首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The safety and the efficacy of several feline leukemia virus (FeLV) vaccines for 16-week-old kittens were determined. Vaccines were derived from an FL74 lymphoblastoid cell line that has been in continuous tissue culture passage for about 4 years. The vaccines were made from living virus, formaldehyde-inactivated whole FL74 cells, and formaldehyde-inactivated whole virus. The efficacy of each produced vaccine was determined by challenge exposure of vaccinated cats with virulent FeLV. The two formaldehyde-inactivated vaccines were found to be safe for use in kittens. Neither vaccine produce a significant feline oncornavirus-associated cell membrane antigen or virus-neutralizing antibody response, nor did they prevent infection with virulent FeLV. The inactivated whole-virus vaccine, however, did substantially decrease the proportion of kittens infected with virulent FeLV that became persistently viremic. In contrast, the whole FL74 cell vaccine did not reduce the number of infected kittens that became persistently viremic. The live-virus vaccine was found to be both safe and efficacious. About a half of the kittens vaccinated with live virus had transient bone marrow infection that lasted from 2 to 4 weeks. Viral antigen was not detected in peripheral blood, and infective virus was not shed in saliva, urine, or feces during the period that the vaccinal virus could be recovered from the bone marrow. In addition, there was no horizontal spread of vaccinal virus from vaccinated to non-vaccinated cagemates. Within several weeks, vaccinated kittens demonstrated no clinical or hematologic abnormalities and had high serum levels of feline oncornavirus-associated cell membrane antigen and virus-neutralizing antibody. Kittens vaccinated with living FeLV were resistant to infection with virulent virus.  相似文献   

2.
The Type II feline infectious peritonitis virus (FIPV) infection of feline macrophages is enhanced by a monoclonal antibody (MAb) to the S protein of FIPV. This antibody-dependent enhancement (ADE) activity increased with the MAb that showed a neutralizing activity with feline kidney cells, suggesting that there was a distinct correlation between ADE activity and the neutralizing activity. The close association between enhancing and neutralizing epitopes is an obstacle to developing a vaccine containing only neutralizing epitopes without enhancing epitopes. In this study, we immunized cats with cell lysate with recombinant baculovirus-expressed N protein of the Type I FIPV strain KU-2 with an adjuvant and investigated its preventive effect on the progression of FIP. Cats immunized with this vaccine produced antibodies against FIPV virion-derived N protein but did not produce virus-neutralizing antibodies. A delayed type hypersensitivity skin response to N protein was observed in these vaccinated cats, showing that cell mediated immunity against the FIPV antigen was induced. When these vaccinated cats were challenged with a high dose of heterologous FIPV, the survival rate was 75% (6/8), while the survival rate in the control group immunized with SF-9 cell-derived antigen was 12.5% (1/8). This study showed that immunization with the cell lysate with baculovirus-expressed N protein was effective in preventing the progression of FIP without inducing ADE of FIPV infection in cats.  相似文献   

3.
Specific pathogen free kittens were vaccinated with an unattenuated field isolate of canine coronavirus (CCV) either by aerosol or subcutaneously, and received boosting vaccinations four weeks later. Aerosolisation elicited a homologous virus-neutralising (VN) antibody response that increased steadily over a four-week period and levelled off one to two weeks after revaccination. The initial aerosolised dose produced an asymptomatic infection with excretion of CCV from the oropharynx up to eight days after vaccination; virus shedding was not detected, however, after the second inoculation. Cats vaccinated subcutaneously developed low VN antibody titres after the first CCV dose and experienced a strong anamnestic response after the second dose. Neutralising antibody titres then levelled off one to two weeks after revaccination at mean values somewhat lower than in cats vaccinated by aerosol. CCV was not isolated from the oropharynx after either subcutaneous dose. Four weeks after CCV boosting inoculations, vaccinated cats and sham-vaccinated control cats were divided into three subgroups and challenged by aerosol with the virulent UCD1 strain of feline infectious peritonitis virus (FIPV UCD1) at three different dosage levels. Five of six cats (including sham-vaccinated controls) given the lowest challenge dose showed no signs of disease, while all other cats developed lesions typical of feline infectious peritonitis (FIP). The five surviving cats developed FIP after subsequent challenge with a fivefold higher dose of FIPV. Thus heterotypic vaccination of cats with CCV did not provide effective protection against FIPV challenge.  相似文献   

4.
Twenty young adult specific pathogen-free cats were randomly divided into two groups of 10 animals each. One group was vaccinated with two doses of feline leukemia virus vaccine according to the manufacturer's recommendations. All 20 cats were challenge exposed oronasally (4 times over a 1-week period), beginning 3 weeks after immunization, with a virulent subgroup A strain of FeLV (CT600-FeLV). The severity of the FeLV infection was enhanced by treating the cats with methylprednisolone acetate at the time of the last FeLV exposure. Ten of 10nonvaccinated cats became persistently viremic compared with 0/10 of the vaccinates. ELISA antibodies to whole FeLV were present at high concentrations after immunization in all of the vaccinated cats, and there was no observable anamnestic antibody response after challenge exposure. ELISA antibodies to whole FeLV appeared at low concentrations in the serum of nonvaccinated cats after infection but disappeared as the viremia became permanently established. Virus neutralizing antibodies were detected in 3/10 vaccinates and 0/10 nonvaccinates immediately before FeLV challenge exposure, and in 8/10 vaccinates and 1/10 nonvaccinates 5 weeks later. Although vaccination did not consistently evoke virus neutralizing antibodies, it appeared to immunologically prime cats for a virus-neutralizing antibody response after infection. Active FeLV infection was detected in bone marrow cells taken 14 weeks after infection from 10/10 nonvaccinates and 0/10 vaccinates. Latent FeLV infection was not detected in bone marrow cells from any of the vaccinated cats 14 weeks after challenge exposure.  相似文献   

5.
Cross-protection studies between the feline infectious peritonitis (FIP) and the porcine transmissible gastroenteritis (TGE) viruses were conducted in cats, pigs and pregnant gilts. Cats vaccinated with TGE virus developed neutralizing antibodies against TGE virus and low titer antibody against FIP virus detected by an indirect fluorescent antibody technique but were not protected against a virulent FIP virus challenge. Baby pigs and pregnant gilts vaccinated with FIP virus did not develop detectable antibodies to TGE virus. Nevertheless, it appeared that vaccination of swine with FIP virus conferred some immunity against TGE virus infection. Seventeen-day-old pigs vaccinated with two doses of FIP virus had a 67% survival rate following a virulent TGE virus challenge, and 75% of the 3-day-old pigs suckling either FIP or TGE-virus-vaccinated gilts survived virulent TGE virus infection in contrast to 0% survival of baby pigs suckling unvaccinated gilts.  相似文献   

6.
Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683   总被引:13,自引:0,他引:13  
Two feline coronavirus isolates were characterized by their disease-causing potential in cats. The 79-1683 feline coronavirus isolate caused an inapparent-to-mild enteritis when given oronasally to specific-pathogen-free kittens and was not a cause of feline infectious peritonitis (FIP). Target tissues for the virus were the mature apical epithelium of the small intestine, mesenteric lymph nodes, tonsils, thymus, and (to a lesser extent) the lungs. Inoculated kittens shed high numbers of virus in their feces for 14 to 17 days, but remained infectious to susceptible kittens for longer periods of time, as evidenced by contact-exposure studies. Because the 79-1683 isolate induced only enteritis, it was designated feline enteric coronavirus (FECV) 79-1683. The 79-1146 feline coronavirus isolate induced effusive abdominal FIP in specific-pathogen-free kittens after oronasal and intraperitoneal inoculation. Clinical signs of disease appeared within 12 to 14 days in almost all inoculated kittens. Because this isolate caused FIP, it was designated FIP virus (FIPV) 79-1146. Cross-protective immunity was not induced by the various coronavirus infections. Kittens preimmunized with the UCD strain of FECV (FECV-UCD) or with FECV-79-1683 were not immune to infection with FIPV-79-1146. Likewise, kittens previously inoculated with FECV-79-1683 were not immune to infection with FIPV-UCD1. In fact, preexisting heterologous FECV-79-1683 immunity often accelerated and enhanced the severity of disease caused by inoculation with FIPV-UCD1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The efficacy of a modified live-virus intranasal vaccine and a killed-virus adjuvanted parenteral vaccine in inducing protective immunity against feline viral rhinotracheitis (FVR) was evaluated in kittens with and without maternally derived FVR antibodies. The intranasal vaccine was given as a single dose to kittens 5 weeks old, and the parenteral vaccine was administered in 2 doses at 5 and 7 weeks of age. Seroconversion was delayed for 5 to 10 days in kittens with maternally derived antibodies, but occurred in all vaccinated kittens by 8 weeks of age. When virulent FVR virus was given, both vaccines provided satisfactory protection against disease but did not prevent infection. The results indicated that the modified live-virus intranasal vaccine or the killed-virus adjuvanted parenteral vaccine can be used successfully in kittens with residual maternally derived FVR antibodies.  相似文献   

8.
Kittens immunized with purified native FeLV-gp70 or -gp85 envelope proteins developed ELISA, but not virus neutralizing, antibodies in their serum to both whole FeLV and FeLV-gp70. Kittens vaccinated with envelope proteins and infected with feline sarcoma virus (FeSV) developed smaller tumors than nonvaccinates, but a greater incidence of persistent retroviremia. Similarly, FeLV-gp70 and -gp85 vaccinated kittens were more apt to become persistently retroviremic following virulent FeLV challenge exposure than nonvaccinates. Kittens vaccinated with inactivated whole FeLV developed smaller tumors after FeSV inoculation and had a lower incidence of persistent retroviremia than nonvaccinates. The protective effect of inactivated whole FeLV vaccine against persistent retroviremia was also seen with FeLV challenge-exposed cats. Protection afforded by inactivated whole FeLV vaccine was not associated with virus neutralizing antibodies, although ELISA antibodies to both whole FeLV and FeLV-gp70 were induced by vaccination.  相似文献   

9.
Feline infectious peritonitis virus (FIPV) is a coronavirus that induces a fatal systemic disease mediated by an inappropriate immune response. Most previous vaccination attempts against FIPV were unsuccessful because IgG antibodies against the surface protein enhance the infection. However, two studies have shown that poxvirus vectors (vaccinia WR and canarypox) expressing only the FIPV membrane (M) protein can elicit a partially protective immunity which is supposed to be cell-mediated (Virology 181 (1991) 327; International patent WO 97/20054 (1997)). In our study, we report the construction of another poxvirus, the modified vaccinia virus Ankara (MVA), as an expression vector for the FIPV M protein. In this vector, the M gene has been inserted downstream a strong early/late promoter, whereas the two previously described poxviruses expressed the M protein during their early stage only. The immunogenicity of the recombinant MVA-M was evaluated in the murine model which revealed an effect of the vector on the Th1/Th2 balance. The vaccine was then tested in cats to evaluate its efficacy in an FIPV 79-1146 challenge. Vaccinated kittens developed FIPV-specific antibodies after immunization, however, none of them was protected against FIPV. Our results suggest a crucial role for the type of poxviral promoter that must be used to induce an effective immune response against FIPV.  相似文献   

10.
An enteric coronavirus that is antigenically closely related to feline infectious peritonitis virus (FIPV) is ubiquitous in the cat population. This virus has been designated feline enteric coronavirus to differentiate it from FIPV. The virus is shed in the feces by many seropositive cats; in catteries it is a cause of inapparent to mildly severe enteritis in kittens 6 to 12 weeks of age. The virus may produce a more severe enteritis in young specific-pathogen-free kittens. Feline enteric coronavirus selectively infects the apical columnar epithelium of the intestinal villi, from the caudal part of the duodenum to the cecum. In severe infections, there are sloughing of the tips of the villi and villous atrophy. Many cats recovering from the disease remain carriers of the virus. Recovered cats, observed for 3 to 24 months, remained healthy and did not develop peritonitis, pleuritis, or granulomatous disease. The relationship of feline enteric coronavirus and FIPV was studied. Although the viruses were antigenically similar, they were distinctly different in their pathogenicities. The enteric coronavirus did not cause feline infectious peritonitis in coronavirus antibody-negative cats inoculated orally or intraperitoneally nor in coronavirus antibody-positive cats inoculated intraperitoneally or intratracheally. Serologic tests, using FIPV, canine coronavirus, and transmissible gastroenteritis virus of swine as substrate antigens in fluorescent antibody procedures may not accurately identify FIPV infection. These tests do not appear to distinguish between FIPV and this feline enteric coronavirus.  相似文献   

11.
OBJECTIVE: To evaluate duration of immunity in cats vaccinated with an inactivated vaccine of feline panleukopenia virus (FPV), feline herpesvirus (FHV), and feline calicivirus (FCV). ANIMALS: 17 cats. PROCEDURE: Immunity of 9 vaccinated and 8 unvaccinated cats (of an original 15 vaccinated and 17 unvaccinated cats) was challenged 7.5 years after vaccination. Specific-pathogen-free (SPF) cats were vaccinated at 8 and 12 weeks old and housed in isolation facilities. Offspring of vaccinated cats served as unvaccinated contact control cats. Virus neutralization tests were used to determine antibody titers yearly. Clinical responses were recorded, and titers were determined weekly after viral challenge. RESULTS: Control cats remained free of antibodies against FPV, FHV, and FCV and did not have infection before viral challenge. Vaccinated cats had high FPV titers throughout the study and solid protection against virulent FPV 7.5 years after vaccination. Vaccinated cats were seropositive against FHV and FCV for 3 to 4 years after vaccination, with gradually declining titers. Vaccinated cats were protected partially against viral challenge with virulent FHV. Relative efficacy of the vaccine, on the basis of reduction of clinical signs of disease, was 52%. Results were similar after FCV challenge, with relative efficacy of 63%. Vaccination did not prevent local mild infection or shedding of FHV or FCV. CONCLUSIONS: Duration of immunity after vaccination with an inactivated, adjuvanted vaccine was > 7 years. Protection against FPV was better than for FHV and FCV. CLINICAL IMPLICATIONS: Persistence of antibody titers against all 3 viruses for > 3 years supports recommendations that cats may be revaccinated against FPV-FHV-FCV at 3-year intervals.  相似文献   

12.
Delayed-type hypersensitivity (DTH)-like reactions to feline infectious peritonitis (FIP) virus (FIPV) were induced in the skin of nine cats that were asymptomatic after a previous challenge-exposure with FIPV. Four of the nine previously challenge-exposed cats were negative for virus-neutralizing antibodies against FIPV at the time of intradermal (ID) testing for DTH. Two other cats tested for DTH when acutely ill with clinical FIP did not have cutaneous DTH responses to FIPV. Gross skin reactions to FIPV injected ID were observed in six of nine asymptomatic cats (67%) at postintradermal inoculation hours (PIH) 24, 48, and/or 72. The reactions consisted of focal, 1-5-mm to 2.5-cm diameter indurated or semi-firm, nonerythematous, slightly raised nodules. Microscopically, DTH-like reactions were observed in biopsies taken from the FIPV-inoculated skin of asymptomatic cats at PIH 24 to 72. The lesions consisted of perivascular and diffuse dermal infiltrations by macrophages, lymphocytes, and polymorphonuclear leukocytes (PMN). The dermal infiltrates, which were maximal at PIH 48 or 72, were predominantly mixed inflammatory cells (five of nine cats) or PMN (four of nine cats) at PIH 24, but later were predominantly mononuclear cells (six of nine cats) or mixed inflammatory cells (two of nine cats) at PIH 72. Five of nine cats (56%) with positive DTH skin responses had increased survival times after lethal ID challenge-exposure with FIPV compared to mean survival times in FIPV-naive, non-immune control cats that were DTH-negative when ID challenge-exposed. Four of nine DTH-positive cats (44%) resisted an ID challenge-exposure dose of FIPV that was fatal in both control cats, and two of the four remaining DTH-positive cats survived a third challenge-exposure with highly lethal doses of FIPV given intraperitoneally. Four of the six DTH-positive cats (67%) that died after re-challenge and were necropsied had lesions of noneffusive FIP, suggesting that cellular immunity may also be involved in the pathogenesis of noneffusive disease, whereas both control cats and both DTH-negative cats with clinical disease succumbed to effusive FIP. Seemingly, DTH responses to FIPV can be associated with an increased level of resistance to disease; however, this state of immunity is variable and apparently can be lost with time in some cats.  相似文献   

13.
The humoral antibody response of pseudorabies-immune pigs to reactivation of latent pseudorabies virus (PRV) was compared with the response following direct exposure to virulent PRV. Nine pigs that had been vaccinated for pseudorabies and later exposed to virulent virus to establish latent infection were given dexamethasone to reactivate latent virus (3 pigs), were exposed oronasally and parenterally to virulent virus (3 pigs), or were kept as nontreated controls (3 pigs). Sera collected from all 9 pigs just before and 3 weeks after treatment were tested by virus neutralization and radioimmunoprecipitation. The 3 pigs exposed directly to virulent virus and 2 of the 3 pigs given dexamethasone had a 4-fold or greater increase in neutralizing antibody titer. All 6 of these pigs had an increase in precipitating antibody activity. Precipitation patterns changed both quantitatively and qualitatively, especially for virus-coded proteins of relatively low molecular weight (less than 46 K). There were some differences in the precipitation patterns associated with sera of individual pigs. However, there was no clear indication of any difference between the 2 treatment groups and therefore no evidence that reactivation of latent virus is associated with any unique immunologic response that could be detected by radioimmunoprecipitation and used diagnostically. Clinical signs were limited to the 3 pigs that were exposed oronasally and parenterally to virulent virus even though the dexamethasone-treated pigs shed more virus for much longer than did those exposed directly to virus.  相似文献   

14.
Various techniques were used to look for protective, non-cross-reactive antibodies in the sera of cats exposed to virulent feline infectious peritonitis virus (FIPV). Antibodies reactive with feline enteric coronavirus (FECV) from FIPV-exposed cats were adsorbed by several passages over an FECV-Sepharose column. In an ELISA against FECV and FIPV, the activity against both viruses was removed at the same rate; thus, no FIPV-specific antibodies could be identified. By gel electrophoresis-derived ELISA, the responses of cats surviving FIPV exposure were compared with those of cats succumbing to FIPV exposure to determine whether survival could be correlated with an antibody response against a particular virus protein. Results indicated that both groups responded in the same way to the matrix envelope protein and nucleocapsid proteins. Even though the response to peplomer in each group was weak, the survivor group responded better to this protein. Furthermore, the response of this group to the peplomer protein had the highest correlation with virus neutralization titer.  相似文献   

15.
A naturally occurring feline immunodeficiency virus (FIV) infection in a closed breeding colony of cats, was studied for a period of 9 months. The colony consisted of 25 adult cats, of which six proved to be infected with FIV as judged by serological examination and virus isolation. In all, 48 kittens were monitored for levels of antibodies against FIV during their first 6 months of life. All the kittens (n = 30) born of FIV-infected queens showed maternal antibodies against FIV, although these declined to undetectable levels by the age of 5 months. Antibodies against FIV were not shown in any of 18 kittens born of FIV-negative queens. An attempt to isolate the virus from 12 kittens between 2 and 6 weeks of age did not succeed. None of the cats in the colony seroconverted during the observation period. In conclusion, neither vertical nor horizontal transmission of FIV infection were demonstrated in the colony during the 9-month investigation period.  相似文献   

16.
A whole killed FeLV vaccine was developed. By use of a chromatography method of purification and concentration, the resulting vaccine has been shown to be significantly lower in bovine serum albumin and total protein contents than were the same ingredients in the starting materials. The virus was inactivated or killed as an essential part of the vaccine development process. Vaccination trials with the vaccine without use of adjuvants indicated appreciable virus-neutralizing serum titer (greater than or equal to 1:10) in 107 of 110 vaccinated cats. Of 43 cats vaccinated and subsequently challenge exposed with virulent FeLV, only 2 developed persistent virus antigenemia (longer than 1 month), whereas 14 of 22 nonvaccinated control cats developed persistent viremia. In field tests, 2,770 cats from 6 states were vaccinated and observed. Postvaccinal reactions were not observed.  相似文献   

17.
Eight cats were immunized with an avirulent strain of feline infectious peritonitis virus (FIPV)-UCD1, then challenge-exposed to a highly virulent cat passaged strain (FIPV-UCD8). Th1 and Th2 cytokine profiles in the peripheral blood mononuclear cells (PBMCs) were measured throughout in the experiment. No clinical signs of FIP were evident in the experimental cats after immunization. After challenge, the immunized cats demonstrated one of four clinical outcomes: (1) classical effusive FIP; (2) accelerated FIP; (3) non-effusive FIP, or (4) resistance to challenge. Only minor cytokine changes were observed following immunization, however, several cytokine changes occurred following challenge-exposure. The most noteworthy changes were in tumor necrosis factor-alpha (TNF-alpha) and interferon gamma (IFN-gamma) levels. Our preliminary findings suggest that immunity against FIP is associated with TNF-alpha and IFN-gamma response imbalance, with high TNF-alpha/low IFN-gamma mRNA responses favouring disease and low TNF-alpha/high IFN-gamma mRNA responses being indicative of immunity.  相似文献   

18.
Nineteen horses with no prior experience with equine arteritis virus (EAV) were inoculated IM with an avirulent live-virus vaccine against equine viral arteritis; the vaccinal virus had been passaged serially 131 times in primary cell cultures of equine kidney, 111 times in primary cell cultures of rabbit kidney, and 16 times in an equine dermis cell line (EAV HK-131/RK-111/ED-16). Three or 4 of the vaccinated horses each, along with appropriate nonvaccinated controls, were inoculated nasally with virulent EAV at each of months 3, 6, 9, 12, 18, and 24 after they were vaccinated. The following was concluded: Vaccination did not induce clinical signs of disease in any horse and, thus, seemed safe for use in the field. All vaccinated horses (n = 19) developed serum-neutralizing antibodies to EAV. Fourteen of the vaccinated horses were completely protected from clinical arteritis when exposed to large doses of virulent EAV. Four were partially protected, and one had little or no protection. Six of 13 nonvaccinated horses died of acute arteritis, and the remaining 7 horses experienced severe signs of disease, but survived the infection. All horses (n = 32), whether vaccinated or not, became infected when inoculated nasally with virulent EAV. Virus was recovered from 17 of the 19 vaccinated horses, and all 19 had a secondary humoral immune response. The duration and severity of thermal reaction and persistence of virus were more transitory in vaccinated horses than in the nonvaccinated controls. Protection afforded by this vaccine can persist for at least 24 months, the maximal time after horses were vaccinated that immunity was challenged in the present study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Feline infectious peritonitis virus (FIPV) can cause a lethal disease in cats, feline infectious peritonitis (FIP). The antibody-dependent enhancement (ADE) of FIPV infection has been recognised in experimentally infected cats, and cellular immunity is considered to play an important role in preventing the onset of FIP. To evaluate the importance of cellular immunity for FIPV infection, monoclonal antibodies (MAbs) against feline interferon (fIFN)-γ were first created to establish fIFN-γ detection systems using the MAbs. Six anti-fIFN-γ MAbs were created. Then, the difference in epitope which those MAbs recognise was demonstrated by competitive enzyme-linked immunosorbent assay (ELISA) and IFN-γ neutralisation tests. Detection systems for fIFN-γ (sandwich ELISA, ELISpot assay, and two-colour flow cytometry) were established using anti-fIFN-γ MAbs that recognise different epitopes. In all tests, fIFN-γ production from peripheral blood mononuclear cells (PBMCs) obtained from cats experimentally infected with an FIPV isolate that did not develop the disease was significantly increased by heat-inactivated FIPV stimulation in comparison with medium alone. Especially, CD8(+)fIFN-γ(+) cells, but not CD4(+)fIFN-γ(+) cells, were increased. In contrast, fIFN-γ production from PBMCs isolated from cats that had developed FIP and specific pathogen-free (SPF) cats was not increased by heat-inactivated FIPV stimulation. These results suggest that cellular immunity plays an important role in preventing the development of FIP. Measurement of fIFN-γ production with the anti-fIFN-γ MAbs created in this study appeared to be useful in evaluating cellular immunity in cats.  相似文献   

20.
OBJECTIVE: To determine whether passive transfer of immunity affects results of diagnostic tests for antibodies against FIV in kittens born to vaccinated queens. DESIGN: Experimental trial. ANIMALS: 12 specific-pathogen-free queens and their 55 kittens. PROCEDURE: Queens were vaccinated with a whole-virus FIV vaccine prior to breeding. Serum was obtained from the queens on the day of parturition and from the kittens on days 2 and 7, then weekly until results of tests for antibodies against FIV were negative for 2 consecutive weeks. Milk was collected from the queens daily for the first week and then weekly. Serum and milk were tested for antibodies against FIV with 2 commercial assays. RESULTS: Antibodies against FIV were detected in serum obtained from the queens on the day of parturition and in the milk throughout lactation. All kittens tested positive for antibodies against FIV at 2 days of age. At 8 weeks of age, 30 (55%) kittens tested positive with 1 of the commercial assays, and 35 (64%) tested positive with the other. All kittens tested negative for antibodies against FIV by 12 weeks of age. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that kittens readily absorb antibodies against FIV in colostrum from vaccinated queens and that these antibodies may interfere with results of commercially available tests for FIV infection past the age of weaning. Currently licensed diagnostic tests for FIV infection are unable to distinguish among kittens with antibodies against FIV as a result of infection, passive transfer from infected queens, and passive transfer from vaccinated queens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号