首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 CH4 production in a flooded soil as affected by elevated atmospheric CO2 was quantified in a laboratory incubation study. CH4 production in the flooded soil increased by 19.6%, 28.2%, and 33.4% after a 2-week incubation and by 38.2%, 62.4%, and 43.0% after a 3-week incubation under atmospheres of 498, 820, and 1050 μl l–1 CO2, respectively, over that in soil under the ambient CO2 concentration. CH4 production in slurry under 690, 920, and 1150 μl l–1 CO2 increased by 2.7%, 5.5%, and 5.0%, respectively, after a 3-day incubation, and by 6.7%, 12.8%, and 5.4%, respectively, after a 6-day incubation over that in slurry under the ambient CO2 concentration. The increase in CH4 production in the soil slurry under elevated CO2 concentrations in a N2 atmosphere was more pronounced than that under elevated CO2 concentrations in air. These data suggested that elevated atmospheric CO2 concentrations could promote methanogenic activity in flooded soil. Received: 2 March 1998  相似文献   

2.
Applications of a commercial formulation of carbofuran, a carbamate insecticide, at rates of 2kg and 12kg active ingredient ha–1 to flooded fields planted to rice led to significant inhibition of methane emission. Likewise, laboratory incubation studies showed that carbofuran applied at low rates (5 and 10μgg–1soil) inhibited the net methane production relative to that of the control, but stimulated it when applied at a rate of 100μgg–1soil. Interestingly, carbofuran increased the oxidation of methane when applied at low rates and inhibited it when applied at a rate of 100μgg–1soil. Received: 5 May 1997  相似文献   

3.
 The effects of inorganic N and organic manure, applied to a loamy arable soil, on CH4 oxidation were investigated in laboratory incubation experiments. Applications (40 mg N kg–1) of NH4Cl, (NH4)2SO4, and urea caused strong instantaneous inhibition of CH4 oxidation by 96%, 80%, and 84%, respectively. After nitrification of the added N the inhibitory effect was not fully reversible, resulting in an residual inhibition of 21%, 16%, and 25% in the NH4Cl, (NH4)2SO4, and urea treatments, respectively. With large NH4 + applications [240 mg N kg–1 as (NH4)2SO4] the residual inhibition was as high as 64%. Exogenous NO2 (40 mg NO2 -N kg–1) initially inhibited CH4 oxidation by 84%, decreasing to 41% after its oxidation. Therefore, applied NO2 was a more effective inhibitor of CH4 consumption than NH4 +. Temporary accumulation of NO2 during nitrification of added N was small (maximum: 1.9 mg NO2 -N kg–1) and thus of minor importance with respect to the persistent inhibition after NH4 + or urea application. CH4 oxidation after NaNO3 (40 mg N kg–1) and NaCl addition did not differ to that of the untreated soil. The effect of organic manures on CH4 oxidation depended on their C/N ratio: fresh sugar beet leaves enhanced mineralization, which caused an instantaneous 20% inhibition, whereas after wheat straw application available soil N was rapidly immobilized and no effect on CH4 oxidation was found. The 28% increase in CH4 oxidation after biowaste compost application was not related to its C/N ratio and was probably the result of an inoculation with methanotrophic bacteria. Only with high NH4 + application rates (240 mg N kg–1) could the persistent inhibitory effect partly be attributed to a pH decrease during nitrification. The exact reason for the observed persistent inhibition after a single, moderate NH4 + or urea application is still unknown and merits further study. Received: 31 October 1997  相似文献   

4.
Methane production potentials of twenty-eight rice soils in China   总被引:5,自引:0,他引:5  
 Soil CH4 production potentials were investigated by incubating air-dried soils under anaerobic conditions in the laboratory. Twenty-eight soils from different fields and locations were collected for this study. Soil CH4 production during a 100-day incubation differed greatly and were significantly correlated with soil organic content (r=0.61, P<0.01). The statistical significance increased when soils were grouped according to soil reduction rates. A significant correlation was also found between CH4 production and total N content (r=0.64, P<0.01) and between CH4 production and soil particle sizes of 0.25–0.05 mm (r=0.48, P<0.05). A negative exponential correlation was found between CH4 production and aerobic soil pH (r=–0.74, P<0.01). The 28 soils were stratified into four groups on the basis of variation in CH4 production rates which were associated with the soil reduction rate and soil organic content. The faster the Eh of soil fell, the more CH4 was formed. Adding rice straw to Hangzhou and Beijing soils increased CH4 production. The increase in CH4 production was more pronounced in the soil with the lowest organic matter content and slowest reduction rate than in the soil with highest organic matter and fastest reduction rate. Inorganic fertilizer had no significant influence on CH4 production potentials of either type of soil. Received: 26 November 1997  相似文献   

5.
Nitrification associated with the various components [subsurface soil from unplanted and planted (rhizosphere) fields, standing water and surface soil from planted and unplanted fields and leaf sheath suspensions] of submerged rice paddies was examined in incubation experiments with solutions inoculated with soil or water samples. Substantial nitrification occurred in all samples, standing water and surface soil samples in particular, during their 40-day incubation with NH 4 + –N. Almost all the NH 4 + –N, disappeared during incubation with standing water, was recovered as NO inf3 sup- –N. This, compared to 70–80% from all soil samples and only 29% from leaf sheath suspensions. Significant loss of nitrogen, especially from leaf sheath suspensions, is probably due to nitrification-denitrification as evidenced by its complete recovery in the presence of N-Serve. Nitrification potential of the soil and water samples varied with the crop growth stage and was more pronounced at tillering and panicle inititation stages than at other stages. Nitrification potential of samples from green-manure-amended plots was distinctly less than that of samples from control and urea-amended plots. Most probable number (MPN) estimates of ammonium-oxidizing bacteria were always higher in surface soil in both planted and unplanted plots at all stages of crop growth.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

6.
 Rice paddies are an important human-made ecosystem for the global CH4 budget. CH4, which is produced in the predominantly anaerobic bulk soil layers, is oxidized significantly before it reaches the atmosphere. Roots of rice, in addition to supporting the consumption of CH4, contribute to the total CH4 production in the soil. The various controls of CH4 emission from this ecosystem depend on the structure of plant and microbial communities and their interactions. Availability of organic substrates, electron acceptors and other soil- and plant-related factors influence the activities of microbial communities. Agronomic practices including fertilization and application of pesticides have effects on CH4 emission. Recent studies using molecular retrieval approaches with small subunit rRNA-encoding gene (rDNA) sequences and functional genes, showed the richness of diversity of the microbial community in rice paddy soils, which includes members of the Archaea and methanotrophs. There is need for further research to know the consequences, at the ecosystem level, of changes in microbial diversity and microbial communities in paddy soils. This will aid in understanding the mechanisms involved in the mitigating effects of certain agricultural practices. Received: 13 July 1999  相似文献   

7.
The role of rice plants in regulating mechanisms of methane missions   总被引:7,自引:0,他引:7  
 Rice plants play a pivotal role in different levels of the methane (CH4) budget of rice fields. CH4 production in rice fields largely depends on plant-borne material that can be either decaying tissue or root exudates. The quantity and quality of root exudates is affected by mechanical impedance, presence of toxic elements, nutrient deficiencies, water status of growing medium, and nitrogenase activity in the rhizosphere. CH4 oxidation in rice fields is localized in the rhizosphere where the concentration gradients of CH4 and oxygen overlap. CH4 oxidation capacity is a function of the downward transport of oxygen through the aerenchyma, which, in turn, also acts as a conduit for CH4 from the soil to the atmosphere. The decisive step in the passage of CH4 through rice plant is the transition from root to stem. However, rice plants show an enormous variety of morphological and physiological properties, including differences in root exudation and gas transfer capacity. Comparative studies on different cultivars are deemed crucial for accomplishing a better understanding of the mechanisms of CH4 consumption in the rhizosphere and CH4 transport through the rice plant as well as the interaction of these processes. The results of such studies are considered tools for devising mitigation options. Received: 7 April 1999  相似文献   

8.
 Wheat straw enclosed in mesh bags was buried for periods up to 1 year over two seasons in Scottish, Danish and Portuguese soils treated with 15NH4NO3 or NH4 15NO3. Scottish soils were: Terryvale, a poorly drained sandy loam; and Tipperty, an imperfectly drained brown forest soil with a higher clay content. The Danish soil (Foulum) was a freely drained sandy loam and the Portuguese soils were a sandy soil (Evora) and a clay soil (Beja). During the first month, 15N was being incorporated into the straw in the Tipperty, Terryvale and Foulum soils simultaneously as the total N content was decreasing. Subsequently, the straws began to show net immobilization and the total N content of the original straw was exceeded in Tipperty and Foulum soils after 4 months and 8 months, respectively. Net immobilization in Terryvale was detected only in the second season and did not occur in the first because of high soil moisture content. The rates of 15N incorporation were similar in the two Portuguese soils, and a loss of N was only detected after 8 months. After 1 month, in the two clay soils, Beja and Tipperty, 15NO3 was incorporated into straw to a greater extent than 15NH4 + and this was attributed to 15NH4 + fixation by clay minerals. In contrast, 15NH4 + was more efficiently incorporated than 15NO3 under waterlogged conditions (Terryvale) and NO3 loss could be attributed to denitrification. The proportion of added 15N in the straw residue after 1 month varied between 6% and 18% for 15NH4 + and 2% and 23% for 15NO3 and immobilization of N in the longer term tended to be greater in soils from northern Europe than from Portugal. Received: 19 January 1998  相似文献   

9.
 The effects of temporal and spatial fluctuations in moisture on the microfungal community were studied in birch litter plus pine humus microcosms over 6 months. Two treatments were used: a uniform treatment in which moisture was maintained at the original moisture content throughout the profile over the course of the experiment; and a fluctuating moisture treatment in which the moisture content of the whole microcosm fluctuated weekly around the original moisture content. At 6 months, fungal species richness was higher and diversity was lower under moisture fluctuations than under uniform moisture. The number of fungal isolates and proportional diversity was significantly higher in the bottom layer in the fluctuating moisture treatment. The fluctuating moisture treatment and the bottom layer correlated significantly with the first PCA axis, which accounted for 66% of the variation in the fungal species data. The experiment suggests that even without drying, fluctuations in moisture can affect fungal community structure. Received: 3 June 1999  相似文献   

10.
Abstract

Laboratory incubations were conducted to investigate nitrous oxide (N2O) production from a subtropical arable soil (Typic Plinthodults) incubated at different soil moisture contents (SMC) and with different nitrogen sources using a 10% (v/v) acetylene (C2H2) inhibitory technique at 25°C. The production of N2O and CO2 was monitored during the incubations and changes in the contents of KCl-extractable NO? 3-N and NH+ 4-N were determined. The production of N2O increased slightly with an increase in SMC from 40% water-holding capacity (WHC) to 70% WHC, but increased dramatically at 100% WHC. After incubation the NO? 3-N content increased even at a SMC of 100% WHC. At a SMC of 100% WHC, the addition of NH+ 4-N promoted the production of N2O and CO2, whereas the addition of NO? 3-N decreased N2O production. Compared with the incubation without C2H2, the presence of C2H2 increased NH+ 4-N content, but decreased NO? 3-N content, and there was no significant difference in N2O production. These results indicate that heterotrophic nitrification contributes to N2O production in the soil.  相似文献   

11.
 Rates of methane uptake were measured in incubation studies with intact cores from adjacent fenland peats that have been under arable management and woodland management for at least the past 30 years. On two separate occasions the woodland peat showed greater rates of uptake than the arable peat. These rates ranged from 23.1 to 223.3 μg CH4 m–2 day–1 for the woodland peat and from 29.6 to 157.6 μg CH4 m–2 day–1 for the arable peat. When the peats were artificially flooded there was a decrease in the rate of methane oxidation, but neither site showed any net efflux of methane. 15N isotopic dilution was used to characterise nitrogen cycling within the two peats. Both showed similar rates of gross nitrogen mineralisation (3.58 mg N kg–1 day–1, arable peat; 3.54 N kg–1 day–1, woodland peat) and ammonium consumption (4.19 arable peat and 4.70 mg N kg–1 day–1 woodland peat). There were significant differences in their inorganic ammonium and nitrate pool sizes, and the rate of gross nitrification was significantly higher in the woodland peat (4.90 mg N kg–1 day–1) compared to the arable peat (1.90 mg N kg–1 day–1). These results are discussed in the light of high atmospheric nitrogen deposition. Received: 1 December 1997  相似文献   

12.
 Nitrous oxide (N2O) emissions and methane (CH4) consumption were quantified following cultivation of two contrasting 4-year-old pastures. A clover sward was ploughed (to 150–200 mm depth) while a mixed herb ley sward was either ploughed (to 150–200 mm depth) or rotovated (to 50 mm depth). Cumulative N2O emissions were significantly greater following ploughing of the clover sward, with 4.01 kg N2O-N ha–1 being emitted in a 48-day period. Emissions following ploughing and rotovating of the ley sward were much less and were not statistically different from each other, with 0.26 and 0.17 kg N2O-N ha–1 being measured, respectively, over a 55-day period. The large difference in cumulative N2O between the clover and ley sites is presumably due to the initially higher soil NO3 content, greater water filled pore space and lower soil pH at the clover site. Results from a denitrification enzyme assay conducted on soils from both sites showed a strong negative relationship (r=–0.82) between soil pH and the N2O:(N2O+N2) ratio. It is suggested that further research is required to determine if control of soil pH may provide a relatively cheap mitigation option for N2O emissions from these soils. There were no significant differences in CH4 oxidation rates due to sward type or form of cultivation. Received: 1 November 1998  相似文献   

13.
In a greenhouse study, methane emissions were measured from two diverse Indian rice-growing soils planted to five rice cultivars under similar water regimes, fertilizer applications and environmental conditions. Significant variations were observed in methane emitted from soils growing different cultivars. Total methane emission varied between 8.04 and 20.92gm–2 from IARI soil (Inceptisol) and between 1.47 and 10.91gm–2 from Raipur soil (Vertisol) planted to rice. In all the cultivars, emissions from IARI soil were higher than from Raipur soil. The first methane flux peak was noticed during the reproductive phase and the second peak coincided with the grain-ripening stage of the rice cultivars. Received: July 7, 1996  相似文献   

14.
 A sandy loam was incubated under floodwater in the laboratory either in the dark or in the light (7 h day, 20  °C; 17 h night, 15  °C) and with four N sources [control, ammonium carbonate [(NH4)2CO3], ammonium chloride (NH4Cl), potassium nitrate (KNO3)]. In the dark, floodwater pH rose steadily from 6.4 to about 7.5 over 60 days in the control, KNO3 and (NH4)2CO3 treatments, but with NH4Cl pH decreased to 5.8. In the light, algal growth began to affect the floodwater pH after 9 days. At the end of the night, pH values were similar for all treatments to those kept in the dark. During the day, pH changes depended on the morning pH value: the daily increase was zero at pH 5.6 rising to a maximum of about 2 units at pH 6.3 and falling again at higher pH values. Changes in the carbonate equilibria in response to CO2 removal by algal photosynthesis partly explain the results, but increasing inputs of acid are also implicated below pH 6.3 possibly due to reduced volatilization and increased nitrification. Redox potential (Eh) in the floodwater was little affected by N treatment until algal growth began. Eh then decreased each day as pH rose and recovered during the night. The daily decrease in Eh per unit increase in pH rose from about 10 to 90 mV pH–1 over the incubation period. Initially, therefore, O2 concentration must have been increased during the day by algal photosynthesis (values <59 mV pH–1), but later O2 concentration must have fallen, due possibly to the decomposition of algal cells. The presence of algae initially increased the depth of the aerobic soil layer, but eventually an algal mat settled on the soil surface acting as a zone of O2 demand as the algae decomposed. Received: 7 July 1997  相似文献   

15.
 ZnSO4, Zn-enriched farmyard manure (Zn-FYM), Zn-tetraammonia complex sorbed on FYM [Zn(NH3)4-FYM] and Zn-ethylenediaminetetraacetate (Zn-EDTA) were compared as Zn sources for rice production under lowland conditions. The amount of Zn supplied by Zn-EDTA was one-tenth of that supplied by the other Zn sources. Zn application to a Zn-deficient soil corrected the visual symptoms of Zn deficiency and significantly increased the total biomass, grain yields and the harvest index of rice, as well as the Zn concentration in the grain and the uptake of Zn by the straw and the grains. Even with lower rates of application (0.25 and 0.5 mg Zn kg–1 soil), Zn-EDTA treatments gave comparable values for these parameters, and the highest "Zn-mobilization efficiency" compared to the other Zn sources. The content of diethylenetriaminepentaacetate (DTPA)-extractable Zn in the soil of the different treatments after the harvest of rice was in the order; ZnSO4=Zn-FYM>Zn(NH3)4-FYM=Zn-EDTA. The application of Zn also significantly increased the number of panicles that emerged between 80 to 93 days after transplanting, though the total number of panicles at harvest remained unaffected. The calculated panicle-emergence index had a positive correlation with the grain yield of rice. The Zn-EDTA treatment, inspite of supplying the lowest amount of Zn, as well as leading to the lowest rate of Zn uptake, produced the highest yields. Therefore, we concluded Zn-EDTA to be the most efficient source of Zn for lowland rice production. Received: 20 October 1998  相似文献   

16.
Summary The CH4 flux from intact soil cores of a flooded rice field in Italy was measured under aerobic and anaerobic incubation conditions. The difference between the anaerobic and aerobic CH4 fluxes was apparently due to CH4 oxidation in the oxic soil surface layer. This conclusion was supported by measurements of the vertical CH4 profile in the upper 2-cm layer, and of the V max of CH4 oxidation in slurried samples of the soil surface layer. About 80% of the CH4 was oxidized during its passage through the soil surface layer. CH4 oxidation was apparently limited by the concentration of CH4 and/or O2 in the active surface layer. The addition of ammonium to the water layer on top of the soil core reversibly increased the aerobic CH4 fluxes due to inhibition of CH4 oxidation in the soil surface layer.  相似文献   

17.
 Soils are a major source of atmospheric NO and N2O. Since the soil properties that regulate the production and consumption of NO and N2O are still largely unknown, we studied N trace gas turnover by nitrification and denitrification in 20 soils as a function of various soil variables. Since fertilizer treatment, temperature and moisture are already known to affect N trace gas turnover, we avoided the masking effect of these soil variables by conducting the experiments in non-fertilized soils at constant temperature and moisture. In all soils nitrification was the dominant process of NO production, and in 50% of the soils nitrification was also the dominant process of N2O production. Factor analysis extracted three factors which together explained 71% of the variance and identified three different soil groups. Group I contained acidic soils, which showed only low rates of microbial respiration and low contents of total and inorganic nitrogen. Group II mainly contained acidic forest soils, which showed relatively high respiration rates and high contents of total N and NH4 +. Group III mainly contained neutral agricultural soils with high potential rates of nitrification. The soils of group I produced the lowest amounts of NO and N2O. The results of linear multiple regression conducted separately for each soil group explained between 44–100% of the variance. The soil variables that regulated consumption of NO, total production of NO and N2O, and production of NO and N2O by either nitrification or denitrification differed among the different soil groups. The soil pH, the contents of NH4 +, NO2 and NO3 , the texture, and the rates of microbial respiration and nitrification were among the important variables. Received: 28 October 1999  相似文献   

18.
 The influence of flooding and cellulose addition on the fixation of NH4 + in different soil layers of two paddy soils from China (an entisol and an ultisol) was investigated. In both soils the content of total reducing substances (TRS) sharply increased during the first days after flooding and was highest in the anoxic layers. This increase, which was more pronounced in the entisol with the higher total C content, was accompanied by an increase in the concentration of non-exchangeable NH4 + in both soils. The increase in mineralization after flooding, resulting in higher concentrations of exchangeable NH4 +, favoured the fixation of NH4 +. Although the application of cellulose resulted in higher TRS contents, the fixation of NH4 + ions decreased, which may have been the result of microbiological N immobilization. Received: 29 April 1998  相似文献   

19.
 Effects of increased soil temperature on soil microbial biomass and dehydrogenase activity were examined on organic (O) horizon material in a low-elevation spruce-fir ecosystem. Soil temperature was maintained at 5  °C above ambient during the growing season in the experimental plots, and soil temperature, moisture, microbial biomass, and dehydrogenase activity were measured during the experiment. An incubation study was also conducted under three temperature regimes, 5, 15, and 25  °C, and under four moisture regimes of 20, 120, 220, and 320% to further evaluate these environmental factors on dehydrogenase activity and microbial biomass. Soil moisture content and microbial biomass controls were significantly lower (30% and 2 μg g–1 soil, respectively) in the heated plots during the treatment period, suggesting that moisture content was important in controlling microbial biomass. In the incubation study, temperature appeared more important than moisture in controlling microbial biomass and dehydrogenase activity. Increasing temperature between 5  °C and 25  °C resulted in significant decreases in microbial biomass and dehydrogenase activity. Received: 7 August 1998  相似文献   

20.
The potential for methane production was investigated in 47 species of soil invertebrates. No detectable methane production was found in slugs, earthworms, potworms, oribatid mites, woodlices, springtails, centipedes, ants and soil diptera larvae. However, significant methane production was found in several temperate millipedes including some species from the order Julida (Leptoiulus trilobatus, Megaphyllum projectum, Megaphyllum unilineatum, Unciger transsilvanicus, Unciger foetidus, Leptoiulus proximus and Julus scandinavius). On the other hand, methane production was not confirmed in Cylindroiulus boleti which belongs to the same family. Members of the other orders (Glomerida and Polydesmida) did not release methane with the exception of one questionable recorded release in Polydesmus complanatus (Polydesmida, Polydesmidae). Methane producing species of millipedes showed significantly lower weight-specific rates of methane release than the cockroach Periplaneta americana and termite Prorhinotermes simplex. Methane release from millipedes was temperature-dependent; for the temperature range 5-25 °C, a Q10 between 1.55 and 2.17 was calculated and the relationship between methane release and temperature was described by an exponential curve. Our results suggest that although overall methane fluxes from soil invertebrates under study cannot substantially influence a methane budget in most ecosystems, methane production is significant at least in some millipedes and therefore can impact mesoenvironments and microenvironments inhabited by these invertebrates. This work also confirms that methane production is not only supported by tropic soil invertebrates, but also by temperate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号