首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
石丹丹  张帅  梁沛 《植物保护》2023,49(5):270-278
棉蚜Aphis gossypii Glover是农业生产上最重要的害虫之一。化学杀虫剂一直以来都是棉蚜综合防治体系中的重要组成部分, 但化学杀虫剂的不合理使用导致棉蚜对多种杀虫剂均产生了高水平抗性。现有研究表明, 靶标位点突变、解毒酶基因的过表达以及某些肠道共生菌丰度的变化是导致棉蚜对杀虫剂产生抗性的主要机制。针对棉蚜抗性发展现状及其抗药性机制, 制定科学合理的抗性治理策略, 是充分发挥化学防治的优势、实现棉蚜可持续治理的关键。本文主要从棉蚜的抗药性现状、抗性机制和抗性治理策略3个方面对近10多年的主要进展进行了综述, 旨在为棉蚜抗药性长效治理和科学施策提供理论依据。  相似文献   

2.
3.
4.
5.
6.
BACKGROUND: With the worldwide use of insecticides, an increasing number of pest insect species have evolved target-site or metabolism-based resistance towards some of these compounds. The resulting decreased efficacy of pesticides threatens human welfare by its impact on crop safety and further disease transmission. Environmental concentrations of some insecticides are so high that even natural populations of non-target, non-pest organisms such as the fruit fly Drosophila melanogaster Meig. have been selected for resistance. Cyp6g1-overexpressing strains of D. melanogaster are resistant to a wide range of chemically diverse insecticides, including DDT and imidacloprid. However, up to now there has been no evidence that the CYP6G1 enzyme metabolises any of these compounds. RESULTS: Here it is shown, by heterologous expression in cell suspension cultures of Nicotiana tabacum L. (tobacco), that CYP6G1 is capable of converting DDT (20 microg per cell culture assay) by dechlorination to DDD (18% of applied amount in 48 h), and imidacloprid (400 microg) mainly by hydroxylation to 4-hydroxyimidacloprid and 5-hydroxyimidacloprid (58 and 19% respectively in 48 h). CONCLUSION: Thus, the gap between the supposed resistance gene Cyp6g1 and the observed resistance phenomenon was closed by the evidence that CYP6G1 is capable of metabolising at least two insecticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号