and PTH values measured before or after CaCl2 infusion were not different at day and at night. However, in the recovery from hypercalcaemia, PTH concentrations were significantly lower (P < 0.05) at 21:00 h (23 +/- 7.5 pg/ml at Ca2+ = 1.30 mm) than at 09:00 h (38.8 +/- 6.9 pg/ml at Ca2+ = 1.30 mm). In addition, the Ca2+ -PTH curve showed hysteresis at daytime (for the same Ca2+ concentration, PTH values were higher during recovery than during induction of hypercalcaemia) but not at night-time (PTH values were lower during recovery than during induction of hypercalcaemia). In conclusion, a circadian variation in the PTH secretory pattern during recovery from hypercalcaemia has been identified in dogs.  相似文献   

8.
OBJECTIVE: To provide reference values for serum biochemical variables that are used for evaluation of mineral metabolism in donkeys and compare values with those in horses. ANIMALS: 18 donkeys and 18 horses. PROCEDURES: Total calcium (tCa), total magnesium (tMg), and inorganic phosphorus (P) concentrations were measured in serum samples via spectrophotometry. Ionized calcium (iCa) and magnesium (iMg) concentrations were quantified with selective electrodes. By use of a micropartition system, tCa and tMg were fractionated to separate protein-bound (pCa, pMg) and ultrafiltrable fractions. Complexed calcium (cCa) and magnesium (cMg) concentrations were calculated by substracting ionized fractions from ultrafiltrable fractions. Parathyroid hormone (PTH) and calcitriol (CTR) concentrations were measured via radioimmunoassay. RESULTS: Serum tCa concentration in donkeys (3.37 +/- 0.21 mmol/L) was composed of pCa (1.59 +/- 0.21 mmol/L [47.0 +/- 4.2%]), iCa (1.69 +/- 0.04 mmol/L [50.4 +/- 3.0%]), and cCa (0.09 +/- 0.08 mmol/L [2.6 +/- 2.9%]). Serum tMg concentration (1.00 +/- 0.08 mmol/L) was fractioned in pMg (0.23 +/- 0.08 mmol/L [23.4 +/- 8.1%]), iMg (0.59 +/- 0.04 mmol/L [58.8 +/- 5.1%]), and cMg (0.18 +/- 0.08 mmol/L [17.8 +/- 7.2%]). Serum concentrations of P (1.14 +/- 0.30 mmol/L), PTH (20.4 +/- 21.2 pg/mL), and CTR (13.4 +/- 5.9 pg/mL) were determined. CONCLUSIONS AND CLINICAL RELEVANCE: Serum variables of mineral metabolism in donkeys were within reference ranges for horses. However, when compared with horses, donkeys had higher iCa, cMg, and CTR and lower pMg and PTH concentrations.  相似文献   

9.
This study was conducted to investigate the effects of draught load exercise on calcium (Ca) homeostasis in young horses. Five 2-year-old untrained Standardbred horses were studied in a 4-month training programme. All exercise workouts were performed on a treadmill at a 6% incline and with a constant draught load of 40 kg (0.44 kN). The training programme started with a standardized exercise test (SET 1; six incremental steps of 5 min duration each, first step 1.38 m/s, stepwise increase by 0.56 m/s). A training programme was then initiated which consisted of low-speed exercise sessions (LSE; constant velocity at 1.67 m/s for 60 min, 48 training sessions in total). After the 16th and 48th LSE sessions, SETs (SET 2: middle of training period, SET 3: finishing training period) were performed again under the identical test protocol of SET 1. Blood samples for blood lactate, plasma total Ca, blood ionized calcium (Ca(2+)), blood pH, plasma inorganic phosphorus (P(i)) and plasma intact parathyroid hormone (PTH) were collected before, during and after SETs, and before and after the first, 16th, 32nd and 48th LSE sessions. During SETs there was a decrease in ionized Ca(2+) and a rise in lactate, P(i) and intact PTH. The LSEs resulted in an increase in pH and P(i), whereas lactate, ionized Ca(2+), total Ca and intact PTH were not affected. No changes in Ca metabolism were detected in the course of training. Results of this study suggest that the type of exercise influences Ca homeostasis and intact PTH response, but that these effects are not influenced in the course of the training period.  相似文献   

10.
Anabolic steroids (ABS) boldenone (BL; 1.1 mg/kg) and stanozolol (ST; 0.55 mg/kg) were administered i.m. to horses and the plasma samples collected up to 64 days. Anabolic steroids and androgenic steroids (ANS) in plasma were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The limit of detection of all analytes was 25 pg/mL. The median absorption (t1/2 partial differential) and elimination (t1/2e) half-lives for BL were 8.5 h and 123.0 h, respectively, and the area under the plasma concentration-time curve (AUCho) was 274.8 ng.h/mL. The median t1/2e for ST was 82.1 h and the was 700.1 ng.h/mL. Peak mean (X+/-SD) plasma concentrations (Cmax) for BL and ST were 1127.8 and 4118.2 pg/mL, respectively. Quantifiable concentrations of ABS and ANS were found in 61.7% of the 988 plasma samples tested from race tracks. In 17.3% of the plasma samples two or more ABS or ANS were quantifiable. Testosterone (TES) concentrations mean (X+/-SE) in racing and nonracing intact males were 241.3+/-61.3 and 490.4+/-35.1 pg/mL, respectively. TES was not quantified in nonracing geldings and female horses, but was in racing females and geldings. Plasma concentrations of endogenous 19-nortestosterone (nandrolone; NA) from racing and nonracing males were 50.2+/-5.5 and 71.8+/-4.6 pg/mL, respectively.  相似文献   

11.
OBJECTIVE: To evaluate calcium balance and parathyroid gland function in healthy horses and horses with enterocolitis and compare results of an immunochemiluminometric assay (ICMA) with those of an immunoradiometric assay (IRMA) for determination of serum intact parathyroid hormone (PTH) concentrations in horses. ANIMALS: 64 horses with enterocolitis and 62 healthy horses. PROCEDURES: Blood and urine samples were collected for determination of serum total calcium, ionized calcium (Ca2+) and magnesium (Mg2+), phosphorus, BUN, total protein, creatinine, albumin, and PTH concentrations, venous blood gases, and fractional urinary clearance of calcium (FCa) and phosphorus (FP). Serum concentrations of PTH were measured in 40 horses by use of both the IRMA and ICMA. RESULTS: Most (48/64; 75%) horses with enterocolitis had decreased serum total calcium, Ca2+, and Mg2+ concentrations and increased phosphorus concentrations, compared with healthy horses. Serum PTH concentration was increased in most (36/51; 70.6%) horses with hypocalcemia. In addition, FCa was significantly decreased and FP significantly increased in horses with enterocolitis, compared with healthy horses. Results of ICMA were in agreement with results of IRMA. CONCLUSIONS AND CLINICAL RELEVANCE: Enterocolitis in horses is often associated with hypocalcemia; 79.7% of affected horses had ionized hypocalcemia. Because FCa was low, it is unlikely that renal calcium loss was the cause of hypocalcemia. Serum PTH concentrations varied in horses with enterocolitis and concomitant hypocalcemia. However, we believe low PTH concentration in some hypocalcemic horses may be the result of impaired parathyroid gland function.  相似文献   

12.
The effect of interval vs. continuous exercise on plasma leptin and ghrelin concentration in young Standardbred horses was studied. The experiment was conducted on 27 trotters, in the age between 2 and 3 years. They were divided into two groups according to the type of exercise. Blood samples were collected through jugular venipuncture in the following experimental conditions: at rest, immediately after exercise and 30 minutes after the end of the effort. Plasma leptin and ghrelin concentrations were determined using RIA tests. The continuous exercise induced an increase in plasma leptin concentration whereas the interval type of exercise did not influence the level of this hormone (3.47 +/- 0.78 vs. 4.07 +/- 0.94 and 2.31 +/- 0.15 vs. 2.36 +/- 0.21 ng/mL, respectively). The plasma ghrelin concentration measured after the continuous exercise, significantly increased (720 +/- 27.4 vs. 814 +/- 13.8; p < or = 0.05) whereas concentration of this hormone assessed after the interval exercise, significantly dropped (982 +/- 56.5 vs. 842 +/- 35.6 pg/mL; p < or = 0.05). The changes in plasma ghrelin concentration measured after the end of the effort correlated inversely with blood lactic acid concentration. In conclusion, the obtained results showed that medium-intensive type of exercise, such as trot, interval or continuous, slightly affected plasma leptin level but significantly affected plasma ghrelin concentration in young Standardbred trotters.  相似文献   

13.
Rabbits with renal failure have been reported to be hypercalcemic and to have decreased parathyroid hormone (PTH) concentrations. Thus, it would seem that uremic rabbits are resistant to secondary hyperparathyroidism (HPT). The work reported here was designed to investigate parathyroid gland function in uremic rabbits and the effect of diets with different calcium (Ca) and phosphorus (P) content. The relationship between PTH and ionized calcium (Ca2+), parathyroid gland size and parathyroid cell cycle were studied in three groups of rabbits: Group I, rabbits with normal renal function on a standard diet (Ca = 1.2%, P = 0.6%); Group II, partially nephrectomized rabbits on a standard diet; and Group III, partially nephrectomized rabbits on a low Ca (0.6%)-high P (1.2%) diet. Group I rabbits had baseline Ca2+ = 1.71 +/- 0.05 mmol/l and PTH = 26.9 +/- 3.2 pg/ml. During hypo- and hypercalcemic stimulation PTH reached maximal values (PTHmax) of 94.4 +/- 5.5 pg/ml and minimal concentrations (PTHmin) of 3.2 +/- 0.2 pg/ml. Rabbits from Group II were hypercalcemic (baseline Ca2+ = 2.03 +/- 0.06 mmol/l) and had very low PTH levels (1.7 +/- 0.5 pg/ml); however, they reached a PTHmax that was similar to Group I, 92 +/- 8.7 pg/ml. Group III rabbits were hypocalcemic (baseline Ca2+ = 1.22 +/- 0.08 mmol/l) and had very high basal PTH levels (739 +/- 155 pg/ml). Their PTHmax and PTHmin were 801 +/- 169.4 pg/ml and 102.2 +/- 22.2 pg/ml, respectively. Both parathyroid gland size and parathyroid cell proliferation were increased in Group III. In conclusion, our results show that the Ca and P content of the diet markedly influence PTH secretion in the uremic rabbit and that when placed on a low Ca-high P diet uremic rabbits develop secondary HPT.  相似文献   

14.
OBJECTIVE: To determine the effect of oral administration of dantrolene sodium on serum creatine kinase (CK) activity after exercise in horses with recurrent exertional rhabdomyolysis (RER). ANIMALS: 2 healthy horses and 5 Thoroughbreds with RER. PROCEDURE: 3 horses received 2 doses of dantrolene (4, 6, or 8 mg/kg, p.o., with and without withdrawal of food) 2 days apart; 90 minutes after dosing, plasma dantrolene concentration was measured spectrofluorometrically. On the basis of these results, 5 Thoroughbreds with RER from which food was withheld received dantrolene (4 mg/kg) or an inert treatment (water [20 mL]) orally 90 minutes before treadmill exercise (30 minutes, 5 d/wk) during two 3-week periods. Serum CK activity was determined 4 hours after exercise. Plasma dantrolene concentration was measured before and 90 minutes after dosing on the first and last days of dantrolene treatment and before dosing on the first day of the inert treatment period, RESULTS: 90 minutes after dosing, mean +/- SEM plasma dantrolene concentration was 0.62 +/- 0.13 and 0 microg/mL in the dantrolene and inert treatment groups, respectively. Serum CK activity was lower in dantrolene-treated horses (264 +/- 13 U/L), compared with activity in water-treated horses (1,088 +/- 264 U/L). Two horses displayed marked muscle stiffness on the inert treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In 5 horses with RER from which food had been withheld, 4 mg of dantrolene/kg administered orally provided measurable, though variable, plasma concentrations and significantly decreased serum CK activity after exercise in 4 of those horses.  相似文献   

15.
Six nontrained mares were subjected to steady-state, submaximal treadmill exercise to examine the effect of exercise on the plasma concentration of atrial natriuretic peptide (ANP) in arterial, compared with mixed venous, blood. Horses ran on a treadmill up a 6 degree grade for 20 minutes at a speed calculated to require a power equivalent to 80% of maximal oxygen uptake (VO2MAX). Arterial and mixed venous blood samples were collected simultaneously from the carotid and pulmonary arteries of horses at rest and at 10 and 20 minutes of exercise. Plasma was stored at -80 C and was later thawed; ANP was extracted, and its concentration was determined by radioimmunoassay. Exercise caused significant (P < 0.05) increases in arterial and venous plasma ANP concentrations. Mean +/- SEM arterial ANP concentration increased from 25.2 +/- 4.4 pg/ml at rest to 52.7 +/- 5.2 pg/ml at 10 minutes of exercise and 62.5 +/- 5.2 pg/ml at 20 minutes of exercise. Mean venous ANP concentration increased from 24.8 +/- 4.3 pg/ml at rest to 67.2 +/- 14.5 pg/ml at 10 minutes of exercise and 65.3 +/- 13.5 pg/ml at 20 minutes of exercise. Significant differences were not evident between arterial or mixed venous ANP concentration at rest or during exercise, indicating that ANP either is not metabolized in the lungs or is released from the left atrium at a rate matching that of pulmonary metabolism.  相似文献   

16.
The plasma concentrations of parathyroid hormone (PTH), ionised calcium (Ca(2+)), total calcium, albumin and inorganic phosphorus, and the pH were measured in blood samples obtained from nine dogs during a period of 26 hours. The plasma pth levels fluctuated slightly during the day, by about 20 pg/ml, but there was a distinct peak (42.8 [8.8] pg/ml) at 07.00. Plasma Ca(2+) showed a diurnal pattern in which two peaks (increases of 0.03 mmol/l) were observed at 05.00 and 17.00, and the plasma concentration of inorganic phosphorus showed a similar pattern. There were no diurnal changes in total calcium or albumin.  相似文献   

17.
The purpose of this study was to examine the effects of an external nasal strip (NS), frusemide (FR) and a combination of the 2 treatments (NS + FR) on exercise-induced pulmonary haemorrhage (EIPH) in Thoroughbred horses. It was hypothesised that both the NS and FR would attenuate EIPH as assessed by red blood cell count in bronchoalveolar lavage fluid. In random order, 8 horses completed each of 4 sprint exercise tests on a treadmill: 1) NS; 2) FR (0.5 mg/kg bwt i.v., 4 h pre-exercise); 3) NS + FR; and 4) control (C; no treatment). After a 5 min warm-up (4.5 m/s), horses completed 2 min running at 120% maximum oxygen consumption (VO2max) with the treadmill set at 3 degrees incline. Mean +/- s.d. running speed was 14.2+/-0.2 m/s. In the FR and NS + FR trials, horses carried weight equal to that lost as a result of frusemide administration. During exercise at 120% Vo2max, oxygen consumption (Vo2) and carbon dioxide production (Vco2) were measured at 15 s intervals. Plasma lactate concentration was measured in samples collected before exercise, at the end of the sprint and after 5 min cool-down at the trot. Thirty minutes after the run, bronchoalveolar lavage (BAL) was performed and the red cell count in the fluid quantified. Vo2 and Vco2 were significantly lower in NS and NS + FR trials than in the C and FR trials at the end of the sprint exercise protocol. However, plasma lactate concentrations did not differ among treatments. Compared with the C trial (61.1+/-30.5 x 10(6) red blood cells/ml BAL fluid), pulmonary haemorrhage was significantly (P<0.05) decreased in both the NS (15.9+/-4.0 x 106 RBC/ml) and FR (12.2+/-5.8 x 10(6) RBC/ml) trials. EIPH in the NS + FR trial (7.9+/-1.0 x 10(6) RBC/ml) was further diminished (P<0.05) compared to the NS trial, but not different from the FR trial. We conclude that both the external nasal strip and frusemide attenuate pulmonary haemorrhage in Thoroughbred horses during high-speed sprint exercise. The external nasal strip appears to lower the metabolic cost of supramaximal exertion in horses. Given the purported ergogenic effects of frusemide, the external nasal strip is a valuable alternative for the attenuation of EIPH.  相似文献   

18.
The aim of the experiment was to study the relationship between plasma lactate and allantoin accumulation in horses undergoing five exercises differing in intensity and length. Twenty-five adult trotter horses were used (18 males, two castrated, and five females), housed in three training centers. The horses were assigned to five groups: slow trot, over 2000 m (Group 1); slow trot over 1600 m (Group 2); fast trot over 1600 m (Group 3); fast trot over 2000 m (Group 4); fast trot over 2400 m (Group 5). Plasma was obtained from blood sampled at rest, at the end of the bout of exercise and after 15 and 45 minutes from the end of the bout of exercise and analyzed for glucose, lactate, uric acid, free fatty acids (FFA) and allantoin concentrations. Accumulations of plasma lactate and allantoin (mmol/sec) were calculated as difference between end of exercise and rest and between 45 minutes sample and rest, respectively.Ranking the intensity of exercise using the lactate concentrations at the end of exercise, the level of exertion was highest for Group 3 horses and lowest for Group 5 horses (20.9 and 2.8 mmol/l, respectively). At the end of exercise, glucose concentrations were much higher for horses undertaking the more intensive exercise (Groups 3 and 4 compared to Group 2). FFA concentrations were highest at the end of exercise for Groups 2 and 3 and after 15 minutes for Groups 4 and 5. Plasma uric acid and allantoin concentrations peaked 15 and 45 minutes from the end of exercise, respectively, independently of exercise intensity. The relationship between accumulation of plasma allantoin (y, dependent variables) and lactate (x, independent variable) was non-linear: y=0.15−2.61*x+68.3*x2 (r2=0.900; se=0.19). This suggests that allantoin accumulation could be used together with plasma lactate to calibrate the workload to muscle conditions to prevent muscle injury.  相似文献   

19.
REASONS FOR PERFORMING STUDY: An increased susceptibility to bacterial and viral infections of the respiratory tract, which results in a loss of performance, has been reported in racehorses. Much research has focused on the influence of high-intensity exercise of a short duration on immune system function in horses, but scant attention has been given to prolonged endurance exercise as an immune modulator. OBJECTIVES: The objective of this study was to evaluate the effect of an 80 km endurance race on the monocyte and neutrophil oxidative burst, serum cortisol, glutamine and plasma glucose concentrations in 8 endurance-trained horses (mean +/- s.d. age 9.4 +/- 2.2 years). METHODS: Blood samples were drawn from the horses prior to and following an 80 km ride. RESULTS: Mean time for completion of the 80 km race was 306 +/- 40 mins. Immediately post race mean serum cortisol concentration, blood monocyte and neutrophil counts were higher and blood lymphocyte counts and plasma glucose concentration were lower compared with prerace values (P < 0.05). Neutrophil and monocyte oxidative burst activity decreased following the race and had not regained prerace values after 3 days of rest (P < 0.05). CONCLUSIONS: The present study indicates that long duration exercise in horses has a negative impact on the function of the innate immune system that lasts several days post race. Precise mechanisms instigating the fall in innate immune system function are unclear and multifactorial, but may be attributed, at least in part, to a high serum cortisol response during very prolonged exercise. POTENTIAL CLINICAL RELEVANCE: A prolonged bout of exercise results in a long-term suppression of the innate immune system function in horses which may, in part, account for the observed increase of infectious episodes in horses during training.  相似文献   

20.
The objective of the present study was to measure plasma endothelin-1 (ET-1) at rest and during exercise in the horse. Six healthy, Standardbred and Thoroughbred mares (5.3+/-0.8 years; 445.2+/-13.1 kg) which were unfit, but otherwise accustomed to running on the treadmill, were used in the study. Plasma ET-1 concentrations were measured using a commercially available radioimmunoassay kit. Horses performed three trials: a standing control (CON) trial where blood was collected from the jugular vein every minute for 5 min; a graded exercise test (GXT) where blood samples were collected at the end of each 1 min step of an incremental exercise test; and a 15 min submaximal (60% VO(2max)) steady-state exercise test (SST) where blood samples were collected 1 min before, immediately after, and at 2 min, 10 min and 20 min post-exercise. Plasma ET-1 concentration did not change (P>0.05) during the CON trial where it averaged 0.18+/- 0.03 pg/mL (mean+/-SE). Surprisingly, plasma ET-1 concentration did not change during the GXT trial where it averaged 0.20+/-0.03 pg/mL. There were no differences between the mean concentrations obtained in either trial (P>0.05). Plasma ET-1 concentrations were, however, significantly elevated (P<0.05) immediately following exercise and at 2 min post-exercise in the SST. Post-exercise plasma ET-1 concentrations returned to baseline (P>0.05) by 10 min of recovery. Together, these data may suggest that ET-1 concentrations are altered in response to an exercise challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号