首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
本文介绍了使用互联网对温室的环境参数进行实时监控和报警管理的系统。其包括移动检测装置,数据获取装置,数据接收器,射频识别接收设备和数据存储服务器。目的是为了监控和管理农作物在温室中的生长情况。该系统可以自动收集温室环境参数,如空气温度、空气湿度、光照强度、土壤温度和土壤湿度等,而且还会自动分析每个参数,并判断是否报警,使用Zig Bee芯片上的集成无线传感器和数据采集模块。采用这套系统提供的检测装置,可大大降低对温室的自动化管理的成本。  相似文献   

2.
温室环境信息采集控制系统的作用,是通过对温室内部环境参数的调控使作物处于适宜生长的环境中,同时尽可能节约能源,提高设备的使用效率,增加生产者收入。温室作物的生长环境调控具有地域和时间差异性、参数变化滞后性、环境因子耦合性等特点,所以对控制程序要考虑诸多因素。针对以上问题,本文介绍一种以温室内温度和湿度为主要调控目标的信息采集以及多条件逻辑控制系统的设计实现。  相似文献   

3.
基于STM32的智能温室远程控制系统的设计   总被引:1,自引:0,他引:1  
以STM32为主控制器,设计了集温室环境信息采集和自动控制于一体的基地、远程两级监控模式的温室智能控制系统。基地监控支持实时环境信息显示、历史环境信息查询和环境信息变化曲线显示功能,利用触摸屏设计的友好人机接口,可实现对作物理想生长环境参数的设定,系统依据设定的环境参数和实时采集的环境信息控制环境调节设备实现对温室环境的自动调节,以满足作物生长需要。远程监控采用RS232通信协议与基地控制系统连接,实现参数设定、实时数据显示及历史查询显示功能。系统还支持手动模式控制,以应对突发报警调节。试验分析表明该系统对温室环境监控具有良好的实用性和可靠性。  相似文献   

4.
为了提高设施作物生产管理的智能化水平,结合设施作物监管需求,基于物联网技术,研制了设施作物智能监测系统。在设施作物生长发育过程中,该系统可以全程对设施作物进行实时监控,实现了温室内光、温、气等环境参数和生产现场远程视频的实时监测,还可以远程自动控制湿帘风机、喷淋滴灌、内外遮阳、加温补光等设备,从而实现了温室环境的自动调控,提高了获取数据的效率和准确性。通过在实际生产中应用,该系统具有功耗低、成本低、扩展灵活、性能稳定等优点,说明了该系统设计的合理性、稳定性与实用性。该系统的构建和运行,为设施作物长势进行实时跟踪监测与综合分析以及管理提供决策支持。  相似文献   

5.
不同作物的生长发育对土壤湿度有不同的需求,为了给温室大棚农作物提供一个最适宜的生长环境,结合温室大棚现有滴灌系统的特点,设计了一套以ARM11为控制核心、土壤湿度传感器为采集模块、WIFI模块为通信模块的土壤湿度自动控制系统。此系统通过控制与滴灌系统连接的电磁阀保证土壤湿度在适宜的范围内,实现了温室大棚内土壤湿度的远程监测与自动控制;温室大棚管理人员不仅能使用HTTP协议随时、随地访问嵌入式Boa WEB Server来获取实时的土壤湿度数据,还可以通过SQLite嵌入式数据库查询存储的土壤湿度的历史数据。系统测试结果表明,该系统能实现农作物土壤湿度的远程监测与智能调控,运行可靠,测量的土壤湿度绝对误差为±3%,有一定的实用性。  相似文献   

6.
为了推动设施农业的数字精准作业,在大型连栋温室内,以现场总线、GSM、CDMA和互联网络通讯技术为载体,完成设施栽培环境参数和室外气象参数的采集与监测,并通过人为调控设施装置,改善作物生长环境。该系统为作物的正常生长提供保证,为适宜的作物种植模式提供决策的科学依据,同时也为设施硬件系统安全提供实时监测和越限预警保护。  相似文献   

7.
基于PLC和组态软件的温室控制系统设计   总被引:1,自引:0,他引:1  
陈广庆  孙爱芹  徐克宝 《安徽农业科学》2010,38(34):19827-19828
运用PLC和MCGS设计了一套温室监控系统,系统实行2级监控,底层系统采用PLC监控,实时采集温室环境数据,并根据上位机指令对执行机构进行操作,从而调节到作物生长的最佳工况。上位机监控软件实时显示温室的环境参数,并通过与PLC之间的通讯连接,实现执行机构的动作,实现了系统的实时动态监控。  相似文献   

8.
针对在传统日照温室大棚管理中存在收放保温卷帘和通风劳动强度大等问题,设计了自动卷帘与智能通风控制系统,系统主要由环境监测节点、执行节点和控制决策中心组成。节点在控制器C8051F020平台上开发而成,实现了对棚内温湿度、CO2浓度和光照度的监测,并通过无线模块n RF905上传到控制决策中心,根据作物生长专家知识库对风机和自动卷帘机进行控制,达到调节棚内环境参数的目的。结果表明,该系统能准确测量棚内的环境参数,并通过控制风机对温湿度进行自动调节,为作物的高产创造了条件,实现了温室大棚种植的精准化和智能化管理。  相似文献   

9.
为了进一步提高监测的自动化水平,使系统更加准确易用,提高系统的实时性和连续性检测水平,在无线传感网络中使用了一种新的簇状网络覆盖模型,并设计了系统整体架构、服务器、数据库以及Web服务系统,使其集成了Java技术和Android移动通信技术.测试发现,系统在PC端和手机端都可以正常使用,当环境参数超过设定阈值时,能成功发出警报,具有很好的拓扑性和普遍适用性.通过对农作物温度、湿度和光照情况的实时监测,得到了农作物温室环境的实时可视化监测曲线,为农作物自动化生产的研究提供了技术支持.  相似文献   

10.
杨静  张磊 《广东农业科学》2011,38(4):166-167
设计了一套能实时控制农业种植温室内温度、湿度、光照度及CO2浓度等参数的测控系统,该系统安装了农艺专家管理程序,能给出不同时期作物生长所需要的最佳环境参数,并自动生成合理的控制方案,实现了人造气候的智能化管理.阐述了一个温室大棚自动控制系统,该系统运行可靠、成本低.系统通过对温室内的温度与湿度参量的采集,并根据上述参数...  相似文献   

11.
基于小气候模型的温室能耗预测系统研究   总被引:6,自引:0,他引:6  
【目的】建立一个基于温室小气候模型的温室冬季加温所需基础能耗计算机预测系统,为进一步研究中国温室环境的优化调控提供依据。【方法】根据能量平衡原理,综合考虑作物蒸腾对温室运行能耗的影响,建立了温室加温所需基础能耗预测系统。利用温室作物蒸腾和小气候观测试验资料确定了温室小气候模型中的作物参数,并用上海两个Venlo型自控温室2001年~2003年3个冬季的实际耗煤量对系统预测结果进行了检验。【结果】对两个温室冬季加温能耗预测结果与实际耗煤量统计分析回归方程分别为(x和y分别为实际值和预测值)y=0.8526x和y=0.8321x;决定系数R2分别为0.85和0.90;相对误差分别为27%和29%。结果表明,系统对能耗预测结果与实际耗煤量趋势一致。【结论】本研究建立的温室加温能耗预测系统是建立在温室小气候模型的基础上,其原理具有普适性,因此具有通用性强的特点。  相似文献   

12.
GIS在温室大棚生产管理体系中的应用构想   总被引:2,自引:1,他引:2  
张峰  董琳瑛 《安徽农业科学》2009,37(4):1659-1660
日光温室大棚是充分利用太阳能在冬季种反季节蔬菜的高效农业设施。大棚要提高农作物的产量和质量,就需要及时了解农作物自身及其周围的各种环境参数(如外界温度、湿度等),利用外界传感器获取实时数据,综合运用计算机技术、网络和通讯技术、数据库技术、GIS技术、组件技术等先进的现代化信息技术手段,并与自动化的农业技术有机结合,共同构建集农业信息采集、传输、存储、管理以及分析应用于一体的准确、高效、快速、全面、规范的农业决策支持系统。在相关自动控制装置的控制下对大棚作物进行浇水灌溉、施肥、通风、卷放帘等操作。用户根据这些参数则可以对作物成长的近况有所了解,从而及时应对所出现的紧急状况;另一方面,可通过对实时数据进行专家系统分析,对农作物的生产产量做出预测及评估,对农作物的病虫害情况等做出实时监测,并通过专家系统的分析做出处理方案,以供管理人员决策参考。  相似文献   

13.
基于虚拟仪器的温室环境监控系统的总体架构方案   总被引:1,自引:0,他引:1  
随着计算机的发展与普及,温室环境控制自动化程度也有了较大的提高。运用一定的工程措施,来改善作物生长的环境条件,创造出适合作物生长的微气候条件,并将现代计算机技术引入农业温室,实现农业温室的自动控制。结合我国现阶段温室发展的主要特点及温室内环境因子对作物产量和品质的重要性,以计算机、数据采集卡、传感器等作为硬件基础,LabWindows/CVI为软件基础,研究设计了"基于虚拟仪器的温室环境因子监控系统"的总体架构。该方案将虚拟仪器应用到温室环境因子的检测,以软件为核心,具有强大的数据存储和分析处理能力,并可提高分析精度;良好的虚拟仪器软面板增强了与外界的交互性;系统易于扩展,可灵活满足用户的测试要求。  相似文献   

14.
 随着计算机的发展与普及,温室环境控制自动化程度也有了较大的提高。运用一定的工程措施,来改善作物生长的环境条件,创造出适合作物生长的微气候条件,并将现代计算机技术引入农业温室,实现农业温室的自动控制。结合我国现阶段温室发展的主要特点及温室内环境因子对作物产量和品质的重要性,以计算机、数据采集卡、传感器等作为硬件基础,LabWindows/CVI为软件基础,研究设计了“基于虚拟仪器的温室环境因子监控系统”的总体架构。该方案将虚拟仪器应用到温室环境因子的检测, 以软件为核心,具有强大的数据存储和分析处理能力,并可提高分析精度;良好的虚拟仪器软面板增强了与外界的交互性;系统易于扩展,可灵活满足用户的测试要求。  相似文献   

15.
设计了一个智能农业环境监测系统,系统通过Internet和GPRS网络,远程实时监测农作物种植地传感器采集的数据,嵌入式Linux终端接收Zigbee网络各节点的环境数据,将数据存入到数据库中,同时可以发送给远程监控中心。远程监控中心将接收到的数据存入数据库,并且进行数据分析,实现远程调控,优化作物生长环境。  相似文献   

16.
低能耗日光温室建筑空间形态特征参数的取值原则   总被引:1,自引:0,他引:1  
【目的】建造低能耗日光温室,提高日光温室冬季反季节蔬菜作物生产太阳能被动利用率、降低温室供热需求。【方法】基于建筑热工设计理论和建筑能耗模拟,研究日光温室建筑空间形态特征参数对温室光热环境营造的影响规律,并结合日光温室建筑构造特点,以及反季节蔬菜作物生产过程的光热环境需求特点,给出低能耗日光温室建筑空间形态特征参数的设计条件。【结果】同一地区日光温室高跨比不受跨度变化的影响,只与当地室外空气温度以及太阳辐射强度的变化相关;大暑日至翌年小满日期间,后屋面水平投影长度不应影响日光温室后排蔬菜作物接收太阳光照;确保冬至日至大寒日期间北墙可接收太阳光照射,对冬季反季节蔬菜作物生产期及日光温室高效利用太阳能具有重要的影响。【结论】基于该取值原则优化设计的温室,较北京地区现行常见温室需要提供的累积补充供热量减少15.7%,节能效果明显,为低能耗日光温室优化设计提供重要设计依据和方法参考。  相似文献   

17.
提出了一个基于太阳能供电,利用Zigbee和Labview技术的温室无线传感器网络精量监测系统,在充分利用自然资源的基础上,通过改变温度、湿度、光照度、CO2浓度等温室环境因素参数来获得农作物生长的最佳条件,从而克服传统温室监测系统的不足,达到增加农作物的产量、改善其品质和提高其经济效益的目的.  相似文献   

18.
智能温室信息管理系统中需要采集和处理环境信息、作物信息、控制信息等大量、多类型的数据信息,针对上述问题提出了一种Zigbee无线传感、WIFI无线通讯及工业以太网相混合的物联网温室信息管理系统方案。重点讨论了以SQL SERVER 2008数据库为核心、以MCGS为采集及显示平台、以S7-300为控制信息终端的信息管理方法。该方案经过实际验证能很好的满足智能温室信息管理要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号