首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以未设置防寒沟和在前底脚设置防寒沟的辽沈Ⅰ型日光温室为例,对土壤温度变化规律进行了试验研究.研究表明,在地面下0.4m,最低温度出现在温室的前底脚,其次是温室的后底脚,未设置防寒沟时最高温度出现在温室中部靠后,设置防寒沟时最高温度出现在温室中部靠前;在地面下0.8m,未设置防寒沟与设置防寒沟温室内外温度变化规律基本相同,说明防寒沟埋深0.8m是合理的,建议取0.8m~1.2m;对采用不同防寒沟材料对日光温室沿横向地温变化规律分析表明,吸湿性小、导热系数小、整体性好的聚苯板具有较好的保温隔热性能,而炉渣作用不明显.  相似文献   

2.
<正> 以太阳能为主要能源的新型日光温室,在不加温或短时间加温条件下就可进行冬季果蔬类生产。但要保证蔬菜在严冬季节,特别是连续阴雪低温条件下正常生长,还必须采取一系列防寒保温措施。  相似文献   

3.
北方日光温室番茄防寒增温措施   总被引:2,自引:1,他引:1  
夜间温度制约着朝阳县冬春茬番茄的产量和质量,从采用透光好的大棚膜、多层覆盖保温、设置反光幕补光、应用秸秆反应堆技术、提高温室前脸温度、增施有机肥等方面介绍了北方日光温室番茄防寒增温措施,以供参考。  相似文献   

4.
赵海燕 《农家参谋》2013,(11):14-14
温室合理设置防寒沟非常重要,但是,目前很多温室不设防寒沟,或者设的防寒沟不合理。温室设置防寒沟是有讲究的,主要有以下几点:  相似文献   

5.
日光温室的热量主要是来自太阳的辐射光能。白天透入温室内的阳光,除一少部分被反射外,大部分被地面、支架、墙体和空气所吸收。温室所得到的热量与温室外或其他方面所支出的热量是绝对相等的,这就是温室的"热平衡"。温室的"热支出"主要有三种形式,即温室的围护层面散热、地中传热和缝隙放热。  相似文献   

6.
蔬菜日光温室的热源主要是来自太阳的辐射。白天透入温室内的阳光,少部分被反射掉,大部分被地面、支架、墙体所吸收。温室所得到的热量与温室向外或其它方面所支出的热量是绝对相等的。人们把上述这样一种关系叫做温室的"热平衡"或"热收支"。  相似文献   

7.
地温加热对日光温室蔬菜根层土壤的升温效应   总被引:1,自引:0,他引:1  
利用太阳能电辅加热系统通过地暖管热水循环散热直接对温室土壤进行加温,探究地暖管不同埋设深度对白天地温的时空效应,优化加热管埋设深度.结果表明,蔬菜根层地温随时间变化在空间上扩散形成类似上短轴下长轴的不规则椭圆球体.热量由集热中心向上传递显著有效距离为5 cm,向下传递显著有效距离为10 cm.地暖管最适埋设深度在10 cm处,可满足华北区冬季晴天与阴霾天气番茄、黄瓜生长所需的最适地温.  相似文献   

8.
河南省安阳市滑县王庄镇和附近几个乡镇推广防寒沟西瓜茄子间作栽培技术,取得了较好的经济效益。该种植模式现已辐射到安阳市内黄县、新乡市长垣县、鹤壁市浚县,种植面积达到4000hm2。西瓜6月中下旬开始成熟采收,每亩产量2500kg;茄子7月中旬采收至霜降,每亩产量6000kg。两者相加每年每亩产值6000元。所谓防寒沟就是东西方向挖沟,沟上方覆盖地膜而形成一个小型“地下式温室”。现将该技术介绍如下。  相似文献   

9.
日光温室内土壤温度对土壤含水率变化的影响   总被引:1,自引:0,他引:1  
为探究土壤表层的含水率随土壤温度变化的规律,以呼和浩特地区的日光温室室内土壤为研究对象,利用土壤水分-温度传感器测试土壤含水率和土壤温度,采用Gaussian函数多峰拟合和线性拟合方法对土壤温度与含水率的关系进行拟合分析。结果表明:在3个试验区域的不同深度土层内,土壤含水率随土壤温度的变化均呈现线性变化规律,且越接近土壤表层,线性关系越显著。通过拟合方程得到的含水率计算值与实测值相对误差小于5%。本研究对日光温室内土壤环境的监测与控制具有指导意义。  相似文献   

10.
沟台覆膜栽培对苹果园土壤温度的影响   总被引:2,自引:0,他引:2  
沟台覆膜栽培是苹果生产中一种新模式。本试验测定了不同土层的温度变化情况,研究表明:沟台覆膜对土层各项温度提高幅度不同,最高温度的提高值最大,平均温度提高值次之,最低温度提高值最小;不同深度土层温度变化的效果不同,5cm深土层最高温度和平均温度改变量大于10cm深土层,最低温度改变量小于10cm深土层;5cm深土层的最高温度提高在5.0~6.5℃之间,平均提高5.60℃,10cm深土层的最高温度提高在3.5~5.5℃之间,平均提高4.52℃,均达到显著性差异(P〈0.05),5cm深土层的最低温度提高在1.0~2.5℃之间,平均提高1.76℃,10cm深土层的最低温度提高在2.0~4.0℃之间,平均提高2.31℃,差异均不显著(P〈0.05),5cm深土层的平均温度提高在2.5~3.5℃之间,平均提高3.05℃,10cm深土层的平均温度提高在1.5~3.5℃之间,平均提高2.60℃,差异均不显著(P〈0.05)。沟台覆膜栽培能提高土壤最低温度和平均温度,对最高温度的提高达到显著性(P〈0.05)。  相似文献   

11.
为了改善冬季日光温室作物生长环境,设计了日光温室太阳能土壤加温系统.通过试验研究了在该系统作用下地温随不同地热管埋深的变化情况,并与地埋秸秆和无处理两种情况的地温进行了对比.结果表明:加温系统可提高地温4~5℃,比地埋秸秆增加地温3~4℃;0.8cm埋深的地热管道比0.4cm埋深的地热管道增温效果更明显.太阳能土壤加温系统对夜间土壤温度有显著地提升作用.  相似文献   

12.
夏季填闲作物对日光温室土壤环境的影响   总被引:1,自引:0,他引:1  
针对日光温室随种植年限的增加,土壤环境恶化的问题,利用温室夏季休闲期设计了4种填闲作物,研究其对温室土壤环境的影响。结果表明:夏季休闲期间种植大葱改善了土壤微生物区系,细菌和放线菌数量增多,真菌数量减少,B/F值显著升高,镰刀菌下降了69.17%,同时降低了土壤养分的积累。夏季休闲期间种植甜玉米可大量吸收土壤中多余的营养成分,但真菌数量偏高,B/F值与对照相比相差不大;种植速生叶菜虽然能降低土壤盐分含量,但对降低黄瓜致病菌数量和改善微生物区系组成方面无显著效果;豆科作物毛苕子在一定程度上降低了土壤盐分含量,但土壤微生物总量有所减少。  相似文献   

13.
日光温室地温模型及数值模拟   总被引:3,自引:0,他引:3  
对北京农学院一座日光温室的地温进行测试和分析,建立了非稳态地温场的数学模型,用差分法计算出土壤的热扩散率,选用SAS软件进行非线性回归,回归模型较好的反应了土壤温度场分布状况,为进一步研究日光温室地温场特性提供了手段和依据。  相似文献   

14.
日光温室土质墙体内温度与室内气温的测定分析   总被引:9,自引:0,他引:9  
为研究日光温室土质墙体的保温性及室内温度环境特征,对日光温室的后墙、地面、空气进行了不同层次的温度监测和理论分析.结果表明:日光温室后墙在传热过程中,由内向外随墙体厚度的增大传入热量逐渐减少.在后墙垂直方向内表层0.2 m处,墙体中下部温度最高,顶部和基部温度较低;3月份一日内墙体表面温度平均比地表面温度高3.3℃;夜间放热时间比地面长约3 h,且单位面积墙体比单位面积地面放热多.白天,在温室南北方向由北向南气温逐渐增高;垂直方向气温由下到上逐渐升高;夜间,在南北方向由北向南气温逐渐降低,垂直方向气温没有明显变化.无论白天夜间,日光温室内南北方向气温差异比垂直方向气温差异大.  相似文献   

15.
不同土壤消毒方法对日光温室土壤温度和土壤养分的影响   总被引:2,自引:1,他引:2  
研究了垄沟式太阳能消毒、石灰氮结合太阳能消毒和垄鑫熏蒸土壤3种消毒方法对日光温室剖面温度和土壤营养特性的影响.结果表明:垄沟式太阳能消毒提高土壤剖面温度高,速度快,对土传病害有良好的防治效果,土壤速效P、土壤速效K含量分别比对照增加0.5%和31%,而土壤速效N、有机碳的含量分别比对照降低17%、12%;施用石灰氮土壤速效P和土壤速效N分别比对照增加94%和52%,土壤速效K变化不明显,有机碳比对照降低15.8%;施用垄鑫处理土壤速效钾和土壤速效N分别增加10.7%和22.5%,土壤速效P变化不显著.垄沟式太阳能消毒对更深层的土壤养分含量影响比石灰氮结合太阳能消毒和垄鑫熏蒸土壤更为明显.  相似文献   

16.
为促进设施农业的循环发展提供理论依据,采用单因素分析方法研究内置式秸秆反应堆发酵后和秸秆粉碎后直接还田对日光温室网纹甜瓜土壤理化性状和微生物数量的影响。结果表明:内置式秸秆反应堆发酵后和秸秆粉碎后直接还田温室土壤有机质、有机碳、全氮、全磷、全钾、速效氮和速效钾含量及土壤pH均较对照(空白,无秸秆还田)显著提高,内置式秸秆反应堆处理各指标依次提高81.96%、102.88%、17.14%、37.50%、28.41%、32.98%、99.01%和12.41%,秸秆直接还田处理各指标依次提高28.35%、32.69%、21.90%、28.13%、31.87%、56.38%、43.07%和8.28%,但其对土壤速效磷含量影响不大;2种秸秆还田方式能显著提高土壤微生物总量,土壤放线菌和细菌数量分别提高186.18%和203.25%,375.94%和190.91%,但不同处理间真菌数量差异不大。  相似文献   

17.
日光温室应用秸秆反应堆对地温的影响   总被引:2,自引:0,他引:2  
日光温室应用秸秆反应堆技术,具有改善作物生长环境、提高地温、培肥土壤、降低连作障碍、增强植物抗病能力的作用,能从根本上解决因大量施用化肥和农药导致的农产品质量安全问题,是推动秸秆和畜禽粪便综合利用,提高农产品产量和质量的一项有效措施.试验表明,在每栋温室用秸秆4000kg左右,温室内CO2浓度明显增加,在最冷的12月和1月可使耕层平均地温提高0.5~1.0℃,土壤温差缩小,减少有机肥、化肥和农药用量50%以上.  相似文献   

18.
日光温室土壤温度变化特征和预报模型研究   总被引:1,自引:0,他引:1  
贾红  徐为根  彭明艳  孙磊 《安徽农业科学》2011,(11):6471-6473,6482
[目的]研究日光温室内土壤温度变化规律及其预报模型。[方法]利用徐州地区标准日光温室内外气温和温室内多层次土壤温度观测资料,分析了温室内各层土壤温度的年变化和日变化,并对温室内土壤温度的预报模型进行了模拟和检验。[结果]温室内土壤温度年变化和日变化均呈单峰曲线,下层温度变化振幅小于上层。温室内各层土壤温度(最高值、最低值和平均值)与当日温室外同类型气温的相关性最为密切。以当日和前一日温室外日平均气温、日最高气温、日最低气温为预报因子,建立了温室内同类型不同层次土壤温度预报模型。温室内各层日平均温度的模拟效果优于对应层的最高温度的模拟效果,劣于对应层日最低温度的模拟效果;下层土壤日最高温度和日平均温度的模拟效果优于上层;实测土壤温度在15~30℃模拟效果较好,其他温度段模拟值较实测值偏低。[结论]该研究为日光温室内植物的生长发育环境提供理论依据。  相似文献   

19.
山西省土墙日光温室结构及其温度环境调查   总被引:2,自引:1,他引:2  
为进一步了解山西省土墙日光温室总体现状,调查了山西省不同区域土墙日光温室的结构,并监测了室内温度特征。结果显示,山西省土墙日光温室建设不规范,缺少统一标准。1—2月份,室内日最高气温为21.8~29.3℃,日最低气温为6.2~12.1℃,日平均气温为14.6~18.0℃,采光时段均温为16.8~23.6℃;升温速率为2.1~3.9℃/h,室内外最高气温差、最低气温差、日均温差分别为15.8~27.5,11.1~27.5,14.4~25.8℃,1—2月份≤8℃低温天气出现的频率为0~0.85。综合各项指标评价分析得出,SC-1土墙日光温室综合性能最优,YH-1最差。改善日光温室的热环境不仅要选用良好的保温覆盖材料,加强日常管理,还要依据地理位置和气候特征进行结构设计。  相似文献   

20.
[目的]提高冬季夜间日光温室的土壤温度,研制内置式太阳能加温装置.[方法]利用蛇形太阳能空气集热器集热结合土壤蓄热的方式,在乌鲁木齐南郊水西沟村德力森蔬菜园8号温室进行了提升地温试验.[结果]当环境温度为-3~- 10℃时,该装置可以使温室土壤10 ~ 20 cm深处的温度平均升高1.5~3℃.[结论]内置式太阳能加温装置能有效提高冬季夜间温室地温,满足作物生长的需要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号