首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After exposure of samples of three forest soils (pH 3.4 to 3.9) from the Adirondacks region of New York to 60, 230, or 400 cm of simulated rain of pH 3.5 or 5.6 in 4, 14, or 24 weeks, respectively, the soil samples were separated into the 0 to 2 and 2 to 5 cm organic layers and further incubated. The rates of N mineralization in Woods soil exposed to the simulated precipitation were less for rain at pH 3.5 than at pH 5.6, but the inhibition decreased with increasing exposure of the 0 to 2 cm layer. In Panther soil, the rates of mineralization were usually not affected by the acidity of the simulated rain. In the upper layer of Sagamore soil, mineralization was not influenced by pH of the simulated rain, but the transformation was faster in the bottom layer of soil after prolonged exposure to simulated rain at pH 3.5 than at pH 5.6. The rate of nitrate formation in Panther and Woods soil amended with ammonium was inhibited by the more acid rain. Studies with 15NH4 indicated that ammonium was oxidized to nitrate even though ammonium levels did not decline or declined only slightly after prolonged exposure of Panther or Woods soil to rain at pH 3.5. The growth of orchardgrass in Panther and Woods soil was inhibited by the more acid simulated rain.  相似文献   

2.
Mycorrhizal infection but not growth of white pine seedlings was reduced by application of simulated rain at pH 3.5 at 3 times ambient rates to plants grown in steamed Mardin soil inoculated with Pisolithus tinctorius. In unsteamed Mardin soil, the simulated acid rain at 3 times ambient rates had no effect on mycorrhizal infection or growth of pine seedlings if the rain was applied to the plants and soil or to only the soil before planting, except that nitrate-containing acid rain increased growth, infection and N content. In limed Mardin soil, the simulated acid rain reduced mycorrhizal infection if applied to the plants and soil as the seedlings were growing but not if applied to the soil before planting. Application of pH 3.5 rain at ambient rates had no detectable influence on mycorrhizal infection in 6 of 9 soils tested, but it stimulated infestion in 3 soils if the simulated rain contained only sulfate and in 1 soil if it had both sulfate and nitrate.  相似文献   

3.
During the latter decades extensive fish kills have been observed in the mountainous areas of southernmost Norway. These kills have been attributed to the increased acidity of the river-water. The increased acidity is generally assumed to be caused by acid precipitation. However, the relationship between precipitation and runoff quality is very complex. The present paper is concerned with the relationship between chemical composition of simulated rain and that of runoff from bare granitic rock, partly covered by lichens. When supplying simulated rain with a pH value of approximately 5 the very first runoff had pH values between 4.1 and 4.3. However, the pH in the runoff increased rapidly and leveled out at values between 4.6 and 4.7. When supplying simulated rain with pH approximately 3.5, the pH in the first runoff varied between 3.8 and 3.6. The pH then gradually decreased to the same values as those in the simulated rain. Runoff from ‘rain’ with pH 4.3, obtained the same pH value as that of the ‘rain’. The pH of the runoff was dependent not only on the rain acidity, but also on its content of neutral salts.  相似文献   

4.
Seeds of red pine (Pinus densiflora Sieb. and Zucc.) were sown in red-yellow soil artificially adjusted to pH (H2O) 4.10, 4.60 or 5.90 by adding H2SO4 solution to the soil (pH 5.90), and the three-month seedlings were exposed to simulated acid rain at pH 2.0, 3.0 or 5.6 for 10 minutes once, 3 times a week, for 12 months from 4 August 1994 to 3 August 1995 alone or in combination. Significant interactive effects between acid rain and soil acidification on growth and whole-plant net photosynthetic rate, and cold death ratio of new apical shoots following a cold snap were observed in a quadratic response pattern. The simulated acid rain increased budburst, new needle spread and elongation, and new apical shoot death percentage following a cold snap, but did not induce visible injury. In the highest soil acidity treatment at a soil pH 4.1, whole-plant net photosynthetic rate and seedling height exhibited a quadratic responses with increasing rain acidities. On the other hand, soil acidification caused leaf yellowing. The death percentage of new apical shoot of seedlings exposed to rain pH 2.0 following a cold snap was linearly enlarged with increasing soil acidities. With increasing soil acidity, height and whole-plant net photosynthesis of the seedlings exposed to rain pH 3.0 exhibited a linear increase response, while height of seedlings exposed to control rain exhibited a quadratic response. It is suggested that the results provide experimental evidency for phenological disturbances and an enhancement of frost risk by direct acid rain and indirect longterm soil acidification which may be significant in forest decline.  相似文献   

5.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

6.
Simulated H2SO4 rain (pH 3.0, 3.5, 4.0) or control rain (pH 5.6) was applied for 3.5 yr to large lysimeter boxes containing a sulfate-adsorbing forest soil and either red alder (Alnus rubra Bong) or sugar maple (Acer saccharum Marsh.) seedlings. After removal of the plants and the litter layer, soil samples were obtained at 15-cm intervals to a total depth of 90 cm. Elevated SO4 concentrations caused by the simulated H2SO4 rain were most pronounced for the top 15 cm, but extended down to 45 cm (maple) or 75 cm (alder). There were no effects on SO4 concentrations at a depth of 75 to 90 em. This confirmed the existence of a sulfate front between 20 cm and 100 cm, as postulated earlier on the basis of extracted soil solutions. Decreases in Mg and Ca concentrations, base saturation, and soil pH were limited to the uppermost 15 cm and, in most cases, to the pH 3.0 treatment. Concentrations of Mg and Ca for the pH 3.0 treatments were greater than control at a depth of 15 to 30 cm, indicating transport of these cations from the soil surface. Concentrations of Na and K, and cation exchange capacity, were not affected by simulated H2SO4 rain. Elevated concentrations of NO3 and extractable Zn throughout the alder systems indicated (1) either increased rates of symbiotic N-fixation or decreased rates of N immobilization; and (2) mobilization of Zn by all acid rain treatments.  相似文献   

7.
Effects of simulated acid rain, comprised of HNO3 and H2SO4 in the mole ratio of 3:1, at pH 5.6, 4.5, 4.0 and 3.0, were tested on the grass, soft chess (Bromus mollis L.) and on clover (Trifolium subterraneum L. var. Woogenellup) in a sandy soil of granodiorite parent material. Soft chess was grown in unfertilized soil, whereas clover was grown in both unfertilized soil and soil fertilized with NH4NO3 and CaSO4·2H2O at the rates of 224 kg ha?1 N and 78 kg ha?1 S. Two acid-spray irrigation periods of 31 and 26 weeks duration, each delivering 400 mm and separated by a dry period of 23 weeks, simulated typical rainfall of northern California rangeland. Plants were harvested after each of the two spray periods. There were very few deleterious effects of acid rain on plant growth or soil and microbial processes. No significant (p<0.05) effects were shown by soil microbial biomass, CO2 production, nodules per unit weight of clover root, acetylene reduction, denitrification and nitrification potentials, or for soft chess plant weights, and N and P uptake. Mineralizable-N was unaffected also, except in one case. However, pH of soil to 10 mm depths was significantly lower in the pH 3.0 treatment after the first spray period, with a corresponding decrease in exchangeable soil Ca; these effects became significant at greater soil depth only after the second spray period. There were significant effects of acid treatments shown by clover, some of which may be advantageous. Treatments of intermediate acidity generally provided added N and S, which acted as fertilizers, and compensated for possible decreases in plant productivity attributable to acidity per se. There was also evidence of decreased P uptake in unfertilized soil at pH 3. In conclusion, effects of simulated acid rain were minimal, and in some cases were advantageous because of the added N and S having a fertilizer effect on plant nutrition and growth.  相似文献   

8.
In many ecosystems, residues are added frequently to soil, in the form of root turnover and litter fall. However, in most studies on residue decomposition, residues are added once and there are few studies that have investigated the effect of frequent residue addition on C mineralization and N dynamics. To close this knowledge gap, we mixed mature wheat residue (C/N 122) into soil at a total rate of 2% w/w once at the start (R1×), every 16 days (R4×), every 8 days (R8×) or every 4 days (R16×). Un-amended soil served as control. All treatments were mixed every 4 days. Soil respiration was measured continuously over the 80-day incubation. Inorganic N, K2SO4-extractable C and N, chloroform-labile C and N (as an estimate of microbial biomass C and N), soil pH and microbial community composition were assessed every 16 days. Increasing frequency of residue addition increased C mineralization per g residue. Compared to R1×, cumulative respiration per g residue at the end of the incubation (day 80) was increased by 57, 82 and 92% in R4×, R8× and R16×, respectively. The largest differences in soil respiration per g residue occurred in the first 30 days. Despite large increases in cumulative respiration, frequent residue addition did not affect inorganic N or K2SO4-extractable N concentrations, chloroform-labile C and N or soil pH. Compared to the control, all residue treatments resulted in increases in chloroform-labile C and N and soil pH but decreased inorganic and K2SO4-extractable N. Microbial community composition was affected by residue addition, however there were no consistent differences among residue treatments. It is concluded that experiments with single residue additions may underestimate residue decomposition rates in the field. The increased C mineralization caused by frequent residue additions does not appear to be due to an increased microbial biomass or changes in microbial community composition, but rather to increased C mineralization per unit biomass.  相似文献   

9.
The nitrogen (N) requirement for paddy rice cultivated in Bangladesh amounts to approximately 80 kg N ha?1. Lack of knowledge on N mineralization from soil organic matter leads farmers to meet this N requirement exclusively by costly mineral fertilizers, which have typically an efficiency of less than 40%. We assessed to what extent routinely analysed soil properties (N and carbon (C), texture, pH, extractable iron (Fe), aluminium (Al) and manganese (Mn), soil mineralogy and length of the annual inundation period) are able to predict net aerobic and anaerobic N mineralization in paddy soils. Both soil N and C correlated positively with the aerobic but not with the anaerobic N mineralization rate. Instead, relative anaerobic N mineralization showed a significant negative correlation with soil N content. We observed no significant influence of clay mineralogy on soil N mineralization. Aerobic but not anaerobic N mineralization increased with length of the annual inundation period while the proportion of the soil N that was mineralized during 120 days decreased. The large clay content of fields that are inundated for 9–10 months annually explains the co‐occurrence of large soil N contents and relatively small N mineralization rates in these fields. However, variation in texture did not explain variation in N mineralization of soils with inundation periods of 3–8 months. Instead, the anaerobic N mineralization correlated positively with Na pyrophosphate‐extractable Fe and negatively with pH (both at P < 0.01). Thus, pH and Fe content, rather than soil N content, clay mineralogy or texture, explained the substantial variation in anaerobic N mineralization of paddy soils in Bangladesh inundated for 3–8 months. It is not known if these relationships between net evolution of ammonium in soil and pH and Fe content are causal or indirect. Elucidation of these mechanisms would greatly further our comprehension of the biochemistry of the young ‘floodplain soils' with relatively low content of pedogenic oxides throughout southeast Asia.  相似文献   

10.
This study focuses on fluxes of elements from, and changes in the soil properties of shallow organic material rich soil as a result of changes in precipitation acidity. Intact soil columns including natural vegetation from two areas (one exposed to acidic precipitation and one unpolluted) were used in a lysimeter experiment. The lysimeters were watered with simulated normal rain (pH 5.3) or simulated acidic rain (pH 4.3) for four years. Sulphuric acid and ammonium nitrate were used to regulate the quality of the simulated rain. Significantly more SO4 2? was leached from lysimeters receiving acid rain. Rain acidity had no significant effect on NO3 ? leaching. Significantly more Mg2+ was leached from lysimeters receiving acid rain, but this only applied for the soils from the unpolluted area. Four years of treatment did not cause any significant effect on the soil acidity and the amounts of base cations in the soil. The more acidic rain did, however, cause a significant lower cation exchange capacity. For the soils from the polluted area the acid precipitation did cause a lowering of the exchangeable K+ in the upper 5 cm of the soil. Different quality of the soil organic material indicated by different vegetation types appeared to cause significant differences in the amount of components leached from the soil, but did not cause any difference in response to the different rain qualities.  相似文献   

11.
Climate models often predict that more extreme precipitation events will occur in arid and semiarid regions, where C cycling is particularly sensitive to the amount and seasonal distribution of precipitation. Although the effects of precipitation change on soil carbon processes in desert have been studied intensively, how vegetation cover and rain timing co-regulate the responses of soil CO2 efflux to precipitation change is still not well understood. In this study, a field manipulative experiment was conducted with five simulated rain addition treatments (natural rains plus 0%, 25%, 50%, 75%, 100% of local annual mean precipitation) in a desert ecosystem in Northwest China. The rain addition treatments were applied with 16 field rain enrichment systems on the 10th day of each month from May to September, 2009. Soil water content, soil temperature and soil CO2 efflux rates were measured in both bare and vegetated soils before and after the rain addition during a 3-week period for each rain treatment. The response magnitude and duration of soil CO2 efflux to rain addition depended not only on the rain amount but also on the type of vegetation covers and the timing of rain addition treatments. Soil water content responded quickly to the rain addition regardless of rain amount and timing, but soil CO2 efflux increased to rain addition only in May–July but not in late growing season (September). In addition, soil CO2 efflux from the bare and vegetated soils showed similar increase to rain additions in May–July, but they demonstrated distinct responses to rain addition in September. The differences in the responses of soil CO2 efflux to rain addition between the bare and vegetated soils could be explained by the root activities stimulated by added rain water, while the difference in soil CO2 efflux response to rain addition among treatment times could be attributed to soil water condition prior to rain addition and/or soil temperature drop following rain addition. Thus, both vegetation cover and rain timing can co-regulate responses of soil CO2 efflux to future precipitation change in arid desert ecosystems, which should be considered when predicting future carbon balance of desert ecosystems in arid and semiarid regions.  相似文献   

12.
王小云  温腾 《土壤通报》2017,(3):604-610
以我国小兴安岭地区凉水国家级自然保护区30年林龄的人工红松林为研究对象,建立对照(0 kg hm~(-2)a~(-1))、低氮(20 kg hm~(-2)a~(-1))、中氮(40 kg hm~(-2)a~(-1))和高氮(80 kg hm~(-2)a~(-1))四种模拟氮沉降水平的样地;采用室内培养试验,研究了短期模拟氮沉降对人工红松林土壤氮净矿化、净硝化速率和氧化亚氮排放的影响。结果表明,与对照处理相比,经过2年的模拟氮沉降处理,土壤的净矿化、净硝化速率都有降低趋势。与对照相比,低氮、中氮、高氮土壤净矿化速率分别降低了16.9%、20.6%和25.2%,土壤净硝化速率分别降低了16.7%、20.9%和25.5%,但是处理间差异没有达到显著水平。净硝化速率与净矿化速率呈显著正相关关系(P0.05),表明净矿化速率降低减少铵态氮供应量可能是氮沉降处理降低净硝化速率重要原因。另外,模拟氮沉降处理导致土壤p H降低也不利于硝化作用。中氮和高氮处理土壤氧化亚氮累积排放量分别比对照高84%和40%,但是差异不显著。高的氮沉降量使硝化过程中氧化亚氮的排放比例增加,可能是中氮和高氮处理下净硝化速率下降而土壤氧化亚氮排放量却增加主要原因。研究结果表明,氮沉降会影响我国小兴安岭地区森林土壤氮矿化和硝化过程,但是由于实验开展观测时间较短,其影响规律还需长期实验验证。  相似文献   

13.
The aim was to determine if changes in C and N mineralization after acidification and liming could be explained by changes in the soil organism biomass. Intact soil cores from F/H layers in a Norway spruce (C:N=31) and a Scots pine (C:N=44) stand in central Sweden were treated in the laboratory for 55 days with deionized water (control), weak H2SO4 (successively applied as 72 mm of acid rain of pH 3.1), strong H2SO4 (applied as a single high dose of pH 1), and lime CaCO3. Strong acidification reduced C mineralization and increased net N mineralization in both soils. Weak acidification resulted in similar but less pronounced effects. Liming initially stimulated C mineralization rate, but the rates declined, indicating that an easily available C source was successively used up by the microorganisms. Liming also increased net N mineralization in the C:N=31 humus, but not significantly in the C:N--44 humus. Strong acidification generally affected the amounts of FDA-active fungal hyphae, nematodes and enchytraeids more than the other treatments did. The increases in net N mineralization after acidification and liming could only partly be explained by the decreases in biomass N in soil organisms. Mineralization of biomass N from killed soil organisms could at the most explain up to about 30% of the increase in net N mineralization after strong acidification. Most of the effects on N mineralization seemed to depend on the fact that acidification reduced and liming increased the availability of C and N to the microorganisms. Furthermore, acidification seemed to reduce the incorporation of N from dead organisms into the soil organic matter and, thereby, make the N compounds more readily available to microbial decomposition and mineralization.  相似文献   

14.
Ninety potted red spruce saplings have been enclosed in open-top fumigation chambers and exposed to simulated acid rain treatments of pH 3.1, 4.1, and 5.1 for two growing seasons as part of a 4 yr study. Original spodosol soil profiles were reconstructed in each 1 m diameter pot with tension lysimeters buried at two depths and drainage spouts installed on the bottom of each pot. All principal fluxes of the major elements are being measured in these ecosystems allowing calculation of precise input-output and internal nutrient budgets. During the first year of treatments, nutrient budgets were strongly affected by enhanced mineralization owing to transplant disturbances, and this masked any treatment effects. Second year budgets indicated the effects of strong acid loading on cation depletion and acidification of soils. For example, nitrate leaching from the subsoil was nearly five times higher in the pH 3.1 treatment than in others and correlated increases in base cation leaching were observed. Significant differences in soil pH among rainfall treatments were also observed. Budgetary calculations demonstrated that at present there are large exchangeable Ca pools available for tree growth, whereas for K, plant requirements were very high relative to K soil pools which may lead to growth deficiencies and/or nutrient imbalances. These results illustrate the potential for the combined effects of tree growth and strong acid loading to deplete the base status of acidic forest soils.  相似文献   

15.

Purpose

Initial soil pH determines the direction and magnitude of pH change after residue addition. This study aimed to evaluate the relative importance of initial soil pH and rate of residue application in determining subsequent pH change, nitrogen (N) mineralization, and soil-exchangeable aluminum (Al).

Materials and methods

An incubation experiment was conducted for 102 days on a Plinthudult soil and a Paleudalf soil, where pH gradients were produced after application of direct current (DC). Rates of vetch applications were 0, 5, 15, 30, and 50 g kg?1 soil.

Results and discussion

Increasing rates of vetch application caused greater increases in soil pH, but no consistent increase in soil pH at higher initial pH range (4.40~6.74), because of nitrification. There was a positive correlation between alkalinity production and the initial soil pH at day 14, while correlations became negative at days 56 and 102. Mineral N accumulated as NH4 +–N in low pH soils, due to limited nitrification, while NO3 ?–N dominated in higher pH soils. Application of vetch decreased KCl-extractable Al, probably because of complexation of Al by organic matter and precipitation of Al as a result of increased pH, reductions in Al concentration increased with increasing rates of vetch application. However, this amelioration effect on Al concentration weakened with time in higher pH soils.

Conclusions

Application of vetch residue can significantly increase soil pH and concentrations of mineral N and reduce exchangeable Al. These amelioration effects are enhanced with increased rate of vetch addition and vary with time depending on the initial pH of the soil.  相似文献   

16.
Projected changes in precipitation patterns in the northeastern U.S. may alter soil moisture dynamics and cause a shift in the structure and function of soil microbial communities. We studied the potential for such changes by manipulating annual precipitation amount in an oak-pine forest of the New Jersey Pinelands. During a two-year field study we tested the effects of a complete rain exclusion, as well as a doubling of rainfall, on soil microbial biomass, community composition (phospholipid fatty acid analysis) and the production of plant-available nitrogen (nitrogen mineralization + amino-acid production). We found that neither microbial biomass nor community composition was affected by the experimental manipulations. Despite having studied the organic horizon, the relatively high sand content appeared to influence this response by limiting the extent to which soil moisture increased in response to elevated rainfall. Furthermore, a strong correlation between soil moisture and the physiological status of Gram-negative bacteria suggested that soil microbes in the New Jersey Pinelands are well adapted to soil drying. We observed a sustained accumulation of ammonium in drought plots that was more than four times the value of all other treatments after one year. The relationship between soil moisture and nitrogen mineralization changed with season, suggesting that the effect of changing rainfall patterns on nitrogen cycling will depend upon microbial physiological demand and substrate diffusion. Based on available estimates of foliar N concentration in the New Jersey Pinelands, we conclude that neither the accumulation of ammonium in drought plots, nor the changes in nitrogen mineralization rates in response to high and low soil moisture will affect plant nitrogen demand. However, if the ammonium pool in dry soil had been mobilized by precipitation, a shift towards a higher bacteria:fungi ratio - and therefore higher nitrogen mineralization rates - may have occurred.  相似文献   

17.
Although the agents responsible for the decline of red spruce on high elevation sites in the northeast are not known, 03 and acidic rain are considered to be possible contributing stresses. The research presented in this paper constitutes the second year of a 3-yr study to evaluate and quantify the influences of 03 and acidic precipitation on seedling red spruce. Two-year old red spruce seedlings were exposed to 03 at four levels (approximately 0.5, 1.0, 1.5, and 2.0 times ambient 03 concentration) and simulated acidic precipitation at three levels (pH 3.1, 4.1, and 5.1) in open-top chambers. The exposures occurred during June through October, 1988 after the seedlings had been exposed to the pollutants the previous year. At three intervals during the exposure period, seedlings were harvested and effects of the pollutant treatments were assessed by measuring the length of the 1988 terminal shoot, the number and length of branches, the dry mass of stems, needles, and roots, and rate of photosynthesis. There were no significant effects of 03 on any of the growth variables or on photosynthesis. There was a significant effect of pH on photosynthesis; rates of photosynthesis increased as acidity of the treatment increased. However, the higher rates of photosynthesis were not reflected in increased biomass of the seedlings. Significant 03 by pH interactions occurred for several growth variables.  相似文献   

18.
Irrigation and rain-out shelters were used to simulate precipitation patterns of wet and dry years in the northern Chihuahuan Desert. Irrigation provided approximately double the long-term average monthly precipitation. Rain was excluded during the wet season, July-October, to simulate a dry year. N net mineralization in laboratory incubations was undectable at calculated water potentials less than -1 MPa. Witb increasing moisture, mineralization gradually rose to the highest observed rates near field capacity. There was no mineralization maximum at moisture contents below field capacity. Irrigation significantly increased the water potential and rainfall exclusion reduced water potentials to less than-8 MPa. The general absence of important irrigation effects may have resulted from the high natural precipitation during the experiment or because irrigation inputs were insufficient to increase microbial activity during very dry periods. Precipitation exclusion reduced ion capture during the warm-wet season. After allowing precipitation inputs to resume, NH 4 + -N capture was increased in the cool-dry seasons of both 1987–1988 and 1988–1989. NH 4 + -N capture more than doubled that predicted from the overall covariance of moisture input and ion capture, suggesting increased availability of N. An unusually hot, dry period in May and June 1989 was followed by a threeto fourfold increase in the warm-wet season NO 3 +NO2–N capture compared to 1988. These data suggest that short droughts of about 3 months in length (both simulated and natural) increased N availability relative to moisture availability.  相似文献   

19.
pH regulation of carbon and nitrogen dynamics in two agricultural soils   总被引:1,自引:0,他引:1  
Soil pH is often hypothesized to be a major factor regulating organic matter turnover and inorganic nitrogen production in agricultural soils. The aim of this study was to critically test the relationship between soil pH and rates of C and N cycling, and dissolved organic nitrogen (DON), in two long-term field experiments in which pH had been manipulated (Rothamsted silty clay loam, pH 3.5-6.8; Woburn sandy loam, pH 3.4-6.3). While alteration of pH for 37 years significantly affected crop production, it had no significant effect on total soil C and N or indigenous mineral N levels. This implies that at steady state, increased organic matter inputs to the soil are balanced by increased outputs of CO2. This is supported by the positive correlation between both plant productivity and intrinsic microbial respiration with soil pH. In addition, soil microbial biomass C and N, and nitrification were also significantly positively correlated with soil pH. Measurements of respiration following addition of urea and amino acids showed a significant decline in CO2 evolution with increasing soil acidity, whilst glucose mineralization showed no response to pH. In conclusion, it appears that changes in soil pH significantly affect soil microbial activity and the rate of soil C and N cycling. The evidence suggests that this response is partially indirect, being primarily linked to pH induced changes in net primary production and the availability of substrates. In addition, enhanced soil acidity may also act directly on the functioning of the microbial community itself.  相似文献   

20.
The effects of low densities of native browsing mammals on nutrient cycling are not fully understood. Weak browsing may improve nitrogen (N) mineralization in soil and positively affect plant regrowth at the forest floor. To investigate the effects of weak browsing by sika deer (Cervus nippon) on soil subsystems, we defoliated a dwarf bamboo (Sasa nipponica)-dominated understory layer in a natural forest at different intensities to realistically simulate deer browsing. Defoliation (0–18% leaf removal) was performed three times at approximately 1-week intervals in summer. We measured water-soluble carbon (C) concentration, phospholipid fatty acid (PLFA) profiles as indicators of microbial community structure, a PLFA of 20:4 as an indicator of protozoan abundance, nematode community structure at the family level, and the N mineralization rate in 28 days of incubation. The effects of defoliation on each soil parameter were determined by comparing before and after defoliation values. The N mineralization rate in the first 10 days of incubation showed a unimodal response to defoliation intensity, with a peak mineralization rate at a defoliation rate (number of removed leaves/total leaves) of 7.6%, correlating with protozoan PLFA and the abundance of Plectidae (the most dominant family of bacterivorous nematodes). In contrast, the N mineralization rate during the following 18 days of incubation decreased monotonically with increasing defoliation intensity, correlating with the water-soluble C concentration in the soil and the C content of new leaves. These results suggest that removing <15% of leaves may have induced a pulse-like release of labile organic matter from roots that lasted for less than 1 week and stimulated N mineralization through microbial loop in soil in the short term (in the first 1–2 weeks after defoliation). N mineralization, however, was reduced with increase of defoliation intensity in the longer term (3–5 weeks after defoliation), possibly because of the reduction in labile organic matter supply from roots 1 week after defoliation. As a result, N mineralization rates over the 28-day incubation period responded to defoliation intensity in a unimodal pattern with a small peak (at a defoliation rate of 4.9%) and were negatively affected by high defoliation rates (>10%). This study suggests that browsing on forest floor plants has positive or negative effects on soil N mineralization potential depending on browsing intensity level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号