共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
利用DH群体定位水稻谷粒外观性状的QTL 总被引:7,自引:0,他引:7
采用混合线性模型的复合区间作图方法,对水稻“圭630”和“02428”组合的DH群体的谷粒外观性状——粒长、粒宽和粒形进行了数量性状基因定位,同时对定位的主效应和上位性进行了环境效应分析。2002年对粒长、粒宽和粒形分别检测到5、4和2个QTLs;2003年对以上3个性状分别检测到3、4和4个QTLs。其中4个QTLs在2年均检测到,且其贡献率较大。位于第4染色体C22.RG449d区间的QTL效应大,同时影响粒长和粒宽,2年内均被检测到。联合2年数据分析分别检测到6个粒长QTLs、6个粒宽QTLs和3个粒形QTLs,共解释各自性状变异的67.7l%、50.08%和29.17%,且影响粒形的3个QTLs同时影响粒长或粒宽。对粒形和粒宽分别检测到4个QTLs与环境之间存在显著互作。本实验中检测到主效应和上位性对谷粒外观性状均具有重要作用,但上位性贡献率相对主效应较小,环境互作效应更小。 相似文献
3.
本文报道了水稻第1染色体长臂上微效千粒重QTL qTGW1.2的验证和分解。针对前期qTGW1.2定位结果, 应用SSR标记检测, 从籼籼交组合珍汕973/密阳46衍生的1个BC2F7分离群体中, 筛选到杂合区间分别为RM11621-RM297和RM212-RM265的2个单株, 构建了两套BC2F8:9近等基因系, 将qTGW1.2进一步界定在RM212-RM265及其两侧交换区间的区域内。在此基础上, 筛选出5个在目标区间内分离片段缩小且呈阶梯状排列的单株, 衍生了5套BC2F10分离群体, 应用Windows QTL Cartographer 2.5进行QTL分析。结果表明, 每套群体均检测到千粒重QTL, 加性效应为0.13~0.38 g, 来自密阳46的等位基因提高千粒重; 经比较各个群体的分离区间, 将qTGW1.2分解为互引连锁的2个QTL, 其中, qTGW1.2a位于RM11730和RM11762之间934 kb的区域内, 呈加性作用, qTGW1.2b位于RM11800和RM11885之间2.1 Mb的区域内, 呈正向超显性。 相似文献
4.
自然衰老提高了植物对环境的适应性,是其生长发育的重要生命历程,但在农业生产中,叶片一旦早衰,将极大影响作物的产量和品质。为探索水稻叶片衰老的分子机理,我们对EMS诱变获得的一个早衰突变体esl6进行了研究。田间种植情况下,四叶期之前,esl6与野生型无明显差异,之后心叶发育成完整叶后叶尖黄化,叶基部保持正常绿色,一直持续到开花期;在灌浆期,esl6的所有叶片均不同程度地黄化早衰,且叶片上部的衰老程度明显严重于叶片基部。衰老部位细胞结构异常,主要表现为细胞膜破裂、液泡变大和细胞器不完整等,叶绿体中基质类囊体破裂,含有较多的淀粉粒。与野生型相比,esl6叶尖衰老部位的SOD、CAT和POD活性以及超氧阴离子O2?、H2O2和羟自由基·OH含量均极显著升高。早衰不仅导致esl6叶片光合色素含量和净光合速率极显著降低,还引起esl6的植株变矮和叶片变短,倒一和倒二节间极显著变短是导致esl6植株矮化的主要原因。遗传分析表明该性状受一对隐性核基因调控,利用西大1A/esl6的F2分离群体,最终将调控基因定位在第9染色体203 kb的物理范围内,为下一步基因的克隆和功能研究奠定了基础,有利于水稻叶片衰老分子机理的阐释。 相似文献
5.
青岛市不同生态功能区表层土壤重金属污染初步评价 总被引:3,自引:1,他引:3
本文分析研究了青岛市工业区、商业区、居民区、农业区、旅游区表层土壤中重金属Cd、Cr、Cu、Ni、Pb、Zn的含量,采用Mul1er地积指数法对其污染状况进行评价,结果表明:Cd在各功能区含量均高于国家土壤环境环境质量二级标准,其浓度大小顺序为:工业区(0.807mg/kg)>商业区(0.748 mg/kg)>居民区(0.642 mg/kg) >农业区(0.532 mg/kg) >旅游区(0.356 mg/kg),Cr、Cu、Ni、Pb、Zn浓度均低于国家二级标准;按Mul1er地积指数法评价,Cd和Ni在五个功能区表层土壤的地累积指数为1,均属于轻度-中等污染,Cr、Cu、Pb 在不同功能区污染水平略有不同,Zn在五个功能区地累积指数为0,为无污染。由此可知,青岛市表层土壤均受到Cd和Ni污染,未受Zn污染。 相似文献
6.
7.
本研究报道的突变体sr10 (slender rice 10)是由籼稻保持系西农1B经甲酰磺酸乙酯(EMS)诱变而成,表现为茎细长,雄性不育。细胞学观察显示,sr10细胞变长,维管束变少。冷冻切片和叶绿素含量测定表明,sr10的叶绿素含量大幅下降,导致光合速率下降,但气孔导度的降低可能提高其抗旱性。通过激素含量测定发现,sr10中IAA和GA3水平显著升高,而ABA含量显著降低。qRT-PCR分析表明, GAs通路相关基因表达下调, IAA通路相关基因表达异常。遗传分析表明, sr10的突变表型受单个隐性核基因控制。SR10定位于3号染色体的分子标记LIND12和28.5~4之间的175.7 kb的区域内。本研究结果为SR10的克隆和功能分析奠定了基础。 相似文献
8.
9.
水稻的柱头外露率影响异交结实率,不育系的柱头外露率则直接影响制种产量。本研究利用高柱头外露率的两系籼稻不育系1892S和低柱头外露率的籼稻品种‘扬稻6号选’构建的重组自交系群体(RILs),考查了F6和F7世代的柱头单外露率(SSE)、柱头双外露率(DSE)、柱头总外露率(TSE);采用基因分型测序技术(GBS)构建遗传连锁图谱,用复合区间作图法(CIM)共检测到了16个柱头外露率相关的QTLs,包括7个控制柱头单外露率的QTLs、4个控制柱头双外露率的QTLs、5个控制柱头总外露率的QTLs。这些QTLs分别位于第1、2、4、5、7和8染色体上,贡献率介于4.70%~18.00%。其中位于第1和4染色体上的QTLs在两年的试验中均被重复的检测到。这些检测到的QTLs为分子标记辅助选择培育高柱头外露率的不育系提供了基因资源。 相似文献
10.
叶绿素是植物生长发育必不可缺的元件。叶色突变体的发掘与研究在叶绿体发育、叶绿素代谢、光合作用等研究中具有重要作用。利用化学诱变剂EMS诱变水稻(Oryza sativa L.)籼型恢复系缙恢10号,从其后代中筛选出一份突变性状稳定遗传的叶脉白化突变体wpsm (white primary and secondary midrib)。与野生型相比,该突变体苗期表现正常,孕穗后期剑叶、倒二叶、倒三叶整张叶片的主叶脉和次级叶脉白化,叶肉细胞无显著变化,该性状一直持续到成熟期。抽穗期突变体wpsm的光合色素含量极显著低于野生型,净光合速率(Pn)及表观电子传递速率(ETR)极显著降低,株高、每穗实粒数、千粒重、结实率等农艺性状均显著降低。该突变性状受一对隐性核基因调控,利用892株西农1A/wpsm的F2隐性定位群体,将该基因定位在第6染色体上引物InDel 10与InDel 4之间,遗传距离分别为0.06 cM和0.12 cM,物理距离约为56 kb。本研究为WPSM基因的克隆和功能研究奠定了基础。 相似文献
11.
为挖掘稳定遗传的稻谷粒重性状QTL,本研究以V20B/CPSLO17组合衍生的150个重组自交家系(recombinant inbred line, RIL)为作图群体,在3个环境(2019贵阳, 2020贵阳, 2019三亚)对稻谷粒重性状进行QTL检测及其遗传效应分析。结果表明:3个环境共检测到6个稻谷粒重QTL,其中QTL qTGW5-1在2种环境被重复检测到;QTL qTGW5-2和qTGW5-3具有较大遗传效应,表型变异贡献率高达139.796%和99.414%,两者的LOD值分别为35.113和28.411。qTGW5-2的加性效应源自亲本CPSLO17;qTGW5-3的加性效应源自亲本V20B。本研究结果为挖掘新的稻谷粒重性状基因提供参考依据。 相似文献
12.
鉴定和克隆叶色突变基因对于深入了解叶绿素合成、降解途径的关系以及植物的光合作用有着重要的作用。从EMS诱变恢复系缙恢10号后代中鉴定出1个灰白转黄突变体pyr1,该突变体在苗期部分死亡,整张叶片呈现灰白色,在不同的生育时期叶片呈现不同的颜色,直到孕穗期叶片上部和叶缘表现黄色。苗期到抽穗期突变体叶绿素含量比野生型显著或极显著降低。透射电镜观察表明,突变体与野生型细胞结构无明显差异,但叶绿体发育异常,内部大量降解,基质片层退化。遗传分析表明该性状受1对隐性基因控制,利用326株F2隐性定位群体将PYR1基因定位在第1染色体长臂上,位于标记RM11722和Ind1之间,物理距离约92 kb,本研究为PYR1基因的图位克隆奠定了基础。 相似文献
13.
植物叶色变化对叶绿体发育和叶绿素生物合成等光合系统结构和调控机制的研究有着重要的理论意义。水稻叶缘白化突变体mal (marginal albino leaf),来源于恢复系缙恢10号(Oryza sativa L.ssp. indica)的EMS诱变群体,经过多代自交,其突变性状遗传稳定。与野生型相比,mal突变体整个生育期叶片边缘白化且叶片变窄,抽穗期倒三叶叶片、倒二叶叶边缘以及倒三叶叶边缘的叶绿素含量极显著降低。透射电镜观察发现,mal突变体叶片绿色部位细胞与叶绿体发育完全,白化部分叶肉细胞大部分中空,无明显完整的细胞器,叶绿体内部完全降解。遗传分析表明该突变体受隐性核基因控制,MAL被定位在第8染色体上SSR标记M22和InDel标记ID27之间,物理距离为171 kb。本研究将为MAL基因的图位克隆及功能研究奠定基础。 相似文献
14.
种子是农作物生产的物质基础,种子质量直接影响农业生产的成效.种子活力是衡量种子质量和应用价值最重要的指标之一,活力高的种子发芽迅速整齐、幼苗均匀、生长健壮,同时可以节约播种量,减少劳力投入,降低生产成本,提高农业生产效益.QTL定位和克隆是解析玉米农艺性状遗传基础的重要手段.本研究以基于豫537 A×沈137构建的一个RILs群体的212个家系为材料,利用SNP分子标记技术构建的高密度的分子遗传连锁图谱,采用复合区间作图法定位了超氧化物歧化酶活性、过氧化物酶活性、过氧化氢酶活性、丙二醛含量等玉米种子活力相关生理指标的QTL,共检测到11个QTLs,分别分布在第1、2、4、6、7、8条等6条染色体上,单个QTL的贡献率介于5.52%~12.10%之间,这些QTL的确定有助于开展分子标记辅助选择种子活力相关性状. 相似文献
15.
适度矮化有利于提高水稻的抗倒伏性, 进而影响产量和品质, 是水稻育种中重要的选择性状之一, 因此研究矮秆形成的分子机制具有重要的意义。为鉴定新的矮秆资源, 探讨株高形成的分子调控机制, 我们对籼型恢复系缙恢10号的EMS (甲基磺酸乙酯)诱变体库进行了鉴定, 从中筛选到1个植株半矮化且籽粒变大的突变体sdb1。本文对其进行了形态鉴定、细胞学观察、遗传分析和基因定位等研究。田间种植条件下, 全生育期sdb1的株高都明显矮于野生型, 成熟期仅76.66 cm, 与野生型的117.43 cm相比, 下降了34.72%, 差异达极显著水平, 进一步分析发现sdb1的穗和各节间长均显著变短。在茎秆石蜡切片中发现, 纵向细胞的长度与野生型相比无显著变化, 横向细胞面积极显著变小、数量则极显著增加, 纵向细胞变少是导致sdb1植株半矮化的主要原因。除植株变矮外, sdb1的另一典型特征是籽粒变大, 千粒重由野生型的24.83 g变为突变体的29.00 g, 差异达极显著水平; 颖壳中薄壁细胞数量增加了22.05%, 致使籽粒的长、宽、厚均极显著变大, 从而提高了sdb1的粒重。此外, sdb1叶肉细胞层数增多, 导致其光合色素含量极显著高于野生型, 叶片呈现深绿色。遗传分析发现, sdb1的突变表型受单隐性核基因调控, 利用中花11/sdb1杂交组合的F2隐性植株, 最终将调控基因定位在第4染色体SSR标记RM16632和Indel标记J50-7之间约406 kb的物理范围内。这为SDB1的克隆和功能研究奠定了基础, 也有助于水稻株高发育分子机制的进一步阐释。 相似文献
17.
18.
水稻类病变突变体c5是由粳稻品种中花11种子经化学诱变剂EMS (甲基磺酸乙酯)诱变处理得到的。该突变体叶片在三叶期开始出现近似圆形褐色斑点,经DAB染色和台酚蓝染色显示这些斑点积累了过多的H2O2并引起程序性细胞死亡。与野生型相比,突变体c5的成熟期株高从110.4 cm减少到74.6 cm,有效分蘖数和每穗着粒数分别减少23.7%和28.5%,千粒重和结实率都显著降低,此外,c5还表现出对白叶枯病菌的广谱抗病性,对10个菲律宾生理小种都有强烈的抗性反应。遗传分析表明,c5的突变性状受单隐性核基因控制。利用c5和明恢86配组形成的包含6269个单株的F2群体和18个分子标记,将c基因限定在水稻第5染色体长臂STS标记S41和S47之间大约102 kb的遗传距离内。序列分析发现该区间内其中有11个编码基因,且它们与现已报道的类病变基因都不同,暗示c5可能是一个新型类病变性状控制基因。 相似文献
19.
利用EMS诱变水稻籼型恢复系缙恢10号, 从其后代中鉴定出一个类病斑突变体spl31, 该突变体三叶期以前表型正常, 四叶期后叶片陆续出现黄色斑点, 随着植株的生长, 面积逐渐扩大成边缘黄褐色的病斑, 至成熟时病斑相互连接成片, 导致叶片坏死。透射电镜结果显示突变体细胞的叶绿体基粒片层堆叠不规则。组织化学分析显示突变体细胞被染成深蓝色, 呈离散状分布, 说明spl31病斑是自发形成的。光合数据显示spl31基因突变对病斑叶片正常部位细胞的光系统II影响较小。农艺性状分析发现突变体千粒重下降、结实率降低。遗传分析表明, spl31的突变性状由1对隐性核基因控制, 该基因被定位于水稻第12染色体着丝粒附近, 引物ID104和ID11之间, 物理距离为383 kb, 并与标记ID105共分离。 相似文献
20.
一个水稻长穗颈突变体eui1(t)的鉴定和基因定位 总被引:1,自引:0,他引:1
利用EMS(甲基磺酸乙酯)诱变优良恢复系缙恢10号种子,在其后代获得了一个长穗颈高秆突变体,暂命名为eui1(t)。与诱变亲本相比,倒一节间、倒二节间和穗颈显著伸长,其中,顶节间伸长最为明显。遗传分析表明,该性状受一对隐性核基因控制。利用西农1A/eui(t)的F2群体进行基因定位,初步将eui1(t)基因定位在第5染色体长臂末端,位于SSR分子标记RM3321和RM26内侧,分别相距12.3cM和15.8cM。 相似文献