首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus in the soil microbial biomass (biomass P) and soil biomass carbon (biomass C) were linearly related in 15 soils (8 grassland, 6 arable, 1 deciduous woodland), with a mean P concentration of 3.3% in the soil biomass. The regression accounted for 82% of the variance in the data. The relationship was less close than that previously measured between soil biomass C and soil ATP content and indicates that biomass P measurements can only provide a rough estimate of biomass C content. Neither P concentration in the soil biomass, nor the amount of biomass P in soil, were correlated with soil NaHCO3-extractable inorganic, organic or total P.The calculated mean annual flux of P through the biomass (in a soil depth of 10 cm) in 8 grassland soils was large, 23 kg P ha?1 yr?1, and more than three times the mean annual P flux through 6 arable soils (7 kg P ha?1 yr?1), suggesting that biomass P could make a significant contribution to plant P nutrition in grassland.About 3% of the total soil organic P in the arable soils was in microbial biomass and from 5 to 24% in the grassland soils. The decline in biomass P when an old grassland soil was put into an arable rotation for about 20 yr was sufficient to account for about 50% of the decline in total soil organic P during this period. When an old arable soil reverted to woodland, soil organic P doubled in 100 yr; biomass P increased 11-fold during the same period.  相似文献   

2.
The rapid transition from miombo woodland and savanna to maize-based agriculture in Southern Africa results in a near universal loss of total system and biomass carbon. Forests and savannas occupy approximately 3.1 million km2 in southern Africa. Two natural ecosystems, a miombo woodland (Zimbabwe) and a broadleafed dry savanna (South Africa), contained 48 and 94 Mg C ha?1, respectively. Clearing of the miombo and establishment of maize-based agriculture on a sandy Alfisol resulted in a decline in total soil organic carbon from 28 to as little as 9 Mg ha?1. This decline is not related to the annual aboveground productivities which, in many cases is greater in the cropping system than in the savanna or forest. Severe declines in total soil organic matter resulting from shifting cultivation were also observed in coastal Mozambique. The CENTURY plant/soil simulation model was used to simulate long-term carbon dynamics a miombo woodland and maize-based cropping system in Marondera, Zimbabwe. The miombo woodland continues to accumulate total system C but shifting cultivation and commercial cultivation of maize result in annual carbon losses of 0.15 and 0.14 Mg ha?1 yr?1. Increases in temperature (2° C) accompanied by 25% increases in photosynthetic efficiency did not effect the decline in total system carbon, however, improved organic matter management within the agroecosystem reduced the losses in total system carbon within the agroecosystem by 57% under the climate change scenario.  相似文献   

3.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

4.
Disposal of ashes from agro-industrial waste has become an important issue that can cause serious environmental problems. These materials may be used in agriculture for soil fertility improvement and carbon sequestration. The effect of applying bagasse ash (BA), rice husk ash (RHA), and RHA mixed with fly ash (MA) to wheat was evaluated on soil organic carbon (SOC) and microbial activity in a loamy sand soil after four years of wheat-rice cropping. BA application resulted in C accrual at 525 kg ha?1 y?1 in soil, whereas RHA and MA did not have a significant effect. BA increased coarse particulate (cPOC) and mineral-associated organic matter (MinOC) and extractable C pools viz. hot water soluble, potassium permanganate (KMnO4)-oxidizable, easily oxidizable, non-oxidizable, and microbial biomass C. BA application also improved overall microbial and oxidative activity and stimulated fluorescein diacetate (FDA), dehydrogenase, and cellulase enzyme activities in soil. Application of RHA though did not lead to net C sequestration, yet it increased dehydrogenase and cellulase activities. Compared to unamended soil, MA application increased MinOC and FDA activity in soil. After 4 years of their application, none of the ashes adversely influenced soil biological activity expressed in terms of enzyme activities suggesting that these ashes can be disposed to agricultural soils. However, effects of their long-term application on soil biological processes need to be further investigated.  相似文献   

5.
The effects of different integrated farming systems on microbial biomass was studied 20 years after their adoption at Meghalaya, India. The soil fertility was relatively greater in agricultural and agri‐horti‐silvi‐pastoral systems as a result of accumulation of leaf litter/crop residues and addition of inorganic and organic manures. Microbial biomass carbon was greatest in agricultural (378 mg kg?1) followed by the agri‐horti‐silvi‐pastoral systems (291 mg kg?1). The most microbial biomass nitrogen (N) and phosphorus (P) (32.4 and 17.07 mg kg?1, respectively) were recorded in agricultural followed by agri‐horti‐silvi‐pastoral systems. Microbial biomass carbon (C) had a significant relationship with organic C, microbial biomass N, and biomass P, indicating that the living part of soil organic matter is involved in the transformation of nutrients into the labile pool and governs their availability to the plants. Application of inorganic fertilizers and organics along with lime has contributed more microbial biomass that led to more biological activity attributed in nutrient transformations and also maintained the soil fertility.  相似文献   

6.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

7.
Between 72 and 88% of carbon (C) loss in forest litter decomposition returns to the atmosphere in the form of carbon dioxide. The share of water-soluble organic products does not exceed 3–4%. Between 8% under spruce and 25% under aspen and pine of the total C loss from litter organic matter goes to the formation of humus. Decomposition intensity of the dead organic matter on the soil surface is close to annual litterfall income (except under cedar). The specific rate of decomposition processes among the coniferous litters is minimum for cedar (167 mgC g?1yr?1) and maximum for larch (249 mg C g?1 yr?1). The specific rate of decomposition of organic residues under aspen and birch canopies are 344 and 362 mg C g?1yr?1.  相似文献   

8.
Two methods for measuring adenosine 5'-triphosphate (ATP) in soil were compared, one based on extraction with NaHCO3-CHCl3 and thel other on extraction by a trichloracetic acid-phosphate-paraquat reagent. Recoveries of added ATP were greater with the NaHCO3-CHCl3 reagent but the extraction of “native” soil ATP by NaHCO3-CHCl3 was only about a third of that by TCA-phosphate-paraquat.Microbial biomass C and ATP were measured in 8 contrasting English soils, using the fumigation method to measure biomass C and the TCA-phosphate-paraquat method to measure ATP. Except in one acid woodland soil, the ratio (ATP content of the soil)/(biomass C content of the soil) was relatively constant, with a mean of 7.3 mg ATP g?1 biomass C for the different soils. This value is very similar to that obtained earlier in a range of 11 grassland and arable soils from Australia. Taking the English and Australian grassland and arable soils together, there is a close (r = 0.975) linear relationship between ATP and microbial biomass C that holds over a wide range of soils and climates. From this relationship, the soil biomass contains 7.25 mg ATP g?1 biomass C, equivalent to an ATP-to-C ratio of 138, or to 6.04 μmoles ATP g?1 dry biomass.The acid woodland soil (pH 3.9) contained much less biomass C, as measured by the fumigation method, than would have been expected from this relationship. This, and other evidence, suggests that the fumigation method for measuring microbial biomass C breaks down in strongly acid soils.The ATP content of the biomass did not depend on the P status of the soil, as indicated by NaHCO3-extractable P.  相似文献   

9.
The extreme climate of the northern Great Plains of North America requires cropping systems to possess a resilient soil resource in order to be sustainable. This paper summarizes the interactive effects of tillage, crop sequence, and cropping intensity on soil quality indicators for two long-term cropping system experiments in the northern Great Plains. The experiments, located in central North Dakota, were established in 1984 and 1993 on a Wilton silt loam (FAO: Calcic Siltic Chernozem; USDA1: fine-silty, mixed, superactive frigid Pachic Haplustoll). Soil physical, chemical, and biological properties considered as indicators of soil quality were evaluated in spring 2001 in both experiments at depths of 0–7.5, 7.5–15, and 15–30 cm. Management effects on soil properties were largely limited to the surface 7.5 cm in both experiments. For the experiment established in 1984, differences in soil condition between a continuous crop, no-till system and a crop–fallow, conventional tillage system were substantial. Within the surface 7.5 cm, the continuous crop, no-till system possessed significantly more soil organic C (by 7.28 Mg ha−1), particulate organic matter C (POM-C) (by 4.98 Mg ha−1), potentially mineralizable N (PMN) (by 32.4 kg ha−1), and microbial biomass C (by 586 kg ha−1), as well as greater aggregate stability (by 33.4%) and faster infiltration rates (by 55.6 cm h−1) relative to the crop–fallow, conventional tillage system. Thus, soil from the continuous crop, no-till system was improved with respect to its ability to provide a source for plant nutrients, withstand erosion, and facilitate water transfer. Soil properties were affected less by management practices in the experiment established in 1993, although organic matter related properties tended to be greater under continuous cropping or minimum tillage than crop sequences with fallow or no-till. In particular, PMN and microbial biomass C were greatest in continuous spring wheat (with residue removed) (22.5 kg ha−1 for PMN; 792 kg ha−1 for microbial biomass C) as compared with sequences with fallow (SW–S–F and SW–F) (Average=15.9 kg ha−1 for PMN; 577 kg ha−1 for microbial biomass C). Results from both experiments confirm that farmers in the northern Great Plains of North America can improve soil quality and agricultural sustainability by adopting production systems that employ intensive cropping practices with reduced tillage management.  相似文献   

10.
Abstract. The residual value of mineral N fertilizer applied in the spring was investigated in a field experiment where four cereals (winter wheat, winter barley, spring barley and spring oats) had been grown at reduced (0.7N), normal (1N) or high (1.3N) N fertilizer rates for 20 to 28 years. The effect of previous N fertilizer dressing was tested in two succeeding years by replacing the original N rate with five test N rates ranging from 0 to 240 kg N ha?1 for winter cereals and 0 to 200 kg N ha?1 for spring cereals. In the first test year, winter wheat grown on plots previously supplied with the high rate of mineral fertilizer (202 kg N ha?1 yr?1) yielded more grain and straw and had a higher total N uptake than wheat on plots previously supplied with the normal (174 kg N ha?1 yr?1) or reduced (124 kg N ha?1 yr?1) rate. The grain yield response and N uptake was not significantly affected by the N supply in the test year. The winter wheat grown in the second test year was unaffected by the previous N supply. Grain and straw yield response and total N uptake for spring barley, winter barley and oats, were almost identical irrespective of the previous N rate. After 20 to 28 years there were no significant differences in soil C and N (0 to 20 cm) between soil receiving three rates of N fertilizer. Soil from differently fertilized oat plots showed no significant differences in N mineralizing capacity. Nitrate leaching losses from the soils at the three N rates were estimated and the N balances for the 20 to 28 years experimental period calculated. The data indicated a reduction in overall loss of 189 to 466 kg N ha?1 at the normal and high N rates compared with the reduced N rate. We conclude that the N supplying capacity and soil organic matter content of this fertile sandy loam soil under continuous cereal cropping with straw removal was not significantly affected by differences in N fertilizer residues.  相似文献   

11.
Abstract. Nitrogen (N) loss by leaching poses great challenges for N availability to crops as well as nitrate pollution of groundwater. Few studies address this issue with respect to the role of the subsoil in the deep and highly weathered savanna soils of the tropics, which exhibit different adsorption and drainage patterns to soils in temperate environments. In an Anionic Acrustox of the Brazilian savanna, the Cerrado, dynamics and budgets of applied N were studied in organic and inorganic soil pools of two maize (Zea mays L.) – soybean (Glycine max (L.) Merr.) rotations using 15N tracing. Labelled ammonium sulphate was applied at 10 kg N ha?1 (with 10 atom%15N excess) to both maize and soybean at the beginning of the cropping season. Amounts and isotopic composition of N were determined in above‐ground biomass, soil, adsorbed mineral N, and in soil solution at 0.15, 0.3, 0.8, 1.2 and 2 m depths using suction lysimeters throughout one cropping season. The applied ammonium was rapidly nitrified or immobilized in soil organic matter, and recovery of applied ammonium in soil 2 weeks after application was negligible. Large amounts of nitrate were adsorbed in the subsoil (150–300 kg NO3?‐N ha?1 per 2 m) matching total N uptake by the crops (130–400 kg N ha?1). Throughout one cropping season, more applied N (49–77%; determined by 15N tracers) was immobilized in soil organic matter than was present as adsorbed nitrate (2–3%). Most of the applied N (71–96% of 15N recovery) was found in the subsoil at 0.15–2 m depth. This coincided with an increase with depth of dissolved organic N as a proportion of total dissolved N (39–63%). Hydrophilic organic N was the dominant fraction of dissolved organic N and was, together with nitrate, the most important carrier for applied N. Most of this N (>80%) was leached from the topsoil (0–0.15 m) during the first 30 days after application. Subsoil N retention as both adsorbed inorganic N, and especially soil organic N, was found to be of great importance in determining N losses, soil N depletion and the potential of nitrate contamination of groundwater.  相似文献   

12.
Abstract

The impact of conservation tillage, crop rotation, and cover cropping on soil‐quality indicators was evaluated in a long‐term experiment for cotton. Compared to conventional‐tillage cotton, other treatments had 3.4 to 7.7 Mg ha?1 more carbon (C) over all soil depths. The particulate organic matter C (POMc) accounts for 29 to 48 and 16 to 22% of soil organic C (SOC) for the 0‐ to 3‐and 3‐ to 6‐cm depths, respectively. Tillage had a strongth influence on POMc within the 0‐ to 3‐cm depth, but cropping intensity and cover crop did not affect POMc. A large stratification for microbial biomass was observed varing from 221 to 434 and 63 to 110 mg kg?1 within depth of 0–3 and 12–24 cm respectively. The microbial biomass is a more sensitive indicator (compared to SOC) of management impacts, showing clear effect of tillage, rotation, and cropping intensity. The no‐tillage cotton double‐cropped wheat/soybean system that combined high cropping intensity and crop rotation provided the best soil quality.  相似文献   

13.
Heavy metals such as arsenic (As), lead (Pb), copper (Cu) and zinc (Zn) can be found in large concentrations in mine spills in Mexico. Interest in contamination by these heavy metals has increased recently as they can change the functioning of soil ecosystems qualitatively and quantitatively. They disturb the activities of soil fauna and contaminate drinking water in large parts of the world, which severely affects human health. Little, however, is known how heavy metals might affect the biological functioning of a soil. Soil was sampled from eight locations along a gradient of heavy-metal contamination with distance from a mine in San Luis Potosí (Mexico) active since about 1800 AD. Microbial biomass was determined with the original chloroform fumigation incubation (CFI) as well as extraction (CFE) techniques and the substrate induced respiration (SIR) technique while C and N mineralization were measured. Total concentrations of As in the top 0–10 cm soil layer ranged from 8 to 22992 mg kg–1, from 31 to 1845 mg kg–1 for Pb, from 27 to 1620 mg kg–1 for Cu and from 81 to 4218 mg kg–1 for Zn. There was a significant negative correlation (P < 0.0001) between microbial biomass, soil organic carbon, total N and C mineralization and the heavy metal content of the soil. The microbial biomass C to organic C ratio, which varied from 0.4 to 1.9%, specific respiratory activity (qCO2), and oxidation of NO2 were not affected by heavy metals. It was found that long-term contamination of soil with heavy metals had an adverse effect on the amount of soil microorganisms as evidenced by a marked decrease in microbial biomass C, but not some of their characteristics. According to principal components analysis (PCA), the correlation matrix showed three distinct factors explaining 71% of the variance. A first factor including heavy metals (As, Pb, Cu and Zn) with a negative loading and total N, organic C, soil microbial biomass with a positive loading characterized the soil organic matter and contamination status. Loam and sand combined for the second factor characterizing the textural classification while the third factor was loaded by CEC and clay content.  相似文献   

14.
Atmospheric C (TAC) is continuously transported by rivers at the continents’ surface as soil dissolved and particulate organic C (DOC, POC) and dissolved inorganic C (DIC) used in rock weathering reactions. Global typology of the C export rates (g.m?2.yr?1) for 14 river classes from tundra rivers to monsoon rivers is used to calculate global TAC flux to oceans estimated to 542 Tg.yr?1, of which 37 % is as DOC, 18 % as soil POC and 45 % as DIC. TAC originates mostly from humid tropics (46 %) and temperate forest and grassland (31 %), compared to boreal forest (14 %), savannah and sub-arid regions (5 %), and tundra (4 %). Rivers also carry to oceans 80 Tg. yr?1 of POC and 137 TG.yr?1 of DIC originating from rock erosion. Permanent TAC storage on land is estimated to 52 Tg.yr?1 in lakes and 17 Tg.yr?1 in internal regions of the continents.  相似文献   

15.
《Applied soil ecology》2007,35(2):432-440
Microbial biomass is the key factor in nutrient dynamics in soil, but no information exist about it in soils of the central highlands of Mexico, a major agricultural area. We determined the microbial biomass in soils with a wide range of organic C and belonging to three soil texture classes. Twenty-four soils under different types of cultivation were sampled while microbial biomass C was measured with the chloroform fumigation incubation (CFI) and extraction technique (CFE). Microbial biomass C as measured with the CFI technique ranged from 138 to 2195 mg C kg−1. The ninhydrin-positive compounds (NPC) and extractable C released with CFE increased with increased time of exposure to chloroform and on average 53% of NPC and 83% of extractable C was released after 1 day compared to that released after 10 days. The ratio of microbial biomass C as measured with the CFI method related to the NPC was 31.8 after 1 day and 20.0 after 10 days while the relationship with extractable C was 3.18 and 2.69, respectively. The relationship between microbial biomass C as measured by the chloroform fumigation incubation technique and the soluble C and ninhydrin-N rendered extractable after 1 and 10 days of chloroform fumigation for soils of the central highlands of Mexico were comparable to values reported for soils in other regions of the world. The factors determined in this study can thus be used to determine microbial biomass.  相似文献   

16.
Abstract

To determine the rates of increase in C and N stocks in the soil and organic layers following afforestation in Andisols, we measured C and N densities in the organic and soil layers at depths of 0–5, 5–15 and 15–30?cm, together with a chronosequence analysis of 4-year-old, 14-year-old and 23-year-old Japanese cedar (Cryptomeria japonica) and 4-year-old, 12-year-old and 25-year-old Hinoki cypress (Chamaecyparis obtusa) plantations. The short-term changes in C and N were confirmed by repeated sampling 5?years after the first sampling. Tree growth, biomass accumulation and organic layers were much greater in Japanese cedar than in Hinoki cypress plantations. Soil C density (kg?m?3) increased and bulk density decreased with stand age in the surface layer (0–5?cm). The average soil C accumulation rate was 22.9?g?C?m?2?year?1 for Japanese cedar and 21.1?g?C?m?2?year?1 for Hinoki cypress. Repeated sampling showed that the rate of increase in C in the surface soil was relatively slow in young stands and that soil C density (kg?m?3) in the subsurface soil did not change over a 5-year period. Although N accumulated in the tree biomass and organic layers, the soil N density (kg?m?3) did not change after afforestation. Although the andic properties of the soil and differences in the planted species did not influence the rate of increase in soil C, soil C density was expected to increase to a concentration greater than 80?g?kg?1, possibly because of the large C accumulation capacity of Andisols.  相似文献   

17.
Over the years, a scarcity of information on nutrient gains or losses has led to overemphasis being placed on crop yields and economic income as the direct benefits from fertilizer micro-dosing technology. There is increasing concern about the sustainability of this technology in smallholder Sahelian cropping systems. This study was designed in the 2013 and 2014 cropping seasons to establish nutrient balances under fertilizer micro-dosing technology and their implications on soil nutrient stocks. Two fertilizer micro-dosing treatments [2 g hill?1 of diammonium phosphate (DAP) and 6 g hill?1 of compound fertilizer Nitrogen-Phosphorus-Potassium (NPK) (15-15-15)] and three rates of manure (100 g hill?1, 200 g hill?1 and 300 g hill?1) and the relevant control treatments were arranged in a factorial experiment organized in a randomized complete block design with three replications. On average, millet (Pennisetum glaucum (L.) R.Br.) grain yield increased by 39 and 72% for the plots that received the fertilizer micro-dosing of 6 g NPK hill?1 and 2 g DAP hill?1, respectively, in comparison with the unfertilized control plots. The average partial nutrients balances for the two cropping seasons were ?37 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?34 kg K ha?1yr?1 in plots that received the application of 2 g DAP hill?1, and ?31 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?27 kg K ha?1yr?1 for 6 g NPK hill?1. The transfer of straw yields accounted for 66% N, 55% P and 89% K for removal. The average full nutrient balances for the two cropping seasons in fertilizer micro-dosing treatments were ?47.8 kg N ha?1 yr?1, ?6.8 kg P ha?1 yr?1 and ?21.3 kg K ha?1 yr?1 which represent 7.8, 24.1 and 9.4% of N, P and K stocks, respectively. The nutrient stock to balance ratio (NSB) for N decreased from 13 to 11 and from 15 to 12 for the plots that received the application of 2 g DAP hill?1 and 6 g NPK hill?1, respectively. The average NSB for P did not exceed 5 for the same plots. It was concluded that fertilizer micro-dosing increases the risk of soil nutrient depletion in the Sahelian low-input cropping system. These results have important implications for developing an agro-ecological approach to addressing sustainable food production in the Sahelian smallholder cropping system.  相似文献   

18.
Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests   总被引:3,自引:0,他引:3  
Thirty-eight soils from forest sites in central Germany dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of the overlying organic layers. Microbial biomass P was estimated by the fumigation — extraction method, measuring the increase in NaHCO3-extractable phosphate. The size of the microbial P pool varied between 17.7 and 174.3 g P g-1 soil and was on average more than seven times larger than NaHCO3-extractable phosphate. Microbial P was positively correlated with soil organic C and total P, reflecting the importance of soil organic matter as a P source. The mean microbial P concentration was 13.1% of total P, varying in most soils between 6 and 18. Microbial P and microbial C were significantly correlated with each other and had a mean ratio of 14.3. A wide (5.1–26.3) microbial C: P ratio indicates that there is no simple relatinship between these two parameters. The microbial C: P ratio showed strong and positive correlations with soil pH and cation exchange capacity.  相似文献   

19.
Switchgrass (Panicum virgatum L.) has been proposed as a sustainable bioenergy crop because of its high yield potential, adaptation to marginal sites, and tolerance to water and nutrient limitations. A better understanding of the potential effects of biomass energy crop production practices on soil biological properties and organic matter dynamics is critical to its production. Our objective was to evaluate changes in C pools under a warm-season perennial switchgrass in different soils compared to typically-grown crops collected at College Station, Dallas, and Stephenville, TX in February 2001. Sampling depths were 0-5, 5-15, and 15-30 cm. Switchgrass increased soil organic C (SOC), soil microbial biomass C (SMBC), mineralizable C, and particulate organic matter C (POM-C) compared to conventional cropping systems. Soil C concentrations were in the order: long-term coastal bermudagrass [Cynodon dactylon (L.) Pers.]> switchgrass or kleingrass (Panicum coloratum L.) planted in 1992> switchgrass 1997> conventional cropping systems. Soil C concentrations tended to increase with increasing clay content. Greater microbial biomass C followed the order of Dallas> College Station> Stephenville, and ranged from approximately 180 mg C kg-1 soil at Stephenville to 1 900 mg C kg-1 soil at Dallas. Particulate organic C was more sensitive than other fractions to management, increasing as much as 6-fold under long-term coastal bermudagrass compared to conventional cropping systems. Our study indicated that conversion of conventional cropping systems into switchgrass production can sequestrate more SOC and improve soil biological properties in the southern USA.  相似文献   

20.
The sink of CO2 and the C budget of forest biomes of the Former Soviet Union (FSU) were assessed with two distinct methods: (1) ecosystem/ecoregional, and (2) forest statistical data. The ecosystem/ecoregional method was based on the integration of ecoregions (defined with a GIS analysis of several maps) with soil/vegetation C data bases. The forest statistical approach was based on data on growing stock, annual increment of timber, and FSU yield tables. Applying the ecosystem/ecoregional method, the area of forest biomes in the FSU was estimated at 1426.1 Mha (106 ha); forest ecosystems comprised 799.9 Mha, non-forest ecosystems and arable land comprised 506.1 and 119.9 Mha, respectively. The FSU forested area was 28% of the global area of closed forests. Forest phytomass (i.e., live plant mass), mortmass (i.e., coarse woody debris), total forest plant mass, and net increment in vegetation (NIV) were estimated at 57.9 t C ha?1, 15.5 t C ha?1, 73.4 t C ha?1, and 1.0 t C ha?1 yr?1, respectively. The 799.9 Mha area of forest ecosystems calculated in the ecosystem/ecoregional method was close to the 814.2 Mha reported in the FSU forest statistical data. Based on forest statistical data forest phytomass was estimated at 62.7 t C ha?1, mortmass at 37.6 t C ha?1; thus the total forest plant mass C pool was 100.3 t C ha?1. The NIV was estimated at 1.1 t C ha?1 yr?1. These estimates compared well with the estimates for phytomass, total forest plant mass, and NIV obtained from the ecosystem/ecoregional method. Mortmass estimated from the forest statistical data method exceeded the estimate based on the ecosystem/ecoregional method by a factor of 2.4. The ecosystem/ecoregional method allowed the estimation of litter, soil organic matter, NPP (net primary productivity), foliage formation, total and stable soil organic matter accumulation, and peat accumulation (13.9 t C ha?1, 125.0 t C ha?1, 3.1 t C ha?1 yr?1, 1.4 t C ha?1 yr?1, 0.11, and 0.056 t C ha?1 yr?1, respectively). Based on an average value of NEP (net ecosystem productivity) from the two methods, and following a consideration of anthropogenic influences, FSU forests were estimated to be a net sink of approximately 0.5 Gt C yr?1 of atmospheric C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号