首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. In organic farming, potassium (K) deficiency may become a significant problem due to nutrient import restrictions. Knowledge about potential K leaching in systems with different K budgets is therefore important for effective agricultural management. We investigated the effect of four organic farming systems (two livestock densities in combination with two types of organic manure) on crop yields, K leaching and K balances in a six course crop rotation from 1993/94 to 1997/98. Average K concentrations in soil water extracted by means of ceramic suction cups at 1 m depth were 0.6 mg K l−1 corresponding to a K leaching loss of 1.5 kg ha−1 yr−1 which was less than expected from values reported in the literature. Variation in K budgets from −12 to +30 kg ha−1 yr−1 did not affect K leaching. In an additional experiment with application of 988 kg K ha−1 as KCl, K leaching accounted for only 0.2% of the applied K although 40% of the accompanying Cl was leached. The main part of the applied K was retained in the topsoil. It was concluded that K leaching was a result of the fertilizer history rather than of the current K budget.  相似文献   

2.
Abstract. Diffuse soluble reactive P (SRP) & total P (TP) loads from over 50 major river catchments in Northern Ireland were predicted using an export coefficient modelling approach. Phosphorus export coefficients for each CORINE land cover class, derived from satellite imagery, allowed the prediction of P loads from a breakdown of the CORINE land cover classes by catchment using a GIS. This approach was validated using observed P loads calculated from flow and concentration data. Mean measured Olsen-P concentrations in the soil A-horizon were also determined on a catchment basis. Plots of P loads to the watercourse versus Olsen-P concentrations in the soil showed a breakpoint around 22 mg Olsen- P l−1 for both SRP & TP data. Below Olsen-P concentrations of 22 mg l−1, SRP & TP losses were essentially independent of Olsen-P at 0.28 and 0.63 kg P ha−1 yr−1, respectively. Above Olsen-P concentrations of 22 mg l−1, there was considerable spread in the P loss data. Nevertheless, significant upward trends in SRP and TP losses to watercourses were detected with increasing Olsen-P at a rate of approximately 0.5 and 1.0 kg P ha−1 yr−1, for SRP and TP respectively, for each 10 mg l−1 increase in Olsen-P.  相似文献   

3.
We used a laboratory incubation approach to measure rates of net N mineralization and nitrification in forest soils from Fu-shan Experimental Forest WS1 in northern Taiwan. Net mineralization rates in the O horizon ranged from 4.0 to 13.8 mg N kg−1 day−1, and net nitrification rates ranged from 2.2 to 11.6 mg N kg−1 day−1. For mineral (10–20 cm depth) soil, net mineralization ranged from 0.06 to 2.8 mg N kg−1 day−1 and net nitrification rates ranged from 0.02 to 2.8 mg N kg−1 day−1. We did not find any consistent differences in N mineralization or nitrification rates in soils from the upper and lower part of the watershed. We compared the rates of these processes in three soil horizons (to a soil depth of 30 cm) on a single sampling date and found a large decrease in both net N mineralization and nitrification with depth. We estimated that the soil total N pool was 6,909 kg N ha−1. The present study demonstrates the importance of the stock of mineral soil N in WS1, mostly organic N, which can be transformed to inorganic N and potentially exported to surface and ground water from this watershed. Additional studies quantifying the rates of soil N cycling, particularly multi-site comparisons within Taiwan and the East Asia–Pacific region, will greatly improve our understanding of regional patterns in nitrogen cycling.  相似文献   

4.
Abstract. Land disposal of sewage sludge in the UK is set to increase markedly in the next few years and much of this will be applied to grassland. Here we applied high rates of digested sludge cake (1–1.5×103 kg total N ha−1) to grassland and incorporated it prior to reseeding. Using automated chambers, nitrous oxide (N2O) and carbon dioxide (CO2) fluxes from the soil were monitored 2–4 times per day, for 6 months after sludge incorporation. Peaks of N2O emission were up to 1.4 kg N ha−1 d−1 soon after incorporation, and thereafter were regularly detected following significant rainfalls. Gas emissions reflected diurnal temperature variations, though N2O emissions were also strongly affected by rainfall. Although emissions decreased in the winter, temperatures below 4 °C stimulated short, sharp fluxes of both CO2 and N2O as temperature increased. The aggregate loss of nitrogen and carbon over the measurement period was up to 23 kg N ha−1 and 5.1 t C ha−1. Losses of N2O in the sludge-amended soil were associated with good microbial conditions for N mineralization, and with high carbon and water contents. Since grassland is an important source of greenhouse gases, application of sewage sludge can be at least as significant as fertilizer in enhancing these emissions.  相似文献   

5.
Strategies to encourage better use of nitrogen in animal manures   总被引:4,自引:0,他引:4  
Abstract. Research conducted in the MAFF Nitrate Programme has been used to formulate new and improved guidelines on the efficient use of manure nitrogen (N). In order to reduce nitrate leaching losses, manures containing large amounts of available N (i.e. slurries and poultry manures) should not be applied to free-draining soils in the period from autumn to early winter. Also, for efficient nutrient utilization manure application rates should be consistent with agronomic requirements (up to 250 kg total N ha−1 yr−1). Existing farm machinery was shown to be capable of applying manures evenly to grassland and arable stubbles, but required an accurate estimate of application rate and the careful matching of spreading widths. To provide growers with detailed guidance on the fertilizer N replacement value of manures the computer-based decision support system MANNER (MANure Nitrogen Evaluation Routine) has been developed. The much improved understanding of manure N losses and availability has been summarized in a series of 'Managing Livestock Manures' booklets, the MAFF Fertilizer Recommendation booklet and the Codes of Good Agricultural Practice.  相似文献   

6.
Field experiments were designed to quantify N2O emissions from corn fields after the application of different types of nitrogen fertilizers. Plots were established in South Kalimantan, Indonesia, and given either urea (200 kg ha−1), urea (170 kg ha−1) + dicyandiamide ([DCD] 20 kg ha−1) or controlled-release fertilizer LP-30 (214 kg ha−1) prior to the plantation of corn seeds (variety BISI 2). Each fertilizer treatment was equivalent to 90 kg N ha−1. Plots without chemical N fertilizer were also prepared as a control. The field was designed to have three replicates for each treatment with a randomized block design. Nitrous oxide fluxes were measured at 4, 8, 12, 21, 31, 41, 51, 72 and 92 days after fertilizer application (DAFA). Total N2O emission was the highest from the urea plots, followed by the LP-30 plots. The emissions from the urea + DCD plots did not differ from those from the control plots. The N2O emission from the urea + DCD plots was approximately one thirtieth of that from the urea treatment. However, fertilizer type had no effect on grain yield. Thus, the use of urea + DCD is considered to be the best mitigation option among the tested fertilizer applications for N2O emission from corn fields in Kalimantan, Indonesia.  相似文献   

7.
Previous trials have revealed variable responses of sago palm ( Metroxylon sagu Rottb.) to fertilizer application, particularly nitrogen (N). In the present study, we quantified the fertilizer use efficiency (FUE) of sago palm for the first time using 15N-labeled fertilizer in pot and field experiments. The pot experiment was conducted in Japan using a 2:1 mixture of sand to Philippine soil. The field experiment was conducted in Leyte in the Philippines. Both experiments consisted of three replicates in each of three treatments: control, 15N urea at 50 kg N ha−1 and 15N urea at 100 kg N ha−1. The N uptake of sago palm increased significantly, but inconsistently with increasing N application. The few instances of a significant increase in N uptake did not translate into significant improvements in growth parameters, except for the number of leaflets in the pot experiment. The FUE values for sago seedlings (< 6 months) in the pot experiment treated with 50 and 100 kg N ha−1 were 10.5 and 13.2%, respectively, whereas for the 2-year-old sago palms in the field, the corresponding FUE values were 14.8 and 12.0%. The FUE values were similar at the two levels of N application in both experiments. Sago growth parameters appeared to be insensitive to N application, suggesting that the form of N and the timing of N fertilization are important factors for sago palms. Therefore, the use of N fertilizer in sago production can only be justified after determining and fully understanding the response of sago palm to N application.  相似文献   

8.
Abstract. Leaching of calcium (Ca), potassium (K) and magnesium (Mg) from urine patches in grazed grassland represents a significant loss of valuable nutrients. We studied the effect on cation loss of treating the soil with a nitrification inhibitor, dicyandiamide (DCD), which was used to reduce nitrate loss by leaching. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). The treatment of the soil with DCD reduced Ca2+ leaching by the equivalent of 50%, from 213 to 107 kg Ca ha−1 yr−1 on a field scale. Potassium leaching was reduced by 65%, from 48 to 17 kg K ha−1 yr−1. Magnesium leaching was reduced by 52%, from 17 to 8 kg Mg ha−1 yr−1. We postulate that the reduced leaching loss of these cations was due to the decreased leaching loss of nitrate under the urine patches, and follows from their reduced requirement as counter ions in the drainage water. The treatment of grazed grassland with DCD thus not only decreases nitrate leaching and nitrous oxide emissions as reported previously, but also decreases the leaching loss of cation nutrients such as Ca2+, K+ and Mg2+.  相似文献   

9.
Abstract. Rainfall has become less acid at Rothamsted and Saxmundham over the period 1969–83. The pH of rain at these two sites has increased from 4.4–4.6 to about 4.8–4.9; at Woburn it has remained approximately constant at 4.4–4.6. Amounts of NH4-N and NO3-N deposited at present are 10–15 and 5–10 kg ha−1 a−1 respectively. They have been increasing at Rothamsted and Woburn. Some 50–60 kg ha−1 a−1 of Cl and 25–35 kg ha−1 a−1 of SO4-S are presently deposited. Deposition of non-sea Cl and SO4-S has been increasing markedly at all three sites. Non-sea salts comprise 35% of the total salt deposition near the coast at Saxmundham, 58% inland at Rothamsted and Woburn.  相似文献   

10.
Anthropogenic conversion of primary forest to pasture for cattle production is still frequent in the Amazon Basin. Practices adopted by ranchers to restore productivity to degraded pasture have the potential to alter soil N availability and N gas losses from soils. We examined short-term (35 days) effects of tillage prior to pasture re-establishment on soil N availability, CO2, NO and N2O fluxes and microbial biomass C and N under degraded pasture at Nova Vida ranch, Rondônia, Brazilian Amazon. We collected soil samples and measured gas fluxes in tilled and control (non tilled pasture) 12 times at equally spaced intervals during October 2001 to quantify the effect of tillage. Maximum soil NH4+ and NO3 pools were 13.2 and 6.3 kg N ha−1 respectively after tillage compared to 0.24 and 6.3 kg N ha−1 in the control. Carbon dioxide flux ranged from 118 to 181 mg C–CO2 m2 h−1 in the control (non-tilled) and from 110 to 235 mg C–CO2 m2 h−1 when tilled. Microbial biomass C varied from 365 to 461 μg g−1 in the control and from 248 to 535 μg g−1 when tilled. The values for N2O fluxes ranged from 1.22 to 96.9 μg N m−2 h−1 in the tilled plots with a maximum 3 days after the second tilling. Variability in NO flux in the control and when tilled was consistent with previous measures of NO emissions from pasture at Nova Vida. When tilled, the NO/N2O ratio remained <1 after the first tilling suggesting that denitrification dominated N cycling. The effects of tilling on microbial parameters were less clear, except for a decrease in qCO2 and an increase in microbial biomass C/N immediately after tilling. Our results suggest that restoration of degraded pastures with tillage will lead to less C matter, at least initially. Further long-term research is needed.  相似文献   

11.
The objective of this review is to make current knowledge on the nitrogen (N) load throughout the atmosphere (airborne N load) available to readers, with special emphasis on Japanese and Chinese agroecosystems. Key species of airborne N are ammonia, nitrogen dioxide, nitrogen oxide, nitric acid, nitrous acid and particulate ammonium and nitrate. Organic N also exists in the atmosphere. The main processes in terms of the airborne N load involve emission, atmospheric transportation and transformation, atmospheric deposition and environmental impacts. Agricultural activities are the largest emitters of ammonia through emissions mainly from livestock waste and field-applied N fertilizers. The ammonia emissions in China in 1995 from chemical fertilizers and organic fertilizers, such as animal excreta, were estimated to be 3.56 and 2.04 Tg N year−1, respectively, and the emissions in Japan were 0.059 and 0.069 Tg N year−1, respectively. The most fundamental causes of the airborne N load in relation to Japanese and Chinese agriculture were intensive livestock farming in Japan and over use of N fertilizers in China. However, agroecosystems are also a sink for airborne N. Atmospheric N deposition was up to 20 and 60 kg N ha−1 year−1 in Japan and China, respectively. The unrelenting load of airborne N continues in Japan and China. The development of a simple, but accurate method to determine the dry deposition flux that is applicable to simultaneous and multipoint observations would be valuable. The establishment of cross relationships among in situ observations, remote sensing and numerical modeling is also needed to cope with the issue by assessing the actual status, predicting the future status and working out effective measures.  相似文献   

12.
Improved-fallow agroforestry systems are increasingly being adopted in the humid tropics for soil fertility management. However, there is little information on trace gas emissions after residue application in these systems, or on the effect of tillage practice on emissions from tropical agricultural systems. Here, we report a short-term experiment in which the effects of tillage practice (no-tillage versus tillage to 15 cm depth) and residue quality on emissions of N2O, CO2 and CH4 were determined in an improved-fallow agroforestry system in western Kenya. Emissions were increased following tillage of Tephrosia candida (2.1 g N2O-N ha−1 kg N applied−1; 759 kg CO2-C ha−1 t C applied−1; 30 g CH4-C ha−1 t C applied−1) and Crotalaria paulina residues (2.8 g N2O-N ha−1 kg N applied−1; 967 kg CO2-C ha−1 t C applied−1; 146 g CH4-C ha−1 t C applied−1) and were higher than from tillage of natural-fallow residues (1.0 g N2O-N ha−1 kg N applied−1; 432 kg CO2-C ha−1 t C applied−1; 14.7 g CH4-C ha−1 t C applied−1) or from continuous maize cropping systems. Emissions from these fallow treatments were positively correlated with residue N content (r = 0.62–0.97; P < 0.05) and negatively correlated with residue lignin content (r = −0.56, N2O; r = −0.92, CH4; P < 0.05). No-tillage of surface applied Tephrosia residues lowered the total N2O and CO2 emitted over 99 days by 0.33 g N2O-N ha−1 kg N applied−1 and 124 kg CO2-C ha−1 t C applied−1, respectively; estimated to provide a reduction in global warming potential of 41 g CO2 equivalents. However, emissions were increased from this treatment over the first 2 weeks. The responses to tillage practice and residue quality reported here need to be verified in longer term experiments before they can be used to suggest mitigation strategies appropriate for all three greenhouse gases.  相似文献   

13.
To evaluate the atmospheric load of reactive gaseous nitrogen in the fast-developing Eastern China region, we compiled inventories of nitrous oxide (N2O), nitrogen oxide (NOx) and ammonia (NH3) emissions from a typical rural catchment in Jiangsu province, China, situated at the lower reach of the Yangtze River. We considered emissions from synthetic N fertilizer, human and livestock excreta, decomposition of crop residue returned to cropland and residue burning, soil background and household energy consumption. The results showed that, for the 45.5 km2 catchment, the annual reactive gaseous emission was 279 ton N, of which 7% was N2O, 16% was NOx and 77% was NH3. Synthetic N fertilizer application was the dominant source of N2O and NH3 emissions and crop residue burning was the dominant source of NOx emission. Sixty-seven percent of the total reactive gaseous N was emitted from croplands, but on a per unit area basis, NOx and NH3 emissions in residential areas were higher than in croplands, probably as a result of household crop residue burning and extensive human and livestock excreta management systems. Emission per capita was estimated to be 18.2 kg N year−1 in the rural catchment, and emission per unit area was 56.9 kg N ha−1year−1 for NH3 + NOx, which supports the observed high atmospheric N deposition in the catchment. Apparently, efficient use of N fertilizer and biological utilization of crop straw are important measures to reduce reactive gases emissions in this rural catchment.  相似文献   

14.
Nitrogen leaching from soils in the Kopais area of Greece   总被引:1,自引:0,他引:1  
Abstract. The contribution of agriculture to the nitrogen pollution of surface and ground waters of calcareous lake soils in the Kopais area (190 km2) of Greece was studied over three cropping seasons. Sample fields were chosen from seven representative soil units under different crop rotations. The distribution of mineral N (NO3-N + NH4-N) throughout the soil profile and the concentration of NO3-N in the ground water and drainage water were measured and allocated to 6-month winter or spring periods. For all fields N was leached to the deeper soil layers and to the saturated zones by both excess winter rainfall and spring irrigation of different crops The amount of nitrogen leached depended on the amount of nitrogen fertilizer applied; the depth of leaching varied with the physical properties of the soils. Losses in individual fields accounted for the equivalent of 17.6–80.8% of the nitrogen applied to maize and 70.5–94.1% of that applied to wheat. For the whole region estimated minimum N losses ranged from 175, 912 to 783, 564 kg for the 6-month period. Nitrate concentrations in the ground and surface waters were often more than the EC target level of 25 mg/1.  相似文献   

15.
Soil N mineralization was quantified in two long-term experiments in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated for 33 years (Site 1) and 12 years (Site 2). Both sites had the same soil type but differed in crop rotation. N mineralization kinetics were assessed in situ in bare soil in both systems for 254 days (Site 1) and 555 days (Site 2) by taking frequent measurements of water and nitrate contents from soil layers and using the LIXIM calculation model. The N mineralization potential was also determined in soil samples incubated under controlled laboratory conditions. Small or non-significant differences in water and nitrate contents between NT and CT were apparent within the soil profiles on both sites. Net mineralization did not differ significantly between sites or tillage treatments. The amount of N mineralized from August 2003 to April 2004 was 67 ± 10 kg N ha−1 on Site 1 and 74 ± 5 kg N ha−1 on Site 2, and 161 ± 6 kg N ha−1 from August 2003 to February 2005 on Site 2. The kinetics of N mineralization versus normalized time (equivalent time at constant temperature of 15 °C and water content at field capacity) were linear during the shorter period (254 days corresponding to 120 normalized days). The slope (N mineralization rate) did not differ significantly between treatments and sites, and the average rate was 0.57 ± 0.05 kg N ha−1 nd−1. The kinetics were non-linear on Site 2 over the longer period (555 days corresponding to 350 normalized days). They could be fitted to an exponential model with a slope at the origin of 0.62 kg N ha−1 nd−1. The N mineralization kinetics obtained in laboratory incubations for 120–150 normalized days were also almost linear with no significant differences between treatments. Assuming that mineralization took place in the ploughed layer (in CT) or over the same soil mass (in NT) they were in good agreement with the kinetics determined in situ on both sites. The calculated water drainage below the sampled profile was slightly greater in NT due to lower evaporation. The calculated leached N was slightly higher in NT than CT on Site 1, but did not differ between treatments on Site 2. It is concluded that N mineralization and leaching in NT and CT were similar, despite large differences in N distribution within the soil profile and a slight difference in organic N stock.  相似文献   

16.
An approach for estimating when soils will reach maximum nitrogen storage   总被引:4,自引:0,他引:4  
Abstract. Net accumulation of organic nitrogen in soil is constrained by the amount of organic matter and its minimum C:N ratio. Our objective was to estimate the potential for New Zealand soils to continue accumulating nitrogen within the soil organic pool. We calculated total carbon and nitrogen in the top metre of 138 representative soil profiles from the New Zealand National Soils Database. Carbon in these mainly pasture soils was assumed to be at steady state. The maximum nitrogen storage capacity was estimated by calculating the amount of nitrogen stored under assumed minimum soil C:N ratios of either 9, 10 or 11. The storage capacity remaining was determined as the difference between the amount of nitrogen currently stored and the maximum storage capacity. The length of time before a soil profile will reach the maximum capacity for nitrogen storage was calculated assuming net accumulation of 20, 50 and 100 kg N ha−1 yr−1. A C:N ratio of 9 (giving most storage capacity) and a conservative accumulation rate of 20 kg N ha−1 yr−1 showed that 12% of these soils would be at maximum storage within 40 years. A C:N ratio of 10 and a storage rate of 50 kg N ha−1 yr−1 would result in 54% of the soils reaching maximum storage within the next 40 years. As the capacity for nitrogen storage in soils declines, nitrate leaching is likely to increase with associated risk to the environment.  相似文献   

17.
The effects of burning on the levels of soil organic matter, soil nitrogen, and soil microbial biomass were studied by carrying out experimental shifting cultivation at two sites, Niah and Bakam in Sarawak, Malaysia. Vegetation biomass was burned in plots (10 × 10 m2) at the rates of 0 (control), 100, 200, and 300 Mg ha−1 at the Niah site and 0, 20, and 100 Mg ha−1 at the Bakam site. At the Niah site, the levels of total C and N of the soils did not change throughout the experiment in spite of enhanced soil respiration until 2 months after burning. Although burning induced an increase in the amount of NH4-N of the soils, the readily available pool of N (the sum of the NH4-N, NO3-N, microbial biomass N, and extractable organic N pools) in the burned plots was depleted appreciably at the end of rice cultivation. The effects of burning on these properties tended to be substantial with increasing amounts of the vegetation biomass burned. On the other hand, the levels of total C and N and the readily available N pool at the Bakam site were low before burning compared with those at the Niah site, and the burning treatments did not affect them appreciably. While the rice yield at the Niah site reached the average value obtained in traditional shifting cultivation in Sarawak, that at the Bakam site was much lower. It was suggested that the flush of NH4-N induced by burning was one of the major factors for rice growth.  相似文献   

18.
Denitrification of paddy fields is a key process for improving water quality in fields where nitrate concentrations are high. The objective of the present study was to understand the effects of incorporating organic carbon (C) into soil on the denitrification rate of paddy fields in winter. On 11 December 2007, separate paddy field plots were prepared by incorporating 5 Mg ha−1 of rice straw (RS), 11 Mg ha−1 of rice straw compost (RSC) or a control. A field with a high concentration of nitrate in the water (averaging 18 mg N L−1) was irrigated until 29 March. During the experiment, the daily average soil temperature at a depth of 0.05 m ranged between 3 and 15°C. The nitrate concentration in the surface water in the RS plot, where the residence time was 2 days, decreased more than the concentration in the control or RSC plots. The total estimated nitrate removal from each plot in relation to the other plots was RS > RSC = control. Measurements of the soil from each plot on 29 February 2008 showed that incorporation of RS significantly increased the denitrification potential, even at low temperatures (5–10°C). Furthermore, the RS plot contained more dissolved organic C than the control or RSC plots. This result indicates that supplying RS effectively increases denitrification under low-temperature conditions.  相似文献   

19.
The present study aimed to elucidate ammonia (NH3) volatilization loss following surface incorporation (0–15 cm mixing depth) of nitrogen (N) fertilizer in an upland field of light-colored Andosol in central Japan. A dynamic chamber technique was used to measure the NH3 effluxes. Poultry manure, pelleted poultry manure, cattle manure, pelleted cattle manure and ammonium sulfate were used as N fertilizers for basal fertilization to a bare soil with surface incorporation. All three experiments in summer and autumn 2007 and in summer 2008 showed negligible NH3 volatilization losses following the application of all N fertilizers with the same application rate of 120 kg N ha−1 as total N; these negligible losses were primarily ascribed to chemical properties of the soil, that is, its high cation exchange capacity (283 mmolc kg−1 dry soil) and relatively low pH(H2O) (5.9). In addition, the surface incorporation, the very small ratio of ammoniacal N to total N for the manure, and the decrease in soil pH to ≤5.5 following applications of ammonium sulfate were also advantageous to the inhibition of NH3 volatilization loss from the field-applied N fertilizers.  相似文献   

20.
A method for the analysis of NO3-N in a 2 m KCL soil extract, using ion chromatography, is discussed. It involves the treatment of the KCl extract with Ag+-activated cation exchange resin to remove excess Cl, followed by analysis using a Dionex ion chromatograph. The results of NO3-N in soil extracts agreed closely with those obtained by steam distillation. The method was linear up to 20 mg N dm–3 with a detection limit of 0.1 mg Ndm–3. Quantitative recovery of NO3-N added to soil extracts over the linear range were observed.
Standard deviations of samples containing 2.57 and 15.11 mgN dm–3 were found to be 0.06 and 0.11 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号