首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative analyses of nitrogen cycling genes in soils   总被引:2,自引:0,他引:2  
  相似文献   

2.
Proteins represent the dominant input of organic N into most ecosystems and they also constitute the largest store of N in soil organic matter. The extracellular protease mediated breakdown of proteins to amino acids therefore represents a key step regulating N cycling in soil. In this study we investigated the influence of a range of environmental factors on the rate of protein mineralization in a grazed grassland and fallow agricultural soil. The protein turnover rates were directly compared to the rates of amino acid mineralization under the same conditions. Uniformly 14C-labelled soluble protein and amino acids were added to soil and the rate of 14CO2 evolution determined over 30 d. Our results indicate that the primary phase of protein mineralization was approximately 20 ± 3 fold slower that the rate of amino acid mineralization. The addition of large amounts of inorganic NO3 and NH4+ to the soil did not repress the rate of protein mineralization suggesting that available N does not directly affect protease activity in the short term. Whilst protein mineralization was strongly temperature sensitive, the presence of plants and the addition of humic and tannic acids had relatively little influence on the rate of soluble protein degradation in this fertile grassland soil. Our results suggests that the extracellular protease mediated cleavage of proteins to amino acids rather than breakdown of amino acids to NH4+ represents the limiting step in soil N cycling.  相似文献   

3.
Global nitrogen cycling is being altered by anthropogenic disturbances including invasion by non-native species. European and Asian earthworms have invaded northern temperate forests in North America with dramatic consequences for litter thickness, forest floor plant diversity, and soil nitrogen cycling. Invasive earthworms present at the boundary of terrestrial and aquatic ecosystems (i.e., riparian zones) may alter the flux of nitrogen into adjacent aquatic ecosystems. We examined how nitrogen cycling in riparian soil responds to amendments of invasive earthworms or artificial earthworm burrows. In earthworm-free riparian plots (0.25 m2), we established treatments of invasive earthworms (60 g fresh mass·m−2), artificial burrows (120 m−2), or control plots and sampled the plots after 30 days. Before and after treatment application we measured major soil characteristics (water-filled pore space, organic matter, and pH), nitrogen pools (exchangeable NH4+ and NO3), and nitrogen transformation rates (net N-mineralization, net nitrification, and denitrification). Exchangeable NH4+ and NO3 changed through time but did not differ among treatments. Net N-mineralization and net nitrification rates did not change through time and were similar across all treatments. However, denitrification rates in plots with added earthworms were 4 times greater than rates in control and burrow-only plots, which represents a large rapid increase in gaseous nitrogen flux out of these riparian soils. For all response variables, artificial burrows responded similarly to control plots, suggesting that earthworm biological activity (i.e., feeding, excretion, and mucus production) rather than physical effects (i.e., burrowing and soil aeration) drove the changes in nitrogen cycling. Examination of soil nitrogen pool and flux measurements suggest that this increase in denitrification was coupled with NH4+ consumption by nitrifying bacteria, but future studies are needed to confirm this hypothesis. We conclude that the activity of invasive earthworms in riparian zones can increase the flux of N out of riparian zones, but the hydrologic context of the riparian zone (e.g., pore-water residence time) ultimately controls whether denitrification or nitrate leaching is the dominant flux of N.  相似文献   

4.
This study was conducted to examine the hypothesis that slow N mineralization and associated organic matter accumulation in Andept, was related to the internal N cycling regime, and if so, to determine at what stage.The results indicated that N was mineralized from native organic matter in an Andept less rapidly than occurred in a Mollisol of similar organic matter content but N mineralization from added alfalfa was similar in both soils. Both soils immobilized N rapidly in the presence of glucose, but remineralization of immobilized N was more rapid in the Mollisol than in the Andept samples. Partial sterilization resulted in substantial remineralization of N from both soils.It was concluded that slow N mineralization in the Andept soil is due to slow N recycling from recently synthesized biomass. Associated with this is a low supply of soluble C in the Andept soil. Whether slow N recycling from recently synthesized biomass results from some toxic effect on predatory organisms, from lytic enzyme adsorption, adsorption of lytic products or some mineral nutrient deficiency awaits further study.  相似文献   

5.
Dissolved organic nitrogen (DON) represents a significant pool of soluble N in many soils and freshwaters. Further, the low molecular weight (LMW) component of DON represents an important source of N for microorganisms and can also be utilized directly by some plants. Our purpose was to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant block in soil N supply in three agricultural grassland soils. The results indicate that the conversion of insoluble organic N to LMW-DON and not LMW-DON to NH4+ or NH4+ to NO3 represents a major constraint to N supply. We hypothesize that there are two distinct DON pools in soil. The first pool comprises mainly free amino acids and proteins and is turned over very rapidly by the microbial community, so it does not accumulate in soil. The second pool is a high molecular weight pool rich in humic substances, which turns over slowly and represents the major DON loss to freshwaters. The results also suggest that in NO3 rich soils the uptake of LMW-DON by soil microorganisms may primarily provide them with C to fuel respiration, rather than to satisfy their internal N demand.  相似文献   

6.
添加生物炭对酸性红壤中玉米生长和氮素利用率的影响   总被引:3,自引:0,他引:3  
Biochar added to soil can improve crop growth through both direct and indirect effects, particularly in acidic, highly weathered soils in subtropical and tropical regions. However, the mechanisms of biochar improving crop growth are not well understood. The objectives of this study were i) to determine the crop responses to biochar addition and ii) to understand the effect of biochar addition on N use efficiency. Seven acidic red soils varying in texture, p H, and soil nutrient were taken from southern China and subjected to four treatments: zero biochar and fertilizer as a control(CK), 10 g kg-1biochar(BC), NPK fertilizers(NPK), and 10 g kg-1biochar plus NPK fertilizers(BC+NPK).15N-labeled fertilizer was used as a tracer to assess N use efficiency. After a 46-d pot experiment,biochar addition increased soil p H and available P, and decreased soil exchangable Al3+, but did not impact soil availabe N and cation exchange capacity(P 〉 0.05). The N use efficiency and N retained in the soil were not significantly affected by biochar application except for the soil with the lowest available P(3.81 mg kg-1) and highest exchanageable Al3+(4.54 cmol kg-1). Greater maize biomass was observed in all soils amended with biochar compared to soils without biochar(BC vs. CK, BC+NPK vs. NPK). This agronomic effect was negatively related to the concentration of soil exchangeable Al3+(P 〈 0.1). The results of this study implied that the liming effect of biochar improved plant growth through alleviating Al toxicity and P deficiency, especially in poor acidic red soils.  相似文献   

7.
Net mineralization of sulfur and nitrogen was studied in three Canadian Prairie soils using two commonly used incubation methods. In the open system technique, where the soils were leached periodically II.3–11.8 μ g SO2?4 -S g?1 soil was mineralized in 17 weeks. Little mineralization or a net immobilization of sulfur (from 1.4 to 1.3 μ g SO2?4-S g?1 soil) was observed in a closed system where the soils were left undisturbed throughout incubation. Changes in the specific activity of 35S-labelled soil solution sulfate during the closed incubation indicated that mineralization-immobilization processes were occurring simultaneously resulting in minimal net changes in CaCl2-extractable SO2?4 concentrations. The amounts of mineralized nitrogen (32.6–57.8 μg N g?1 soil) were found to be independent of the incubation method employed.  相似文献   

8.
pH regulation of carbon and nitrogen dynamics in two agricultural soils   总被引:1,自引:0,他引:1  
Soil pH is often hypothesized to be a major factor regulating organic matter turnover and inorganic nitrogen production in agricultural soils. The aim of this study was to critically test the relationship between soil pH and rates of C and N cycling, and dissolved organic nitrogen (DON), in two long-term field experiments in which pH had been manipulated (Rothamsted silty clay loam, pH 3.5-6.8; Woburn sandy loam, pH 3.4-6.3). While alteration of pH for 37 years significantly affected crop production, it had no significant effect on total soil C and N or indigenous mineral N levels. This implies that at steady state, increased organic matter inputs to the soil are balanced by increased outputs of CO2. This is supported by the positive correlation between both plant productivity and intrinsic microbial respiration with soil pH. In addition, soil microbial biomass C and N, and nitrification were also significantly positively correlated with soil pH. Measurements of respiration following addition of urea and amino acids showed a significant decline in CO2 evolution with increasing soil acidity, whilst glucose mineralization showed no response to pH. In conclusion, it appears that changes in soil pH significantly affect soil microbial activity and the rate of soil C and N cycling. The evidence suggests that this response is partially indirect, being primarily linked to pH induced changes in net primary production and the availability of substrates. In addition, enhanced soil acidity may also act directly on the functioning of the microbial community itself.  相似文献   

9.
Soil pH and calcium carbonate contents are often hypothesized to be important factors controlling organic matter turnover in agricultural soils. The aim of this study was to differentiate the effects of soil pH from those related to carbonate equilibrium on C and N dynamics. The relative contributions of organic and inorganic carbon in the CO2 produced during laboratory incubations were assessed. Five agricultural soils were compared: calcareous (74% CaCO3), loess (0.2% CaCO3) and an acidic soil which had received different rates of lime 20 years ago (0, 18 or 50 t ha−1). Soil aggregates were incubated with or without rape residues under aerobic conditions for 91 days at 15 °C. The C and N mineralized, soil pH, O2 consumption and respiratory quotient (RQ=ΔCO2/ΔO2) were monitored, as well as the δ13C composition of the evolved CO2 to determine its origin (mineral or organic). Results showed that in non-amended soils, the cumulative CO2 produced was significantly greater in the limed soil with a pH>7 than in the same soil with less or no lime added, whereas there was no difference in N mineralization or in O2 consumption kinetics. We found an exponential relationship between RQ values and soil pH, suggesting an excess production of CO2 in alkaline soils. This CO2 excess was not related to changes in substrate utilization by the microbial biomass but rather to carbonates equilibrium. The δ13C signatures confirmed that the CO2 produced in soils with pH>7 originated from both organic and mineral sources. The contribution of soil carbonates to CO2 production led to an overestimation of organic C mineralization (up to 35%), the extent of which depended on the nature of soil carbonates but not on the amount. The actual C mineralization (derived from organic C) was similar in limed and unlimed soil. The amount of C mineralized in the residue-amended soils was ten times greater than in the basal soil, thus masking the soil carbonate contribution. Residue decomposition resulted in a significant increase in soil pH in all soils. This increase is attributed to the alkalinity and/or decarboxylation of organic anions in the plant residue and/or to the immobilization of nitrate by the microbial biomass and the corresponding release of hydroxyl ions. A theoretical composition (C, O, H, N) of residue and soil organic matter is proposed to explain the RQ measured. It emphasizes the need to take microbial biomass metabolism, O2 consumption due to nitrification and carbon assimilation yield into account when interpreting RQ data.  相似文献   

10.
酸性菜园土壤养分限制因子研究   总被引:8,自引:0,他引:8  
Nutrient limiting factors in acidic soils from vegetable fields of the Chongqing suburbs of China were assessed by employing the systematic approach developed by Agro Services International (ASI) including soil testing, nutrient adsorption study, and pot and field experiments to verify the results of soil testing, with a conventional soil test (CST) used for comparison. The ASI method found the moderately acidic soil (W01) to be N and P deficient; the strongly acidic soil (W04) to be N, K and S deficient; and the slightly acidic soil (W09) to be N, K, S, Cu, Mn, and Zn deficient. The CST method showed that W01 had P, B and Cu deficiencies; W04 had N, P and S deficiencies; and W09 had N, P, S, B, Cu, and Zn deficiencies. There were differences between the two methods. Among the two indicator plants selected, the response of sorghum on the three representative acidic soils was more closely related to the ASI results than that of sweet pepper.  相似文献   

11.
Simple methods for the measurement of nitrogen (N) availability are needed to assess the effect of low-input, organically based land management systems on the N supply of tropical soils. Our objectives were to determine the effect of contrasting land-use systems (LUS) on soil N availability and to identify measures of N availability that correlated with maize (Zea mays L.) grain yield. The LUS at the two sites in Kenya involved growth of a maize crop following 17 months of either: (1) Sesbania sesban (L.) Merr. tree growth (sesbania fallow), (2) natural regrowth of vegetation without cultivation (natural fallow), (3) three crops of unfertilized maize (maize monoculture), or (4) bare uncultivated soil (bare fallow). Soil was collected before the post-fallow maize crop was sown. The LUS had no effect on total soil N or amount of N in the heavy fraction soil organic matter (SOM) (>150 μm, >1.37 Mg m–3). Sesbania and natural fallows, as compared to maize monoculture, increased the N in light fraction SOM (>150 μm, <1.13Mgm–3), N in intermediate fraction SOM (>150 μm, 1.13 to 1.37 Mg m–3), ammonium-N and aerobic N mineralization at a depth of 0–15 cm. Maize yields were highest following the sesbania fallow. Nitrate-N, inorganic-N (ammonium plus nitrate) and anaerobic N mineralization correlated with maize grain yield at both sites. The relationship between maize yield and pre-season nitrate-N improved when the depth of soil sampling was increased to 1 m at one site (an Alfisol), but did not improve at the site with anion adsorption in the subsoil (an Oxisol). The sesbania fallow was more effective than the natural fallow in increasing available soil N. Maize yield was better related to pre-season nitrate than N in size-density fractions of SOM. Received: 5 May 1997  相似文献   

12.
Abstract

Two chemical methods (Phosphate Borate Buffer and 2M KC1 methods) of assessing potentially available organic N in soils vere evaluated using some infertile upland soils from Thailand. Their results were highly correlated vith those of the waterlogged incubation method which is considered to be one of the best laboratory methods for assessment of potentially available organic N in soils. While the data obtained support the findings of Gianello and Bremner (4) that the two methods provide good indexes of potentially available soil organic N, it appeared that their precision was affected by the low fertility status of the experimental soils. Of the two chemical methods evaluated, the 2M KCl method was found to be the most suitable for the experimental soils.  相似文献   

13.
Nitrogen is a major nutrient that frequently limits primary productivity in terrestrial ecosystems. Therefore, the physiological responses of plants to soil nitrogen (N) availability have been extensively investigated, and the study of the soil N-cycle has become an important component of ecosystem ecology and biogeochemistry. The bulk of the literature in these areas has, however, overlooked the fact that most plants form mycorrhizal associations, and that nutrient uptake is therefore mediated by mycorrhizal fungi. It is well established that ecto- and ericoid mycorrhizas influence N nutrition of plants, but roles of arbuscular mycorrhizas in N nutrition are less well established; perhaps even more importantly, current conceptual models ignore possible influences of arbuscular mycorrhizal (AM) fungi on N-cycling processes. We review evidence for the interaction between the AM symbiosis with microbes and processes involved in soil N-cycling. We show that to date investigations have rather poorly addressed such interactions and discuss possible reasons for this. We outline mechanisms that could potentially operate with regards to AM fungal – N-cycling interactions, discuss experimental designs aimed at studying these, and conclude by pointing out priorities for future research.  相似文献   

14.
Nitrogen (N) from atmospheric deposition has been shown to be mainly retained in the organic soil layers of temperate forest ecosystems, but the mechanisms and the physico‐chemical fractions involved are still poorly defined. We performed a hot‐acid hydrolysis on 15N‐labelled soil samples collected 1 week, 3 months and 1 year following a single in situ application of either 15NO3 or 15NH4+ in two montane forest ecosystems in Switzerland: Grandvillard (beech forest on a calcareous, well‐drained soil, 650 m above sea level) and Alptal (spruce forest on hydromorphic soil, 1200 m above sea level). After 15NH4+ application, recovery rates in the soil were smaller in Alptal than in Grandvillard through a large rate of absorption by mosses. At both sites, the organic soil layers retained most of the tracers at all three sampling times between 1 week and 1 year. In Grandvillard, the hydrolysable fraction (hydrolysable N : total N) of 15N was on average 79% and thus similar to the hydrolysable fraction of native N. This similarity is probably because of the rapid incorporation of N into organic molecules, followed by stabilization of the recalcitrant N pool through organo‐mineral bonds with soil minerals. In Alptal, the 15N hydrolysable fraction was greater than that of native N, particularly after 15NH4+ application (15N, 84%; native N, 72%). At both sites, 15N and the fraction of hydrolysable native N remained constant between 1 week and 1 year. This shows that both the recalcitrant and the hydrolysable pools are stable in the mid‐ to long‐term. We present arguments indicating that biological recycling through microbes and plants contributes to the stability of the hydrolysable N fraction.  相似文献   

15.
Ma  Hongliang  Yin  Yunfeng  Gao  Ren  Taqi  Raza  He  Xinhua 《Journal of Soils and Sediments》2019,19(5):2166-2175
Journal of Soils and Sediments - Soil nitrogen (N) transformation is an important phenomenon in forest ecosystems and it is regulated by carbon (C) input. This study aimed to evaluate the impacts...  相似文献   

16.
氮循环过程的微生物驱动机制研究进展   总被引:2,自引:2,他引:2  
氮循环在生物地球化学中具有重要地位,与人类生活密切相关。氮循环在很大程度上依赖微生物驱动的氮素转化,而在转化过程中必然会造成不同形式氮的同位素效应。为更好地了解和溯源氮循环过程,本文从氮循环的物质通量、微生物作用及氮同位素效应等角度进行系统地论述,并对氧化亚氮 (N2O) 分子内的特异同位素值区分微生物过程做了详细介绍。结果表明,人为固氮是环境中活性氮增加的主要原因,也进一步促进了氮素转化的各个环节。通过解析氮素循环中微生物过程的形成机理和评估每个过程的同位素效应,为进一步探索微生物的功能基因和氮素同位素效应的内在联系提供依据,对阐明氮循环过程中微生物驱动的分子机制具有重要意义,而两者的结合也为解决自然条件下氮素转化各过程的溯源难题指明了方向,也将成为今后研究的热点,并在揭示氮素转化机制中发挥越来越大的作用。  相似文献   

17.
ABSTRACT

Cadmium (Cd) in the soil solution is in dynamic equilibrium with the reservoir of bioavailable Cd attached to the solid phase, i.e. the labile pool (CdE). Traditionally, CdE is estimated using the radioisotope 109Cd, which has severely restricted access to estimates of CdE. Using stable isotope dilution and isotope ratio measurement by inductive coupled plasma-quadrupole mass spectroscopy (ICP-QMS) would increase access to estimates of CdE; however, detail remains scant about the optimal conditions for equilibration and measurement. We report optimal conditions for spiking with 110Cd, batch equilibration and ICP-QMS measurement of the ratio of 110Cd to 111Cd using results for six acidic soils with total Cd concentrations of 0.19–6.4 mg Cd kg?1, suspended in three background electrolytes (10 mM CaCl2, 1 M NH4NO3, and 1 M NH4Cl). Our optimised procedure produces robust estimates of CdE. Application of this approach will greatly increase access to estimates of CdE and to the investigation of its role in Cd uptake by plants.  相似文献   

18.
A field experiment was conducted to follow the transformation of ammonium fertilizer applied in rainfed-upland fields. The study was done during the rainy season on a heavy-textured, poorly rained soil. Ammonium fertilizer was applied in rows, and soil samples from different depths were analyzed to check the vertical distribution of inorganic nitrogen. In order to learn the relation between nitrogen loss and nitrification, the effect of nitrification inhibitor was also checked. Ice variety IR5 was used to check nitrogen uptake.

The ammonium content decreased by about 40 per cent up to I month after fertilizing and about 90% up to 2 months after fertilizing in the unplanted plots. Up to 5 months it decreased to a level equal to or lower than that before fertilizer application. The accumulation of nitrate was observed in the lower soil layers-after 3 months, but the accumulated amount was too low to account for the loss of ammonia from the surface. The overall loss of mineral nitrogen within 60 cm of the surface was observed after 5 months in unplanted plots. The addition of nitrification inhibitor retarded the decrease of ammonium nitrogen up to 2 months. After 3 months, the nitrifying activity began to recover.

Only 23 to 27 per cent of the fertilizer nitrogen was taken up by the rice plants, indicating low efficiency.  相似文献   

19.
Soluble organic nitrogen in agricultural soils   总被引:36,自引:0,他引:36  
 The existence of soluble organic forms of N in rain and drainage waters has been known for many years, but these have not been generally regarded as significant pools of N in agricultural soils. We review the size and function of both soluble organic N extracted from soils (SON) and dissolved organic N present in soil solution and drainage waters (DON) in arable agricultural soils. SON is of the same order of magnitude as mineral N and of equal size in many cases; 20–30 kg SON-N ha–1 is present in a wide range of arable agricultural soils from England. Its dynamics are affected by mineralisation, immobilisation, leaching and plant uptake in the same way as those of mineral N, but its pool size is more constant than that of mineral N. DON can be sampled from soil solution using suction cups and collected in drainage waters. Significant amounts of DON are leached, but this comprises only about one-tenth of the SON extracted from the same soil. Leached DON may take with it nutrients, chelated or complexed metals and pesticides. SON/DON is clearly an important pool in N transformations and plant uptake, but there are still many gaps in our understanding. Received: 10 June 1999  相似文献   

20.
《Geoderma》2005,124(3-4):335-348
In order to gain understanding of the movement of pollutant metals in soil, the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmolc kg−1, 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2 . A simple Burns-type model (Wineglass) using an adsorption coefficient (Kd) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (Kd=0.73 and 1.29 ml g−1, respectively).Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%, cation exchange capacity (CEC) 11.8 and 6.1 cmolc kg−1, respectively) were leached with 10 mM calcium chloride, nitrate and perchlorate. With chloride, the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g−1, but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus, a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g−1, respectively). Although pH values were a little higher with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate.Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号