首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. The main inputs, outputs and transfers of potassium (K) in soils and swards under typical south west England conditions were determined during 1999/00 and 2000/01 to establish soil and field gate K budgets under different fertilizer nitrogen (N) (0 and 280 kg ha−1 yr−1) and drainage (undrained and drained) treatments. Plots receiving fertilizer N also received farmyard manure (FYM). Potassium soil budgets ranged, on average for the two years, from −5 (+N, drained) to +9 (no N and undrained) kg K ha−1 yr−1 and field gate budgets from +23 (+N, drained) to +89 (+N, undrained). The main inputs and outputs to the soil K budgets were fertilizer application (65%) and plant uptake (93%). Animals had a minor effect on K export but a major impact on K recycling. Nitrogen fertilizer application and drainage increased K uptake by the grass and, with it, the efficiency of K used. It also depleted easily available soil K, which could be associated with smaller K losses by leaching.  相似文献   

2.
Abstract. Four management systems combining high and low livestock densities (0.7 and 1.4 livestock units ha−1) and different types of organic manure (slurry and straw based FYM) were applied to an organic dairy crop rotation (undersown barley – grass–clover – grass–clover – barley/pea – oats – fodder beet) between 1998 and 2001. The effects of the management systems on crop yields and nitrate leaching were measured. In all four years, nitrate leaching, as determined using ceramic suction cups, was higher in the three crops following ploughing of grass–clover than under the barley or grass–clover. Overall, no significant differences in nitrate leaching were observed between the management systems. However, the replacement of the winter wheat crop used in the earlier experimental period (1994–97) by spring oats with catch crops in both the preceding and succeeding winters reduced nitrate leaching compared with the earlier rotation. Increasing the livestock density, which increased manure application by c. 60 kg total N ha−1, increased crop yields by 7 and 9% on average for FYM and slurry, respectively. Yields were 3–5% lower where FYM was used instead of slurry. The experiment confirmed the overriding importance of grassland N management, particularly the cultivation of the ley, in organic dairy crop rotations.  相似文献   

3.
Soil fertility, one of the important determinants of agricultural productivity, is generally thought to be supplemented through the application of nutrients mainly through inorganic fertilizers. The physical fertility of the soil, which creates suitable environment for the availability and uptake of these nutrients, is generally ignored. The present study aims to characterize the soil physical environment in relation to the long term application of farm yard manure (FYM) and inorganic fertilizers in rice–wheat. The treatments during both rice and wheat crops were (i) farm yard manure @ 20 t ha−1 (FYM); (ii) nitrogen @ 120 kg ha−1 (N120); (iii) nitrogen and phosphorus @ 120 and 30 kg ha−1 (N120P30) and (iv) nitrogen, phosphorus and potassium @ 120, 30 and 30 kg ha−1 (N120P30K30) in addition to (iv) control treatment, i.e. without any fertilizer and/or FYM addition. The treatments were replicated four times in randomized block design in a sandy loam (typic Ustipsament, non-saline, slightly alkaline). Bulk density, structural stability of soil aggregates and water holding capacity of 0–60 cm soil layer were measured.

The average mean weight diameter (MWD) was highest in FYM-plots both in rice (0.237 mm) and wheat (0.249 mm) closely followed by that in N120P30K30 plots. The effect of FYM in increasing the MWD decreased with soil depth. The addition of both FYM and N120P30K30 increased the organic carbon by 44 and 37%, respectively in rice. The total porosity of soil increased with the application of both FYM and N120P30K30 from that in control plots. In 0–15 cm soil layer, the total porosity increased by 25% with FYM from that in control plots. This difference decreased to 13% in 15–30 cm soil layer. The average water holding capacity (WHC) was 16 and 11% higher with FYM and N120P30K30 application from that in control plots. The MWD, total porosity and WHC improved with the application of balanced application of fertilizers. The grain yield and uptake of N, P and K by both rice and wheat were higher with the application of FYM and inorganic fertilizers than in control plots. The carbon sequestration rate after 32 years was maximum (0.31 t ha−1 year−1) in FYM-plots, followed by 0.26 t ha−1 year−1 in N120P30K30-plots, 0.19 t ha−1 year−1 in N120P30 and minimum (0.13 t ha−1 year−1) in N120-plots.  相似文献   


4.
Abstract. Grassland is a major source of nitrous oxide (N2O) and methane (CH4) emissions in the UK, resulting from high rates of fertilizer application. We studied the effects of substituting mineral fertilizer by organic manures and a slow-release fertilizer in silage grass production on greenhouse gas emissions and soil mineral N content in a three-year field experiment. The organic manures investigated were sewage sludge pellets and composted sewage sludge (dry materials), and digested sewage sludge and cattle slurry (liquid materials). The organic manures produced N2O and carbon dioxide (CO2) consistently from time of application up to harvest. However, they mitigated N2O emissions by around 90% when aggregate emissions of 15.7 kg N ha−1 from NPK fertilizer were caused by a flux of up to 4.9 kg N ha−1 d−1 during the first 4 days after heavy rainfall subsequent to the NPK fertilizer application. CH4 was emitted only for 2 or 3 days after application of the liquid manures. CH4 and CO2 fluxes were not significantly mitigated. Composting and dried pellets were useful methods of conserving nutrients in organic wastes, enabling slow and sustained release of nitrogen. NPK slow-release fertilizer also maintained grass yields and was the most effective substitute for the conventional NPK fertilizer for mitigation of N2O fluxes.  相似文献   

5.
The status of cobalt (Co) in savanna soils of Nigeria is largely unknown, and a long-term experiment including inorganic fertilizer (NPK) and farmyard manure (FYM) and uncultivated land provided information on the way management affected the dynamics of Co in the soil. Total Co increased with increasing depth, whereas readily extractable Co decreased. The mean concentration of Co (5.6–7.9 mg kg−1) was close to the mean value of 8 mg kg−1 reported for soils worldwide, whereas the concentration of extractable Co was less than that reported in most soils. Regression analysis indicated that total Fe predicted up to 78% of the soil Co. The potentially available Co correlated strongly with pedogenic or reducible Mn oxides extracted with dithionite–citrate–bicarbonate. Mass balance calculations showed that fertilization with either NPK or FYM caused losses of between 0.8 and 1.1 g Co m−2 after 50 years of cultivation against the uncultivated site as a reference. However, Co increased by 1.8 g m−2 in the soil receiving FYM + NPK, suggesting that the Co of the soil was best maintained under this management probably because of incidental additions of Co in the manures. Furthermore, the positive Co balance in the FYM + NPK plot was partly enhanced by its larger contents of clay, Fe and pedogenic Mn oxides than in either the FYM or NPK plots. Clay, Fe and pedogenic oxides served as Co sinks in this particular savanna soil.  相似文献   

6.
Long-term nitrogen supply from cattle slurry   总被引:4,自引:0,他引:4  
Abstract. Manures can supply nitrogen (N) beyond the year of application, producing residual effects that are are not fully expressed in short-term experiments. From 1997 to 2003 we conducted a field experiment on a sandy soil in the Netherlands to quantify the residual N effect. Treatments comprised different time series of cattle slurry applied at rates ranging from 0 to 220 kg total-N ha−1 yr−1, while compensating for differences in available potassium and phosphorus. Dry matter and N yields of silage maize responded positively ( P <0.05) to both current cattle slurry applications and applications in previous years. N yields could be satisfactorily predicted with a simple N model by adopting an annual relative decomposition rate (RDR) of the organic N in cattle slurry of 25–33%. Subsequent model calculations indicated that the relative N fertilizer value (RNFV) of cattle slurry rises from approximately 55–60% when manure is first applied to approximately 80% after 6 and 8 years for RDRs of 33% and 25%, respectively. Given the long manuring history of most agricultural systems, rethinking the fertilizer value of manure seems justified.  相似文献   

7.
A combination of mathematical analysis and computer simulation, using parameters readily measured in a nitrogen-15 field experiment, is employed to determine rates of mineralization, immobilization and nitrification under a growing crop. The procedure also yields the proportion of crop nitrogen uptake occurring as ammonium and nitrate.
When applied to -results from grass lysimeters receiving 250 or 900 kg N ha–1 a–1 as ammonium nitrate, the analysis suggested that at 250 kgN ha–1 a–1 64–66% of crop nitrogen uptake was as ammonium; at 900 kg N ha–1 a–1 the figure was 43–49%. Nitrification at 250kgNha–1 was only 13–19kgN ha–1 over 160d while at 900 kg N ha–1 between 191 and 232 kg N ha–1 were nitrified.
The results suggested that the apparent inhibition of nitrification in grassland soils may simply reflect poor substrate competition by nitrifying bacteria. Finally, there was a suggestion that mineralization/immobilization was lower at the high fertilizer rate.  相似文献   

8.
Manure is a source of plant nutrients and can make a valuable contribution to soil organic matter (SOM). Two experimental sites were studied on a Halpic Phaeozem soil near Bad Lauchstadt in Germany. The first experiment, called the static experiment, commenced in 1902. The impact of fresh farmyard manure (FYM) (0, 20 and 30 t ha−1 2 year−1) combined with P, K and N fertiliser application on total organic C (CT), labile C (CL), non-labile C (CNL), total N (NT), mean weight diameter (MWD) and unsaturated hydraulic conductivity (Kunsat) was investigated. The second experiment commenced in 1984 and investigated the effect of extreme rates of fresh FYM applications (0, 50, 100 and 200 t ha−1 year−1) and cropping, or a continuous tilled fallow on the same soil properties. At both sites a nearby grassland site served as a reference. On the static experiment, FYM application increased all C fractions, particularly CL, where application of 30 t ha−1 2 year−1 increased CL by 70% compared with no FYM application. Fertiliser additions to the static experiment had a positive influence on C fractions while NT increased from both FYM and fertiliser application. MWD increased as a result of FYM application, but did not reach that of the grassland site. Both fertiliser and FYM application increased Kunsat (10 mm tension) on the static experiment. In the second experiment application of 200 t ha−1 year−1 of FYM increased concentrations of CL by 173% and of CNL by 80%, compared with no FYM application to make them equivalent to, or greater than the grassland site. A continuously tilled fallow resulted in significant decreases in all C fractions, NT and MWD compared with the cropped site, while Kunsat (10 mm tension) was increased on the 0 and 50 t ha−1 year−1 treatments as a result of a recent tillage. There was no difference in Kunsat between the cropped and the continuous tilled fallow at FYM applications of 100 and 200 t ha−1 year−1. There were similar significant positive correlations of all C fractions and NT with MWD on both experimental sites but the relationships were much stronger on the extreme FYM experiment. Weaker relationships of C fractions and NT with Kunsat (10 mm tension) occurred for the static experimental site but these were not significant for the extreme FYM experimental site. The strongest relationship between C fractions and Kunsat was with CL. This research has shown that applications of FYM can increase SOM and improve soil physical fertility. However, the potential risk of very high rates of FYM on the environment need to be taken into consideration, especially since the application of organic materials to soils is likely to increase in the future.  相似文献   

9.
Abstract. Soil samples from a 32-year grassland field experiment were taken from 0–5, 5–10, and 10–15 cm soil depths in February 2002. Plots received annual treatments of unamended control, mineral fertilizer, three rates of pig slurry and three rates of cow slurry, each with six replicates. Samples were analysed for cation exchange capacity (CEC), exchangeable cations (Na+, K+, Ca2+, Mg2+), pH and Olsen P. Exchangeable sodium percentage (ESP) was calculated as a sodicity indicator. Mean ESP was generally greater for slurry treatments than the control, with a trend of increasing ESP with application rate. This was particularly marked for cow slurry. At 0–5 cm depth ESP increased from 1.18 in the control to 1.75 at the highest rate of pig slurry and 5.60 at the highest rate of cow slurry. Similar trends were shown for CEC, exchangeable Na+, K+ and Mg2+, Ca2+ and Olsen P. The build-up of soil P due to slurry applications, together with this combination of physical and chemical factors, may increase the risk of P loss to surface waters, particularly from soils receiving high rates of cow slurry.  相似文献   

10.
Abstract. This paper compares nitrate leaching losses from organic farms, which depended on legumes for their nitrogen inputs (66 site years) with those from conventional farms using fertilizers under similar cropping and climatic conditions (188 site years). The conventional farms were within Nitrate Sensitive Areas in England, but sites following special practices associated with that scheme were excluded. Nitrate losses during the organic ley phase (including the winter of ploughing out) were similar (45 kg N ha–1) to those from conventional long-term grass receiving fertilizer N inputs of less than 200 kg N ha–1 (44 kg N ha–1) and from the grass phase of conventional ley-arable rotations (50 kg N ha–1). Losses from conventional grass receiving higher N inputs were greater than from organic or less intensive grass. Nitrate losses following arable crops averaged 47 and 58 kg N ha–1 for the organic and conventional systems respectively, with part of the difference being due to the greater proportion of non-cereal break crops in the latter. Thus under similar cropping, losses from organic systems are similar to or slightly smaller than those from conventional farms following best practice.  相似文献   

11.
A long-term field experiment with continuous corn, corn–soybean, and corn–alfalfa rotations, and different organic and inorganic soil nitrogen amendments was established at Ottawa, Ont., in 1991. Amendments applied to continuous corn were none, inorganic fertilizer at 100 and 200 kg N ha−1, stockpiled and rotted manure, each at 50 and 100 Mg ha−1 (wet weight). Amendments applied in the corn year to the 2-year rotations were none, inorganic fertilizer at 100 kg N ha−1, and stockpiled and rotted manure at 50 Mg ha−1. Mouldboard plow draft and tractor fuel consumption measurements were made with Agriculture and Agri-Food Canada’s instrumented research tractor in conjunction with normal fall tillage in 1991 prior to amendment application, and for 4 years from 1996 to 1999.

Results showed a small difference among the amendment treatments in 1996 and 1997, and a much larger difference in 1998 and 1999. After 8 years of amendment application, plots receiving the manure amendments at the high rates exhibited from 27 to 38% lower plow draft and 13 to 18% lower tractor fuel consumption than those receiving the inorganic fertilizer. The difference was less for plots receiving the lower manure rates. The same trend occurred in the 2-year rotation plots where manures were applied in alternate years, although, the differences were much lower, and not always significant. The data clearly show that changes in soil structure and organic matter accompanying repeated applications of manure are manifested in reduced tillage energy.  相似文献   


12.
We studied the effect of repeated application (once every 2 d) of a fertilizer solution with different ratios of NH4+ - and NO3-N on N2O emission from soil. After the excess fertilizer solution was drained from soil, the water content of soil was adjusted to 50% of the maximum water-holding capacity by suction at 6 × 103 Pa. Repeated application of NH4+- rich fertilizer solution stimulated nitrification in soil more than NO3-rich fertilizer. Although the evolution of N2O through nitrifier denitrification tended to increase with the repeated addition of a fertilizer solution rich in NH4+ rather than in NO3, the contribution of nitrifier denitrification remained at levels of 20 to 36% of the total emission regardless of the inorganic N composition. The total emission of N2O also tended to increase with the application of NH4+- rather than NO3-rich fertilizer. It was suggested that the coupled process of nitrification and denitrification at micro-aerobic sites became important when fertilizer rich in NH4+ was applied to soil under relatively aerobic conditions.  相似文献   

13.
Abstract. A set of lysimeter based experiments was carried out during 2000/01 to evaluate the impact of soil type and grassland management on potassium (K) leaching. The effects of (1) four soil textures (sand, loam, loam over chalk and clay), (2) grazing and cutting (with farmyard manure application), and (3) K applied as inorganic fertilizer, dairy slurry or a mixture of both sources were tested. Total K losses in the clay soil were more than twice those in the sand soil (13 and 6 kg K ha−1, respectively) because of the development of preferential flow in the clay soil. They were also greater in the cut treatment than in the grazed treatment (82 and 51 kg K ha−1, respectively; P 0.01), associated with a 63% increase of K concentration in the leachates from the former (6.7 ± 0.28 and 4.1 ± 0.22 mg K L−1 for cut and grazed, respectively; P 0.01) because of the K input from the farmyard manure. The source of fertilizer did not affect total K losses or the average K concentration in the leachates ( P > 0.05), but it changed the pattern of these over time.  相似文献   

14.
Yield decline or stagnation and its relationship with soil organic matter fractions in soybean (Glycine max L.)–wheat (Triticum aestivum L.) cropping system under long-term fertilizer use are not well understood. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in an Alfisol (Typic Haplustalf) at a long-term experiment at Birsa Agricultural University, Ranchi, India. For 30 years, the following fertilizer treatments were compared with undisturbed fallow plots (without crop and fertilizer management): unfertilized (control), 100% recommended rate of N, NP, NPK, NPK+ farmyard manure (FYM) and NPK + lime. Yield declined with time for soybean in control (30 kg ha−1 yr−1) and NP (21 kg ha−1 yr−1) treatments and for wheat in control (46 kg ha−1 yr−1) and N (25 kg ha−1 yr−1) treatments. However, yield increased with time for NPK + FYM and NPK + lime treatments in wheat. At a depth of 0–15 cm, small macroaggregates (0.25–2 mm) dominated soil (43–61%) followed by microaggregates (0.053–0.25 mm) with 13–28%. Soil microbial biomass carbon (SMBC), nitrogen (SMBN) and acid hydrolysable carbohydrates (HCH) were greater in NPK + FYM and NPK + lime as compared to other treatments. With three decades of cultivation, C and N mineralization were greater in microaggregates than in small macroaggregates and relatively resistant mineral associated organic matter (silt + clay fraction). Particulate organic carbon (POC) and nitrogen (PON) decreased significantly in control, N and NP application over fallow. Results suggest that continuous use of NPK + FYM or NPK + lime would sustain yield in a soybean–wheat system without deteriorating soil quality.  相似文献   

15.
Abstract. Phosphorus (P) use in UK agriculture is reviewed and a P balance sheet presented. The productive grassland and arable area has accumulated an average P surplus of c. 1000 kg ha–1 over the last 65 years. Over the period 1935–1970, the annual P surplus more than doubled due to an increase in animal numbers and associated requirements for inorganic fertilizers and livestock feeds. Since 1970, surplus P has declined by c . 40% as crop yields and P offtake have continued to increase while fertilizer and manure P inputs have remained relatively constant. In 1993, P use efficiency (P imports/P exports) in UK agriculture was estimated at 25% leading to an average annual surplus of 15 kg P ha–1 yr–1, although the latter has since decreased slightly due to reduced fertilizer use. Intensification and specialization of agriculture has also increased the range in P surpluses that are likely between livestock and arable dominated systems. The largest P surpluses occur in the relatively limited areas of arable soils which receive manure from intensive pig and poultry units, whilst farms without manure inputs generate only small surpluses, or are in balance. The cumulative P surplus has led to a build-up of soil total and easily-exchangeable P, especially in areas receiving both fertilizers and manures. Fundamental differences in P use efficiency, surplus P accumulation and the potential for P loss to water, exist between arable and grassland farms and it is important to separate these, due to the marked regionalization of UK agriculture. More judicial use of feeds and fertilizers is required to further reduce the P surplus and minimize the long-term risk of water eutrophication.  相似文献   

16.
To investigate the effects of plant species in grassland on methane (CH4) and nitrous oxide (N2O) fluxes from soil, fluxes from an orchardgrass ( Dactylis glomerata L.) grassland, white clover ( Trifolium repens L.) grassland and orchardgrass/white clover mixed grassland were measured weekly from April 2001 to March 2002 using a vented closed chamber method. Related environmental parameters (soil inorganic N content, soil pH (H2O) value, soil moisture content, soil temperature, grass yield, and the number of soil microorganisms) were also regularly monitored. On an annual basis, CH4 consumption in the soil of the orchardgrass grassland, white clover grassland and orchardgrass/white clover mixed grassland was 1.8, 2.4, and 1.8 kg C ha−1 year−1, respectively. The soil bulk density of the white clover grassland was lower than that of the other grasslands. Fluxes of CH4 were positively correlated with the soil moisture content. White clover increased the CH4 consumption by improving soil aeration. Nitrogen supply to the soil by white clover did not decrease the CH4 consumption in the soil of our grasslands. On the other hand, annual N2O emissions from the orchardgrass grassland, white clover grassland, and orchardgrass/white clover mixed grassland were 0.39, 1.59, and 0.67 kg N ha−1 year−1, respectively. Fluxes of N2O were correlated with the NO3 content in soil and soil temperature. White clover increased the N2O emissions by increasing the inorganic N content derived from degrading white clover in soil in summer.  相似文献   

17.
Abstract. The effect of increasing rates of nitrogen (N) fertilizer on the yield response of 3 or 4 consecutive winter cereal crops after ploughing out grass was investigated at six field sites on commercial farms in England and Wales. Amounts of N required for an economically optimum yield (>3 kg of grain for each kg of fertilizer N applied) ranged from 0 to 265 kg ha−1 and were dependent on soil N supply, but not on crop yield. Optimum N rates were large (mean 197 kg N ha−1) at three sites: two sites where cereals followed 2-year grass leys receiving low N inputs (<200 kg N ha−1), and at one site where a cut and grazed 4-year ley had received c . 315 kg N ha−1 of fertilizer N annually. At the other three sites where 4 and 5-year grass leys had received large regular amounts of organic manures (20–30 t or m3 ha−1) plus fertilizer N ( c . 300 kg ha−1 each year), optimum N rates were low (mean 93 kg N ha−1) and consistently over-estimated by the farmer by an average of 107 kg N ha−1. Optimum N rates generally increased in successive years after ploughing as the N supply from the soil declined. Determination of soil C:N ratio and mineral N (NO3N+NH4N) to 90 cm depth in autumn were helpful in assessing fertilizer N need. The results suggest there is scope to improve current fertilizer recommendations for cereals after grass by removing crop yield as a determinant and including an assessment of soil mineralizable N during the growing season.  相似文献   

18.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

19.
Abstract. Changes in amounts of macro-(N, P, K) and micro-nutrients (Fe, Mn, Zn and Cu) were determined in two calcareous soils amended over an eight-month period with pig slurry applications ranging from 0 to 500 m3/ha, and planted in containers with green pepper ( Capsicum annuum ). Total N and exchangeable K increased after slurry applications of 300 m3/ha or more, and available P increased after the smallest application rate (100m3/ha). Maximum crop nutrient uptakes of 41, 40 and 91% for N, P and K occurred with the smallest dose of slurry. Large losses of N, ranging from 27 to 74% (mean 55%) of N added to soil, occurred with all slurry treatments. From 41 to 71% (mean 55%) of the total P added in pig slurry was fixed in non-assimilable forms. Most of the K from the pig slurry was available to the plants. Most of the micro-nutrients (Fe, Mn, Zn and Cu) from the slurry were immobilized in the soil, probably because of the high pH and the small amounts of organic matter in both the slurries and soils tested.  相似文献   

20.
Abstract. A long-term lysimeter experiment with undisturbed monoliths studied leaching behaviour and balances of phosphorus (P), potassium (K) and nitrogen (N) during a seven year crop rotation on four types of soil receiving inorganic fertilizers, manure and grass compost respectively. It was shown that application of manure did not lead to any direct change in nutrient leaching, unlike the application of fertilizers to soils of normal fertility. However, soil type considerably affected the nutrient concentrations in the drainage water.
Manure applied in amounts equal to the maximum animal density allowed by Swedish legislation slightly oversupplied P and N (0.5–3.5 and 18–38 kg ha−1 y−1 respectively) compared to the crop requirement and leaching losses for most of the soils. The relationship between lactate-soluble P in the topsoil and the concentrations of dissolved P in the drainage water was very strong. However the strength of this relationship was dependent on just one or two soils. P losses from a fertile sandy soil were large (1–11 kg ha−1 y−1) throughout the crop rotation and average crop removal (13 kg ha−1 y−1) plus the leaching losses were not balanced (average deficit 3–6 kg ha−1 y−1) by the addition of fertilizer, manure or grass compost. No decreasing trend was found in the P losses during seven years. However, the K deficit (average 26 kg ha−1 y−1) led to a significant reduction in the leaching trend from this soil. The other soils that had a smaller K deficit showed no significant reduction in the leaching of K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号