首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of maize residue application on some life-cycle parameters of the earthworm Aporrectodea trapezoides in saline agricultural soils with electrical conductivity (EC) ranging from 1.58 to 7.35 dS m−1. This experiment was carried out under controlled laboratory conditions for 150 days. Results showed that soil salinity significantly affected the growth and reproduction of earthworms, decreasing survival, numbers and mean fresh weights of adults, juveniles and cocoons. Maize residue application gave a greater survival of earthworms at all salinity levels, but the differences were only significant at an EC of 7.35 dS m−1, although the mean weight of adult earthworms was significantly increased by maize residue application at all salinity levels. At an EC of 1.58 dS m−1 and 3.35 dS m−1, the application of maize residues gave significantly higher numbers of cocoons and juveniles, but in soils with 5.26 dS m−1 and 7.35 dS m−1 earthworms did not produce any cocoons over the experimental period, irrespective of maize residue application. These results indicated that maize residue application alleviated the negative effects of soil salinity on the growth and reproduction of A. trapezoides up to 3.35 dS m−1, above which maize residues only increased the growth but not on the reproduction of earthworms.  相似文献   

2.
A soil microcosm experiment was performed to assess (1) the C- and N- turnover of residues from biogas plants in soils in the presence of three earthworm species (Lumbricus terrestris, Aporrectodea longa and Aporrectodea caliginosa) and (2) the resulting changes in soil chemical and microbiological properties when using these residues as fertilizer in comparison to conventional slurry. Earthworms were exposed in soils, fertilized with an equivalent amount of 120 kg of NH4-N ha?1 from: (1) conventional cattle slurry and (2) a fermented residue derived from cattle slurry, grass (silage) and maize. Additional treatments without slurry and earthworms were used as controls.There was considerable evidence that soils fertilized by fermented slurry comprised fewer amounts of readily available nutrients for microbial C and N turnover. We observed significant stimulation of microbial biomass, basal respiration and nitrification in treatments with conventional slurry, especially in the presence of earthworms. However, the stimulation of microbial activity by manure and earthworms were significantly lower in treatments with fermented slurry. Moreover, the results showed clear interactions between different earthworm species and manures. While the biomass of the anecic species (L. terrestris and A. longa) increased in both slurry treatments, the biomass of A. caliginosa (endogeic) decreased, with a significantly stronger biomass decline in treatments with fermented slurry. The metabolic quotients revealed microbial stress metabolism in fermented slurry treatments, predominantly in treatments with A. caliginosa. We conclude that particularly A. caliginosa and soil microorganisms competed for labile C sources in treatments with fermented slurry. An application of these residues as fertilizer might result in a reduction of microbial activity in agricultural soils and in a decline of endogeic earthworms.  相似文献   

3.
A microcosm experiment was carried out for 56 days at 12 °C to evaluate the feeding effects of the endogeic geophagous earthworm species Aporrectodea caliginosa on the microbial use of 15N-labelled maize leaves (Zea mays) added as 5 mm particles equivalent to 1 mg C and 57 μg N g−1 soil. The dry weight of A. caliginosa biomass decreased in the no-maize treatment by 10% during the incubation and increased in the maize leaf treatments by 18%. Roughly 5% and 10% of the added maize leaf-C and leaf-N, respectively, were incorporated into the biomass of A. caliginosa. About 29% and 33% of the added maize leaf-C were mineralised to CO2 in the no-earthworm and earthworm treatments, respectively. The presence of A. caliginosa significantly increased soil-derived CO2 production by 90 μg g−1 soil in the no-maize and maize leaf treatments, but increased the maize-derived CO2 production only by 40 μg g−1 soil. About 10.5% of maize leaf-C and leaf-N was incorporated into the soil microbial biomass in the absence of earthworms, but only 6% of the maize leaf-C and 3% of the maize leaf-N in the presence of earthworms. A. caliginosa preferentially fed on N rich, maize leaf-colonizing microorganisms to meet its N demand. This led to a significantly increased C/N ratio of the unconsumed microbial biomass in soil. The ergosterol-to-microbial biomass C ratio was not significantly decreased by the presence of earthworms. A. caliginosa did not directly contribute to comminution of plant residues, as indicated by the absence of any effects on the contents of the different particulate organic matter fractions, but mainly to grazing of residue-colonizing microorganisms, increasing their turnover considerably.  相似文献   

4.
To study the feasibility of earthworm introduction for increasing the macroporosity and permeability of arable heavy clay, deep-burrowing earthworms (Lumbricus terrestris L.) were inoculated into a tile drained experimental field in Jokioinen, S-W Finland in autumn 1996. Inoculation with the Earthworm Inoculation Unit technique was at the up-slope end of the field, in the field margins under permanent grass, and inside the four 0.46 ha plots of the field. The experiment was monitored on three occasions. In 1998 the L. terrestris population had persisted in low numbers only in field and plot margins. By 2003, when the field had been under set-aside grass for three years, density had grown in the margins and L. terrestris were also found inside the field at a very low density. The third monitoring was in autumn 2009, after a further four years as set-aside and a subsequent division of the field into no-till and ploughing management, and looked at the effects of management (margins, no-till, ploughing), distance from the inoculation and sub-drainage on L. terrestris abundance. The abundance displayed a clear gradient over the field, declining from 14 ind. and 18 g m?2 at 5–9 m from inoculation, to 1 ind. and 2 g m?2 at 56–60 m distance. Margins had the highest abundances (16 ind. and 32 g m?2), followed by no-till (4 ind. and 4 g m?2) and ploughing (1 ind. and 1 g m?2). Abundances were significantly higher above the tiles than between them (P < 0.05). The results demonstrate the importance of no-till and sub-drain line habitats as settlement supports for the inoculated population. Field margins proved to be decisive for inoculation success, by providing bridgeheads for population establishment and later by acting as source areas for the colonisation of the field. This finding highlights the general importance of field margins in the dispersal ecology of earthworms in arable landscapes.  相似文献   

5.
A field experiment was conducted to study the effects of tillage and mulch on weed growth, soil moisture storage, productivity and profitability of upland rice during 2012–2013 at Lembucherra, India. Tillage treatments included CT-RI: conventional tillage with 100% residue incorporation and NT-RR: no-till with 100% residue retention. Mulches included rice straw (SM), Gliricidia (GM), brown manuring (BM) and none (NM). CT-RI registered the highest total weed density (89–168 weeds m?2) and biomass (9.6–183 g dry weight m?2) than those for the NT-RR (75–161 weed m?2 and 8–155 g dry weight m?2). In addition, NT-RR stored (122–172 mm) more soil moisture (0–40 cm soil depth) in comparison with that for the CT-RI treatment (110–161 mm) during crop growing season. Tillage treatments did not have the significant effect on yields. NT-RR reduced the cost of cultivation by 31.5% compared with that for the CT-RI. Thus, the net returns under NT-RR were more than those for the CT-RI. The BM recorded the lowest weed biomass and density as compared to that under other mulches. Therefore, cultivation of upland rice using NT along with BM mulching enhanced productivity and profitability of rice cultivation in India.  相似文献   

6.
Summary The soil microbial biomass contains important labile pools of C, N, P, and S, and fluctuations in its size and activity can significantly influence crop productivity. In cropping systems where fertilizer use is reduced or eliminated and green-manure legumes are used, nutrient availability is more directly linked to C-cycle dynamics. We observed the fluctuations in microbial biomass C and P, and in microbial biomass activity over three cropping seasons in continuous maize and 2-year maize-wheat-soybean rotation agroecosystems under no-till and reduced-chemical-input management. We estimated the concentrations of microbial C and P using fumigation-incubation and fumigation-extraction techniques for the surface 20 cm of Cecil and Appling series soils (clayey, kaolinitic, thermic, Typic Kanhapludults). There were significant seasonal fluctuations in microbial C and P under all cropping systems. Generally, the magnitude of fluxes and the quantity of microbial C and P tended to be higher in reduced-chemical-input systems due to tillage and incorporation of crop, weed, and legume residues. Over 3 years, the means for microbial C were 435 under reduced-input maize; 289 under no-till maize; 374 und the reduced-input crop rotation; and 288 mg kg-1 soil under the no-till rotation. The means for microbial P were 5.2 under reduced-input maize; 3.5 under no-till maize; 5.0 under the reduced-input rotation; and 3.5 mg kg-1 soil under the no-till rotation. Estimates of microbial activity, derived from CO2–C evolution and specific respiratory activity (mg CO2–C per mg biomass C), suggest that reduced-chemical-input management may cause a larger fraction of the biomass to be relatively inactive but may also increase the activity of the remaining fraction over that in no-till. Thus in these specific systems, the turnover of C and P through the microbial biomass with a reduced chemical input to the soil may be higher than under a no-till system.  相似文献   

7.
A pot experiment was conducted to investigate the effect of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal (AM) fungi (Glomus intraradices) on soil enzyme activities and nutrient uptake by maize, which was grown on a mixture of sterilized soil and sand. Maize plants were grown in pots inoculated or not inoculated with AMF, treated or not treated with earthworms. Wheat straw was added as a feed source for earthworms. Mycorrhizal colonization of maize was markedly increased in AM fungi inoculated pots and further increased by addition of epigeic earthworms. AM fungi and epigeic earthworms increased maize shoot and root biomass, respectively. Soil acid phosphatase activity was increased by both earthworms and mycorrhiza, while urease and cellulase activities were only affected by earthworms. Inoculation with AM fungi significantly (p?<?0.001) increased the activity of soil acid phosphatase but decreased soil available phosphorus (P) and potassium (K) concentrations at harvest. Addition of earthworms alone significantly (p?<?0.05) increased soil ammonium-N content, but decreased soil available P and K contents. AM fungi increased maize shoot weight and root P content, while earthworms improved N, P, and K contents in shoots. AM fungi and earthworm interactively increased maize shoot and root biomass through their regulation of soil enzyme activities and on the content of available soil N, P, and K.  相似文献   

8.
A pot experiment was carried out (1) to compare C and N yield of different plant parts, nutrient concentrations, and root colonization between the non-mycorrhizal mutant P2 (myc ?) and the symbiotic isoline Frisson (myc +), (2) to investigate the effects of arbuscular mycorrhizal fungi and growing pea plants on microbial decomposition of 15N-labeled maize residues, and (3) to follow the distribution of the added substrate over different soil fractions, such as particulate organic matter, soil microbial biomass, and microbial residues. Yields of C in straw, grain, and roots of myc + peas were significantly higher by 27%, 11%, and 92%, respectively, compared with those of myc ? peas. The δ13 C values in the different plant parts were significantly higher in myc + than in myc ? tissue with and without maize. Application of labeled maize residues generally resulted in 15N enrichment of pea plants. At the end of the experiment, the ergosterol concentration in roots of mature peas did not differ between the two isolines, indicating similar colonization by saprotrophic fungi. The decomposition of added maize residues was significantly reduced by the myc ? peas, but especially by myc + peas. The formation of microbial residue C was increased and that of microbial residue N was reduced in the presence of plants. The insufficient N supply to soil microorganisms reduced decomposition of maize residues in the presence of peas, especially myc + peas.  相似文献   

9.
Cadmium-contaminated soils can be re-used and also produce biomass energy if we plant soybeans or other biomass crops in the contaminated sites. In this study, two soils with pH values of 5.9 and 6.7 were artificially spiked to make their final total concentration as CK (about 1.0), 3.0, and 5.0 mg Cd kg?1. Different amendments were mixed with these artificially Cd-contaminated soils to study the effect on the growth and Cd uptake of soybean, which include control (without amendment addition), powder-activated carbon (1%), and biosolids (sludge, 5%), respectively. Three kilograms of the treated soils was added into each pot and sowed 10 seeds of soybean (Leichardt species). The experiment was conducted in a 25°C greenhouse and controlled the soil water contents in the levels of 50–70% water holding capacity during the experimental period. Plants were harvested after growing for 90 days, and their fresh weights, dry weights, and plant heights were determined and recorded. Compared with the lower pH soil (5.9), soybeans were higher and have higher fresh weights and dry weights when growing in the higher pH soil (6.7). For most of the treatments, the two amendments had no significant effects on the plant heights of soybeans. For 3.0 or 5.0 mg Cd kg?1 soil, the application of biosolids has significant effect on increasing the fresh weights and dry weights of soybeans (p?<?0.05). However, there were no specific effects of applying activated carbons on the fresh weights and dry weights of soybeans.  相似文献   

10.
The magnitude of crop growth and yield depends on the salinity level, the toxic ions present, and the irrigation system used. In order to study the effect of saline sprinkler irrigation on soybean growth and ionic accumulation in plant tissues a pot experiment was set up. There were three irrigation water quality treatments [electrical conductivity (EC) 0, 2, and 4 dS m?1]. Soybean aerial biomass was 25% lower than the Control when irrigation salinity was 4 dS m?1. Clearly salinity entering via leaves affected the grain filling stage and severely reduced soybean grain production (80% reduction) when salinity in irrigation water surpassed 2 dS m?1. Sprinkler irrigation aggravates soybean's low salinity tolerance and restricts its cropping in such conditions. For early stages two linear relationships between leaf chloride (Cl?) concentration (Y = 14.2–2x) or potassium (K+)/ sodium (Na+) ratio (Y = 5.3x?3.4) and soybean grain yield were found. Both relationships may be used as diagnostic tools for soybean growing under saline sprinkler irrigation.  相似文献   

11.
Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p?<?0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.  相似文献   

12.
Understanding how communities of important soil invertebrates vary with land use may lead to the development of more sustainable land-use strategies. We assessed the abundance and species composition of earthworm communities across six replicated long-term experimental ecosystems that span a gradient in agricultural land-use intensity. The experimental systems include a conventional row-crop agricultural system, two lower-intensity row-crop systems (no-till and tilled organic input), an early successional old-field system, a 40–60 years old coniferous forest plantation, and an old-growth deciduous forest system. Earthworm populations varied among systems; they were lowest in the most intensively managed row-crop system (107 m−2) and coniferous forest (160 m−2); intermediate in the old-field (273 m−2), no-till (328 m−2) and tilled organic (344 m−2) cropping systems; and highest in the old-growth deciduous forest system (701 m−2). Juvenile Aporrectodea species were the most common earthworms encountered in intensively managed systems; other species made up a larger proportion of the community in less intensively managed systems. Earthworm community biomass and species richness also varied and were lowest in the conventional row-crop system and greatest in the old-growth forest system. These results suggest that both land-use intensity and land-use type are strong drivers of the abundance and composition of earthworm communities in agricultural ecosystems.  相似文献   

13.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

14.
The effect of different earthworm functional groups on the incorporation of maize (C4 plant) dung into a soil (C3 organic matter background) sown with ryegrass (C3 plant) was explored by using differences in the carbon (C) isotope ratios (12C and 13C) between plant and soil samples in a field mesocosm study. The abundance of earthworms increased with dung inputs, reaching over 4000 earthworms per m2, presumably because of the increased food resources used. The amount of dung C incorporated into the soil profile in the presence of earthworms was dependent on the amount of organic matter deposited on the soil surface (925–4620 g C m?2) and reached rates of 1200 g C m?2 annually in the treatment receiving repeat dung applications. Dung incorporation was largely concentrated in the surface 0–75 mm, although small amounts of dung‐derived C were observed to a depth of 300 mm. This was especially so in the presence of anecic earthworms, equating to an extra 70 g C m?2 annually for the 150–300 mm depth increment. It is important to note, in calculating C incorporation rates from earthworms, that only 10–20% of the soil surface in grazed pastures is covered by dung. After 444 days, less than 32% of the applied dung was detected within the upper 300 mm of the soil profile. This study emphasized the need for all three earthworm functional groups to be present within the soil in order to maximize the amount of surface dung that could be incorporated into soil organic matter.  相似文献   

15.
Accurately quantifying the soil nitrogen(N) supply in crop fields is essential for enabling environmentally sustainable and economically profitable crop production. It requires using field-based methods to account for the contribution of soil biota, including earthworms, to N mineralization in temperate agroecosystems. The direct contribution of earthworms to the soil N cycle is the N they release throughout their life and after death, and it can be estimated using the secondary production method. This study was conducted in 2014 and 2015 in two adjacent fields with annual corn-soybean rotation in Ste-Anne-de-Bellevue, Quebec, Canada. The cumulative biomass of Aporrectodea spp. in two no-till corn-soybean agroecosystems was determined, and the direct N flux from these earthworms was estimated during the corn and soybean phases of the rotation. Secondary production was estimated by sampling earthworms biweekly during April–June and September–November and inferring the change in earthworm biomass between sampling dates using a size frequency calculation. The N flux was calculated as the sum of the N released through excretion, during periods when earthworms were active, and from mortality. The secondary production of the Aporrectodea population was estimated to be 8–43 g ash-free dry weight m~(-2) year~(-1), and the N flux was 22–105 kg N ha~(-1) year~(-1). The N flux was higher at the early vegetative growth stage, which is a period of high N demand for corn. These findings suggest that refining the N fertilization recommendation by accounting for soil N supplied by earthworms could potentially reduce fertilizer costs and environmental N losses.  相似文献   

16.
The aim of this study was to investigate the potential of silicon (Si) for alleviating Ultraviolet-B (UV-B) radiation stress based on changes in biomass, physiological attributes and photosynthetic characteristics of two soybean (Glycine max L.) cultivars, Kenjiandou 43 (‘K 43’) and Zhonghuang 35 (‘ZH 35’). The cultivars were raised with and without Si in the greenhouse, and then subjected to ambient, ambient + 2.7 kJ m?2d?1and ambient + 5.4 kJ m?2d?1of UV-B radiation. Depending on cultivar, plants suffered severe growth limitations under UV-B radiation, but the application of Si alleviated the adverse effects on growth and development by increasing the stem length, net photosynthetic rate (PN) and leaf chlorophyll content. Concurrently, it decreased the stomatal conductance (Sc) and intercellular carbon dioxide (CO2) concentration (Ci). In response to the UV-B radiation stress, the antioxidant enzyme activities of superoxide dismutase (SOD) increased by 41.2–72.7%, peroxidases (POD) by 49.5–85.7%, malodialdehyde (MDA) by 6.7–20.4% and soluble protein by 4.2–7.6%. The overall results indicated that media treatment with Si might improve soybean growth under elevated UV-B radiation through positive changes in biomass and some physiological attributes that were dependent on cultivar.  相似文献   

17.
The effect of elevated carbon dioxide (CO2) concentration on symbiotic nitrogen fixation in soybean under open-air conditions has not been reported. Two soybean cultivars (Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35) were grown to maturity under ambient (415?±?16?μmol?mol?1) and elevated (550?±?17?μmol?mol?1) [CO2] at the free-air carbon dioxide enrichment experimental facility in northern China. Elevated [CO2] increased above- and below-ground biomass by 16–18% and 11–20%, respectively, but had no significant effect on the tissue C/N ratio at maturity. Elevated [CO2] increased the percentage of N derived from the atmosphere (%Ndfa, estimated by natural abundance) from 59% to 79% for Zhonghuang 13, and the amount of N fixed from 166 to 275?kg N ha?1, but had no significant effect on either parameter for Zhonghuang 35. These results suggest that variation in N2 fixation ability in response to elevated [CO2] should be used as key trait for selecting cultivars for future climate with respect to meeting the higher N demand driven by a carbon-rich atmosphere.  相似文献   

18.
Active fractions of soil carbon (C) and nitrogen (N) can undergo seasonal changes due to environmental and cultural factors, thereby influencing plant N availability and soil organic matter (SOM) conservation. Our objective was to determine the effect of tillage (conventional and none) on the seasonal dynamics of potential C and N mineralization, soil microbial biomass C (SMBC), specific respiratory activity of SMBC(SRAC), and inorganic soil N in a sorghum [Sorghum bicolor (L.) Moench]-wheat (Triticum aestivum L.)/soybean [Glycine max (L.) Merr.] rotation and in a wheat/soybean double crop. A Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas was sampled to 200 mm depth 57 times during a 2-yr period. Potential C mineralization was lowest (≈?2 to 3 g · m?2 · d?1) midway during the sorghum and soybean growing seasons and highest (≈?3 to 4 g · m?2 · d?1) at the end of the wheat growing season and following harvest of all crops. Addition of crop residues increased SMBC for one to three months. Potential N mineralization was coupled with potential C mineralization, SRAC, and changes in SMBC at most times, except during the wheat growing season and shortly after sorghum and soybean residue addition when increased N immobilization was probably caused by rhizodeposition and residues with low N concentration. Seasonal variation of inorganic soil N was 19 to 27%, of potential C and N mineralization and SRAC was 8 to 23%, and of SMBC was 7 to 10%. Soil under conventional tillage experienced greater seasonal variation in potential C and N mineralization, SRAC, bulk density, and water-filled pore space than under no tillage. High residue input with intensive cropping and surface placement of residues were necessary to increase the long-term level of active C and N properties of this thermic-region soil due to rapid turnover of C input.  相似文献   

19.
Maize (Zea mays L.) intercropped with soybean (Glycine max L.) may be a viable option to improve the quality of the silage. In this study, maize and soybean intercropped in different numbers of rows and their monocropping equivalents were tested to determine the best intercropping system in a crop rotation following winter wheat. The treatments were monoculture maize (M), monoculture soybean (S), 75% maize + 25% soybean (3M:1S), 50% maize + 50% soybean (2M:2S) and 25% maize + 75% soybean (1M:3S). The experiment was laid out in a randomized complete block design with three replications in 2011 and 2012 in Antalya, Turkey. Highest fresh forage yields were obtained from maize (53.3 t ha?1) and 3M:1S (62.8 t ha?1) treatments in 2011 and 2012, respectively. Maize treatment had highest dry matter yield (21.1 and 22.0 t ha?1) in both years. Quality analysis of silage revealed that 3M:1S was superior to maize treatment in terms of dry matter (25.23%), crude protein (7.31%), crude fiber (18.27%), neutral detergent fiber (42.56%), acid detergent fiber (25.81%), lactic acid (4.71%) and acetic acid (4.05%). In conclusion, 3M:1S row intercropped production system was a better alternative for silage to monoculture maize in a crop rotation following winter wheat.  相似文献   

20.
Abstract

Northeast China is the main production area of maize and soybean in China. In the present study, the rates of decomposition and replacement of soil organic carbon (SOC) were estimated using the soil inventory collected since 1991 from long-term maize and soybean cultivation plots in Heilongjiang Province, Northeast China, to evaluate the sustainability of the present cultivation system. The total carbon (C) content in soil was stable without any significant changes in the plots (approximately 28.5 g C kg?1). The δ13C value of soil organic matter under continuous maize cultivation increased linearly with an annual increment of 0.07 from ?23.9 in 1991, which indicated that approximately 13% of the initial SOC was decomposed during the 13-year period of maize cultivation, with a half-life of 65 years. Slow decomposition of SOC was considered to result from the low annual mean temperature (1.5°C) and long freezing period (170–180 days year?1) in the study area. In contrast, the amount of organic C derived from maize increased in the soil with a very slow annual increment of 0.17 g C kg?1, probably because of the removal of all the plant residues from the plots. Based on the soil organic matter dynamics observed in the study plots, intentional recycling/maintenance of plant residues was proposed as a way of increasing soil fertility in maize or soybean cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号