首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is not known whether rotifers or Artemia nauplii are the best first food for South African mud crab Scylla serrata larvae. In order to test this, larvae were fed with five different test diets. These were rotifers for the first 8 days and newly hatched EG® type Artemia nauplii (San Francisco Bay) from day 6 onwards (treatment R6A); newly hatched EG® type Artemia nauplii throughout the rearing period (treatment EG); newly hatched Vinh-Chau strain (Vietnam) Artemia nauplii throughout the rearing period (treatment VC); decapsulated cysts of EG® type Artemia throughout the rearing period (treatment DECAP); or decapsulated cysts supplemented with low densities of Artemia EG type Artemia nauplii (treatment MIX). Two experiments were conducted approximately 1 month apart using larvae from two different female crabs. Although results showed it is possible to rear S. serrata larvae through metamorphosis on Artemia nauplii exclusively, larval performance (development, survival and successful metamorphosis) was enhanced by the inclusion of rotifers as a first feed.No significant difference in performance was recorded between larvae fed on the two strains of Artemia nauplii. Larvae fed on decapsulated cysts in treatments DECAP and MIX performed poorly, but there were indications that decapsulated cysts and other inert diets may have potential as supplements to live food in the rearing of S. serrata larvae.  相似文献   

2.
The goal of this study is to develop a larviculture protocol for Mithraculus forceps, a popular marine aquarium species. Different temperatures (25±0.5°C and 28±0.5°C), stocking densities (10, 20, 40 and 80 larvae L?1), prey densities (newly hatched Artemia of 1, 4, 7 and 12 nauplii mL?1) and metamorphosis to crab conditions (Systems A and B) were tested. The best survivorship and faster development were obtained when the larvae were reared at a density of 40 larvae L?1 for 7 days post hatching (DPH) in System A, at 28°C and fed with 7 mL?1 of newly hatched Artemia nauplii. After 7 DPH all the megalopa were moved to System B and the same temperature and prey density were maintained. At the end of the experiment, 12 DPH, survivorship of 74.1±4.8% was obtained.  相似文献   

3.
The effects of enriched Artemia nauplii on larvae production and survival and growth of the mysid Mysidopsis almyra Bowman 1964 are compared. There were no significant differences (P > 0.05) in production between mysids fed the Artemia nauplii (133 ± 69 mysids day−1) and mysids fed the enriched nauplii (139 ± 82 mysids day−1). No differences in size of newly hatched mysids or mysid growth to 15 days (P > 0.05) were found between the two diets. Survival was significantly higher (P < 0.05) for mysids fed the enriched nauplii (59.1%) compared with mysids fed Artemia nauplii (41.4%).  相似文献   

4.
An important constraint to the commercial rearing of the marine ornamental shrimp Lysmata debelius is high larval mortality during early stages due to inappropriate procedures of larval collection and not feeding a live prey before one day elapsed after hatching. This incorrect feeding practice is commonly adopted in larval rearing of L. debelius and other ornamental marine shrimps because it is wrongly assumed that reserves of the newly hatched are enough for the first 24 h of life. Present work demonstrates that captive newly hatched L. debelius larvae ingest microalgae within minutes after hatching. When fed solely with Artemia nauplii, they have acceptable survival rates with stocking densities at or below 50 larval L–1; but when nauplii are combined with microalgae, survival is further improved to zoea 2 as initial mortality is reduced, and higher stocking densities are supported (up to 75 larvae L–1). The microalgae used were Rhinomonas reticulata, Skeletonema costata and Tetraselmis chuii. Higher survival through metamorphosis to zoea 2 was always observed for groups fed combinations of microalgae including Tetraselmis chuii. It is recommended that, larval collection methods ensure that larvae are fed microalgae within 2–3 h of release.  相似文献   

5.
Nutritional efficacy of fairy shrimp (Streptocephalus sirindhornae) nauplii, as a live food, was studied for growth performance and survival rate of giant freshwater prawn (Macrobrachium rosenbergii) postlarvae. A feeding experiment was designed with four different feeds: dry commercial feed, fairy shrimp nauplii, Artemia sp. nauplii and adult Moina macrocopa. Results from the nutritional composition revealed that fairy shrimp nauplii had protein and lipid contents of 54.58 ± 2.8 g kg?1 and 255 ± 2.8 g kg?1, respectively. The highest value for an individual amino acid in fairy shrimp was lysine (140.7 ± 1.6 g kg?1). The essential amino acids content in the whole body of the larval prawns was in the range of 66.7–67.5 g kg?1. Fairy shrimp nauplii had the highest essential amino acid ratio (A/E) of lysine, similarly, in musculature of prawn larvae. Weight gain and specific growth rate of the postlarvae fed with fairy shrimp nauplii were significantly higher than those fed with Artemia nauplii, adult Moina and dry commercial feed. The presented results suggest that S. sirindhornae nauplii can be used as a nutritionally adequate food for freshwater prawn M. rosenbergii postlarvae.  相似文献   

6.
Four feeding experiments, replacing 25% (T1), 50% (T2), 75% (T3) and 100% (T4), by dry weight, of the live feed Artemia nauplii for Cyclop‐eeze, a new larval feed that was claimed to contain the highest known levels of astaxanthin and omega‐3 polyunsaturated fatty acids, were compared against a control that was fed with Artemia and egg custard alone, to the larvae of giant freshwater prawn Macrobrachium rosenbergii (De Man 1879). Analysis of different production characteristics of the larvae revealed that the highest survival up to postlarvae (PL) stage was obtained for T2 in which 50% of the Artemia nauplii were replaced by Cyclop‐eeze [freeze‐dried (FD) deep frozen (DF)], and the highest astaxanthin content of the larval tissue obtained in T4 in which the larvae were fed 100% Cyclop‐eeze, although the survival rate was the lowest in this treatment. The costs of different treatments were also compared. The Artemia consumption million−1 larvae was the highest in control (11490 g), followed by T1 (8240 g), T2 (4990 g), T3 (3730 g) and T4, which completely replaced Artemia from stage 5 onwards (1830 g). The highest consumption of Cyclop‐eeze million−1 larvae was in T4 (1670 and 10 880 g), followed by T3 (850 and 5560 g), T2 (410 and 2690 g) and T1 (230 and 1490 g) of FD and DF, respectively. The astaxanthin contents of the late‐stage larvae fed under the four treatments were 24.90, 27.40, 28.60 and 35.60 μg g−1 tissue for T1, T2, T3 and T4, respectively, while that of the control was 23.70 μg g−1. The lowest cost of live feeds million−1 PL was obtained for T2 (US$ 428.60), followed by T1 (US$ 490.46), control (US$ 529.07) and T3 (US$ 583.26), while it was the highest for T4 (US$ 890.93). The results indicated that Cyclop‐eeze could economically replace Artemia nauplii at 50% level that could significantly improve the survival and carotenoid composition of the larvae of M. rosenbergii.  相似文献   

7.
This study aimed to establish feeding strategies covering the whole larval period of the forktail blenny, Meiacanthus atrodorsalis, based on the standard hatchery feeds of rotifers and Artemia. Three purposely designed experiments were conducted to determine the appropriate times and techniques to transition larvae from rotifers onto Artemia nauplii of a Great Salt Lake (GSL) strain, and a specialty AF strain, as well as subsequent transition onto enriched metanauplii of GSL Artemia. With a 3‐day co‐feeding period, larvae adapted well to a transition from rotifers to newly hatched GSL Artemia nauplii as early as 5 days posthatching (DPH), and as early as 3 DPH when fed the smaller AF Artemia nauplii. However, prolonging the rotifer‐feeding period up to 11 DPH did not negatively affect survival. Larvae fed Artemia nauplii of the AF strain showed 17–21% higher survival, 24–33% greater standard length and body depth, and 91–200% greater dry weight, after 20 days relative to those fed nauplii of the GSL strain. Meanwhile, enriched Artemia metanauplii of the GSL strain were shown to be an acceptable alternative to AF Artemia nauplii for later larvae, producing similar survival and growth when introduced from 8 DPH. Based on our findings, we recommend feeding M. atrodorsalis larvae rotifers as a first food between 0 and 2 DPH, introducing AF Artemia nauplii from 3 DPH, followed by enriched GSL Artemia metanauplii from 8 DPH onward, with a 3‐day co‐feeding period between each prey change.  相似文献   

8.
Rotifers and Artemia salina nauplii are the most widely used live prey for newly hatched larvae, but they do not always promote optimal survival and growth. Alternative food sources such as copepods, which bypass these inadequacies and promote adequate growth, are needed and they are viewed with considerable interest by the scientific community. The aim of the present study was to test two different diets [rotifers and A. salina nauplii (group A) and a mixture (group B) of rotifers/Tisbe spp. copepods and A. salina nauplii/copepods] during the larval rearing of the striped blenny Meiacanthus grammistes. The analysis of the survival rate, size (total length and wet weight) and metamorphosis time during the larval phase of this species showed that Tisbe spp. administration can significantly improve larval survival and growth and also reduce the metamorphosis time. The results obtained are related to the fatty acid content of the live prey used and are essential in order to improve the captive production of M. grammistes through a closed system and, in turn, to preserve natural stocks.  相似文献   

9.
The aim of this study was to evaluate the effects of hatchery‐tank colours (white, yellow, red, blue, green and black) on the performance of larval culture of Macrobrachium amazonicum. The larvae were fed daily with newly hatched Artemia nauplii. The hatchery‐tank colours affected the light level inside the tanks, the consumption of Artemia nauplii (AN), larval development, survival, mass gain and productivity of postlarvae (PL). The overall consumption of Artemia nauplii per larva during the larval cycle was 30% and 45% higher in the green and red tanks respectively. The significant variation of AN consumption among tank colours (= 0.0006) indicates that M. amazonicum larvae are visual predators. Survival was higher in the black, blue and green tanks, reaching more than 75%. However, the highest productivity was obtained in the black tanks (80.1 PL L?1). Lighter coloured tanks and excess luminosity (more than 2 μmol s?1 m2 at tank bottom) appear to be important stress factors for larvae, contributing to reduce survival and productivity. The results indicate that rearing M. amazonicum in black tanks will improve larvae condition, ensure greater productivity of postlarvae and lower Artemia consumption, increasing technological and economic viability.  相似文献   

10.
The Monaco shrimp Lysmata seticaudata (Risso, 1816) is a marine ornamental species whose ecology and biology, as well as its larval culture has previously been addressed. The objective of the study was to predict and improve productivity of this species rearing protocol through modelling. The models developed intend to help aquaculturists to maximize survival to postlarva, decrease larval duration and increase synchronism of metamorphosis and newly metamorphosed postlarvae size by manipulating temperature, diet, first feeding period and stocking density.The models developed allow us to conclude that the L. seticaudata rearing protocol productivity can be improved by raising larvae at a density of 40 larvae L− 1 and fed newly hatched Artemia nauplii since hatching to zoea V, and with Algamac 2000™ enriched Artemia metanauplii from zoea V to metamorphosis to postlarvae.By providing more productive protocols to aquaculturists, destructive practices and wild collection may be reduced.  相似文献   

11.
Larvae of two caridean shrimp species, Macrobrachium rosenbergii (De Man) and Palaemon elegans Rathke, were fed live and artificial diets. P. elegans larvae fed exclusively live Artemia salina (15 nauplii mL?1) developed into first postlarval stage (PL1) within 12 days at a temperature of 25°C and salinity 32.5 g L?1. Their survival and mean total length at this stage were 88.5% and 6.7 mm respectively. M. rosenbergii larvae fed on 15 Artemia mL?1 started to metamorphose into PLl within 24 days at 29–30°C and 12 g L?1. Attempts to completely replace live Artemia for rearing P. elegans during early stages failed, and only a partial replacement was achieved for the larvae of both species. P. elegans larvae survived (49%) solely on a microgranulated diet (Frippak PL diet) from stage zoea (Z) 4–5 to PL1. Similarly, a microencapsulated diet (Frippak CD3) also sustained M. rosenbergii larvae from Z5–6 to PL1 with a 28% survival. Development of the larvae of both species was retarded by 2–3 days and their survivals were lower than those fed on the live diet. The inability of the early larvae of these caridean species to survive on artificial diets is attributed to their undeveloped guts and limited enzymatic capabilities. Trypsin activity in the larvae was determined for all larval stages. It was found that the highest trypsin activity, at stage Z4–5 in P. elegans and at stage Z5–6 in M. rosenbergii, coincides with a rapid increase in the volume of the hepatopancreas and the formation of the filter apparatus. These morphological changes in the gut structure appear to enable the larvae to utilize artificial diets after stage Z5–6. Low larval trypsin activities may be compensated by the easily digestible content of their live prey during early larval stages (Z1–Z4/5) and by longer gastroevacuation time (GET) and almost fully developed guts during later stages.  相似文献   

12.
The tongue sole Cynoglossus semilaevis, an inshore fish in China, has showed great potential in aquaculture recently. However, poor survival was recorded during the period of weaning from live Artemia to artificial diets. In this paper, the influence of co‐feeding larvae with live and inert diet on weaning performance was described. The C. semilaevis larvae were reared at 21 ± 1 °C and fed four different feeding regimes from 6 days post‐hatching (dph): A, Artemia (10 individuals mL?1); B, Artemia (5 individuals mL?1); C, mixed diet (10 Artemia individuals mL?1 and 12 mg L?1 inert diet); and D, mixed diet (5 Artemia individuals mL?1 and 12 mg L?1 inert diet). Rotifers were also supplied in all cases during the first days of feeding. Mixed diets of commercial formulated feed and live prey (rotifers and Artemia) allowed larvae to complete metamorphosis, achieving similar specific growth rate (SGR) (18.5 ± 1.4% and 18.7 ± 1.6%) and survival (40 ± 7.6% and 48.5 ± 6.8%) compared with larvae fed on live feed alone (SGR of 18.3 ± 1.2%, 19.3 ± 1.9% and survival of 41.2 ± 11.3%, 38 ± 4.9%). However, in metamorphosed fish, when live feed was withdrawn on 31 dph, there was significant difference (P < 0.05) in survival and growth among treatments. Metamorphosed fish, previously fed mixture diets during larval stages, had similar survival (62.1 ± 7.6% and 62.8 ± 3.9% for regimes C and D, respectively) but higher than that obtained for fish that previously fed on live feed (49.3 ± 2% and 42.1 ± 3.9% for regimes A and B, respectively) after weaning (day 60). The SGR of weaned fish previously fed live feed was similar (3.1 ± 0.6% and 2.92 ± 0.6% for regimes A and B, respectively) but lower than that recorded for fish that was fed from day 6 to day 30 on the mixed diet (4.5 ± 1.1% and 4.9 ± 0.3% for regimes C and D, respectively). It is suggested that weaning of C. semilaevis from early development would appear to be feasible and larval co‐feeding improves growth and survival.  相似文献   

13.
Larvae of Uca pugilator (Bosc) were reared in the laboratory from hatching to the megalopa stage on three different diets: (1) newly hatched Artemia salina nauplii (diet A), (2) the rotifer Brachionus plicatilis (O.F. Müller) and a ciliate Euplotes sp. (diet RC), and (3) a combination of the above two diets (diet ARC). The survival rate of zoeae fed diet A (90.0%) and diet ARC (93.8%) was much higher than that of the larvae fed diet RC (22.5%). The duration of the zoeal stages was significantly shorter for the larvae fed diet ARC than for those fed diets A and RC. The survival rate of megalopa larvae (reared on diets A and ARC in the zoeal stages) was high (above 90%) for megalopa fed Artemia nauplii only, as well as for those fed a combination of Artemia nauplii and shrimp. No significant differences in duration of the megalopa stage were found between the latter diet groups.  相似文献   

14.
Artemia nauplii cultured for 24 h in lipid‐enriched media contained 0, 0.38, 1.67, 0.79, 5.71 and 5.14 ng 17α‐methyl testosterone (MT) mg?1 dry weight for the control, 5, 15, 30, 50 and 100 mg of 17α‐MT L?1 of media respectively. Giant fresh water prawn Macrobrachium rosenbergii larvae were fed hormone‐enriched Artemia nauplii for 50 days. A significant difference in sex ratios (0.92, 0.69 and 0.93) was obtained in relation to the control group. These results suggest that further research is needed with regard to standardization of doses and duration of treatments for complete hormonal control of sex differentiation in M. rosenbergii.  相似文献   

15.
The effect of feeding scheme and prey density on survival and development of Eriocheir sinensis zoea larvae was studied in three experiments. Different combinations and densities of rotifers (Brachionus rotundiformis) and newly hatched Artemia nauplii were fed to zoea larvae. Average survival at each stage, larval development (larval stage index, LSI), duration of zoeal stage and individual megalopa dry weight were compared among treatments. This study revealed that, under the experimental conditions, rotifers should be replaced with Artemia between the zoea 3 (Z3) and the zoea 4 (Z4) stage. The optimal rotifer feeding densities for zoea 1 (Z1) and zoea 2 (Z2) were 15 and 20 mL?1 respectively, while the optimal Artemia feeding density for Z3, Z4 and zoea 5 (Z5) was 3, 5 and 8 mL?1 respectively. Further trials in production scale are recommended.  相似文献   

16.
The African River prawn Macrobrachium vollenhovenii is the largest of the local Palaemonidae prawns along the Cameroonian coast and an important target species for fisheries and aquaculture. A preliminary study on larviculture of this species was carried out at the IRAD-AQUASOL hatchery in Kribi, Cameroon. Berried females M. vollenhovenii were obtained from the Lobe and Lokoundje Rivers in the Southern Region, typical Lower Guinea rainforest streams. The larval rearing system consisted of a single recirculation system of four 65 L cylindrical plastic containers connected to a submerged biological filter container (65 L). Experiments were conducted three times in the same condition, with two batches of larvae reared separately in duplicate per experiment, at a density of 40/L, temperature 26°C, and salinity 16%. Larvae were fed from 1 day after hatching until metamorphosis to postlarvae (PL) with newly hatched Artemia nauplii, three times daily at the rate of 5 nauplii per mL water. The number of newly hatched larvae per female body weight unit was not affected by the female size and ranged between 531 to 1349 larvae g?1. The six batches succeeded from hatching to metamorphosis, and the 11 distinct larval stages described for M. rosenbergii were found. Larvae in all the batches developed more or less at the same pace up to stage V. However, a clear difference in the timing of appearance of the developmental stages was observed between batches and individuals of the same batch during the subsequent stages. The transition from stage V to stage VI and from stage IX to stage X was longer than the passage to other stages and seems to be the critical rearing period of M. vollenhovenii. From day 20 onward to sampling, the larval stage index (LSI) showed that larval development of the batch 1 was significantly faster than for all other batches. The time for first appearance of postlarvae was variable between batches (41–74 days), and batch 1 larvae passed through metamorphosis within a shorter span of time (41 days). Survival up to postlarvae was variable among batches, ranging between 3%–9%, and was better in batch 1 (9.31 ± 1.09). The general poor performance in terms of survival and metamorphosis rates of larvae seems to be related to the wild condition of broodstock. To improve performance of larvae, domestication of stock may be necessary. This result is the first recorded success in larviculture of M. vollenhovenii in Cameroon.  相似文献   

17.
Major challenges in culture of Atlantic halibut larvae have been slow growth during the late larval stages and inferior juvenile quality due to pigmentation errors and incomplete eye migration during metamorphosis. The hypothesis of this study was that feeding on‐grown Artemia would alleviate these problems. Artemia were grown for 3–4 days on Origreen or Origo. The growth and nutrient composition of Artemia nauplii and on‐grown Artemia were analysed, and both Artemia types were fed to Atlantic halibut larvae, on‐grown Artemia from 15 days post‐first feeding (dpff). The body length of Artemia increased with 20%–70% in response to on‐growing. In all experiments, protein, free amino acids and the ratio of phospholipid to total lipid increased, while lipid and glycogen decreased. The fatty acid composition improved in some cases and not in others. The micronutrient profiles were not negatively affected in on‐grown Artemia. All these changes are thought to be beneficial for marine fish larvae. The final weight of Atlantic halibut postlarvae was similar, and 90% of the juveniles had complete eye migration in both groups. It is concluded that the present version of Artemia nauplii probably covers the nutrient requirements of Atlantic halibut larvae.  相似文献   

18.
Mithraculus forceps (A. Milne Edwards) has demonstrated a great potential for ornamental aquaculture and the present study tests the effects of temperature, stocking density and diet on the survival and growth of M. forceps juveniles. For 28 days post metamorphosis (DPM), the newly metamorphosed juveniles were reared at two temperatures (25±0.5 or 28±0.5°C), stocked at five densities (1, 5, 15, 30 or 60 crabs ring−1; approximately 226, 1132, 3395, 6791 or 13 581 crabs m2 respectively) and fed with commercial pellets (CP), microalgae (Amphora spp.), live newly hatched Artemia nauplii (NHA), frozen Artemia nauplii (FNHA), or combinations of each of these diets with NHA. At the end of the temperature experiment, carapace width of the crabs cultured at 28°C was significantly larger than the crabs reared at 25°C and average intermolt period was significantly shorter. Increased stocking density had a negative effect on survivorship and growth. Survivorship at the end of the diet experiment was significantly different between the crabs not fed, fed with CP and Amphora and the crabs fed with the other diets. Between the diet treatments, the crabs fed with NHA+Amphora were significantly larger than the ones fed with NHA+FNHA, NHA, FNHA and NHA+CP, and these in turn larger than ones fed with Amphora.  相似文献   

19.
Two experiments were conducted into the rearing of crucian carp larvae under controlled conditions in an experimental closed water system. In both cases, the rearing lasted 21 days. The first experiment concerned the initial stocking density (from 50 to 600 individuals per l), whilst the second one studied the first food offered (two types of Artemia nauplii, decapsulated Artemia cysts and three types of commercial feeds) which were applied at the moment of exogenous feeding commencement. The best results were obtained using 50 larvae per l, whilst there were no significant differences within the range 200–600 larvae per l. The application of dry feed had a negative influence on the survival and other parameters. The highest survival rate was found in the groups fed with freshly hatched Artemia naupli. The results obtained indicate that the rearing of crucian carp larvae may be successfully conducted in very high stocking densities. However, the very high sensitivity of crucian carp larvae to the type of food offered during the initial days of life should be taken into account. The data presented in this article could be very useful in crucian carp larviculture.  相似文献   

20.
This study proposed the use of the stable isotope technique to track the type of food utilized by pacu Piaractus mesopotamicus larvae during their development, and to identify the moment when the larvae start using nutrients from the dry diet by retaining its carbon and nitrogen atoms in their body tissues. Five‐day‐old pacu larvae at the onset of exogenous feeding were fed Artemia nauplii or formulated diet exclusively; nauplii+formulated diet during the entire period; or were weaned from nauplii to a dry diet after 3, 6 or 12 days after the first feeding. δ13C and δ15N values for Artemia nauplii were ?15.1‰ and 4.7‰, respectively, and ?25.0‰ and 7.4‰ for the dry diet. The initial isotopic composition of the larval tissue was ?20.2‰ and 9.5‰ for δ13C and δ15N respectively. Later, at the end of a 42‐day feeding period, larvae fed Artemia nauplii alone reached values of ?12.7‰ and 7.0‰ for δ13C and δ15N respectively. Larvae that received the formulated diet alone showed values of ?22.7‰ for δ13C and 9.6‰ for δ15N. The stable isotope technique was precise, and the time at which the larvae utilized Artemia nauplii, and later dry diet as a food source could be clearly defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号