首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
盘式吸渗仪测定土壤导水率的两种新方法   总被引:3,自引:2,他引:3  
应用盘式吸渗仪测定田间土壤导水率具有快速简单的优点,但是测定结果的计算处理比较繁琐,寻求简单的计算方法是广泛应用盘式吸渗仪的关键问题。该文改变盘式吸渗仪测定土壤导水率的三维入渗过程为一维入渗过程,简化了测定结果的计算处理。结果显示:两种不同的一维入渗过程达到的稳定入渗率和导水率之间有很好的线性关系,但是三维过程计算的导水率大于一维过程。双套盘吸渗仪一维过程计算导水率与稳定入渗率一致性较好,但是和三维稳态、瞬态方法计算结果之间差异明显,因此在应用这些方法时需要适当调整参数,建议使用双套盘吸渗仪快速测定田间土壤导水率。  相似文献   

2.
This study evaluated the effect of 13 years of swine‐manure application on the changes in soil hydraulic properties, and as associated physicochemical properties, with a focus on heavy metal mobility. Various soil hydraulic properties were measured, including soil water retention (SWR), saturated field hydraulic conductivity (Kfs) and unsaturated field hydraulic conductivity (Kfunsat) using a disc infiltrometer. Heavy metal mobility was evaluated with a sequential extraction procedure. At 0–30 cm soil depth in the heavily manured plot (SMhigh plot), SWR at 0 to ?100 kPa was significantly larger than in plots amended with a standard amount of manure (SMstd plot) or with chemical fertilizer (CF plot). Kfs and Kfunsat values in both manure‐amended plots were less than in the CF plot under dry soil conditions but greater than those of the CF plot under wet soil conditions. Furthermore, Kfs and Kfunsat did not necessarily increase with manure application rates. On the other hand, high‐mobility metal fractions, such as the exchangeable fraction of Zn, and the CH3CO2Na‐extractable fraction of Zn and Mn, and the metal–organic complex fractions of Zn, Cu and Mn, increased with the greater manure application rate. In addition, low‐mobility metal fractions, the organically bound fractions of Zn, Cu and Mn in the high SM plot and the easily reducible metal oxide fraction of Mn in both manure‐amended plots were probably affected and released into high‐mobility fractions. This indicated that manure application changed the soil redox conditions by improving the soil structure, depending on the water content of soil pores. Despite the reduction of Kfs and Kfunsat by heavy manure application, the transport of high‐mobility metal fractions with either surface water flow or infiltration water flow could be controlled by soil water content at the beginning of a rain or irrigation event.  相似文献   

3.
The transient analysis of mini disc infiltrometer (MDI) measurements is an established method for characterising near-surface hydraulic characteristics of soils. The reliability of hydraulic characteristics obtained from transient analysis depends on the (1) adequacy of model, (2) adequacy of data, (3) measurement time and (4) measurement footprint. The measurement time dependence recommendations are reported only for a few soil textures, initially wet samples and tension infiltrometer (TI) with a higher measurement footprint than the MDI. This study investigated the adequacy of infiltration data (using cumulative linearization [CL] and differentiated linearization [DL]) and measurement time influence on the hydraulic parameters determined from the transient analysis of MDI measurements for six soil textures. The objective of the study is to identify suitable MDI measurement durations for different soil textures for the initially dry state, considering both adequacy of data and time fractionation (measurement time influence). The data adequacy time obtained from the DL (TDL) was found to be 0.8 times less than the value obtained from CL (TCL). The marginal difference in TDL and TCL had a significant influence on the determination of infiltration equation coefficient C1 and negligible influence on coefficient C2. The time fractionation procedure adopted for identifying adequate MDI measurement time (Tm) was found to be comparable based on sorptivity (S0) and hydraulic conductivity (K0). The average Tm was also comparable with TDL and TCL with a strong positive correlation. The C2 values obtained based on Tm, TDL, and TCL were in better agreement than the corresponding C1 values. The adequate MDI measurement times identified by considering Tm, TDL, and TCL were texture dependent, ranging from 45 min for silt to 120 min for silt loam and silty clay loam. For loamy sand, it was 50 min; for sand, it was 70 min, followed by 60 min for loam.  相似文献   

4.
测定尺度对所测土壤导水参数及其空间变异性的影响   总被引:8,自引:1,他引:8  
用 3种盘径 (14.4,2 0 ,30cm)的负压入渗仪在 2个供水负压 (1和 10cm)下 ,在 65个测点测定了田间水分入渗。基于入渗数据 ,计算了宏观毛管上升高度和 2个基模吸力的导水率。导水率和宏观毛管上升高度的值呈对数正态分布。用大盘径负压入渗仪测定获得的导水率和宏观毛管上升高度的空间连续性最好。当供水负压为 1cm ,盘径为 14.4cm(小盘径 ) ,导水率和宏观毛管上升高度的空间连续性没有表现出来。导水率的均值随测定尺度增加而趋于减少 ,宏观毛管上升高度的均值和标准偏差均随测定尺度增加而趋于减小。导水率和宏观毛管上升高度的样本半方差 ,半方差金砖方差 (nugget)和平台方差 (sill)随测定尺度增加而减少  相似文献   

5.
不同含盐土壤圆盘入渗特征试验   总被引:3,自引:1,他引:2  
不同含盐土壤水分入渗特征是获得准确的土壤水力参数的基础。该文通过圆盘入渗试验,分析了4种土壤在5个(-1、-3、-6、-9和-12 cm)负水头下的入渗特征。结果表明,随着水头的减小,4种土壤的吸湿率线性减小,稳定入渗率和非饱和导水率呈不同程度减小。随土壤含盐量增加稳定入渗率和导水率呈增大规律。根据实测资料确定了不同负水头下非饱和导水率的Gardner指数模型参数,为盐渍化土壤水力参数的确定提供理论参考。  相似文献   

6.
利用圆盘入渗仪推求含碎石土壤饱和水力传导度(英)   总被引:1,自引:0,他引:1  
在模拟土柱中,利用圆盘入渗仪对碎石对土壤饱和水力传导度的影响进行了分析。结果表明:含碎石土壤饱和水力传导度可以通过对不同负压下土壤稳定入渗速率进行非线性回归获得。含碎石土壤饱和水力传导度与去除碎石后的土壤饱和水力传导度及碎石形状指数密切相关。试验中含碎石土壤的饱和水力传导度随碎石含量的增加而呈指数降低趋势。  相似文献   

7.
利用圆盘入渗仪测定不同土地利用类型土壤吸渗率   总被引:5,自引:1,他引:4  
探讨利用圆盘入渗仪测定不同利用类型土壤吸渗率的适用性,该文选用盘径分别为10和20 cm的圆盘入渗仪对3种利用土壤(菜地、草地和茶园)在0、-3、-6、-9 cm 4个压力水头下的吸渗过程进行测定。研究以Vandervaere法为参考方法,对Philip法、Haverkamp三维吸渗法、Haverkamp三维吸渗改进法的适用性进行比较分析。结果表明:吸渗率的不同计算公式所适应的吸渗过程时间尺度不同,且Haverkamp三维吸渗法所得吸渗率值与参考方法最接近。盘径对吸渗率测定差异的影响不显著。除0 cm压力水头外,不同利用类型土壤吸渗率差异显著,且不同压力水头下测得3种土壤吸渗率大小排序不同。当压力水头为-9和-6 cm时,菜地吸渗率(0.0104和0.0119 cm/s0.5)显著高于茶园(0.0017和0.0025 cm/s0.5)(P0.05);当压力水头为-3 cm时,茶园吸渗率(0.0370 cm/s0.5)显著高于菜地和草地(0.0147和0.0132 cm/s0.5)(P0.05)。该研究可为南方丘陵区土壤水力参数的测定提供理论依据。  相似文献   

8.
盘式吸渗仪已成为测定田间土壤水力参数的重要工具之一,自动监测装置的应用将进一步提高试验的精确度并加快试验进程。该文介绍了一种试验装置,通过连接在储水管上下两端的传感器实时压差监测,以此确定入渗水量的变化过程,并通过一系列试验,对试验装置的可靠性进行了验证,将试验装置应用到实际测定土壤水力参数中。试验结果表明:自动监测装置通过测定储水管的压差,并通过相应关系代换为储水管水位变化来采集试验数据的方法是可靠的。通过与人工读数方法测定的结果对比表明,其精度可以达到试验要求;对于本试验土壤,用自动监测装置采集的数据来确定吸渗率的时间可以控制在30 s~4 min之间。  相似文献   

9.
该文以陕北水蚀风蚀交错区普遍发育的地表和地上两种生物结皮为研究对象,分别以3种非生物结皮(无结皮、物理结皮、去除生物结皮)为对照,使用盘式入渗仪测定其饱和导水率。结果表明:与无结皮土壤相比,两种类型生物结皮均可极显著降低土壤饱和导水率;与去除生物结皮土壤相比,两种类型生物结皮对土壤饱和导水率的降低均不显著;与有物理结皮发育的土壤相比,地表生物结皮对土壤饱和导水率的降低不显著,而地上生物结皮对土壤饱和导水率的降低显著。一方面,两种生物结皮对土壤饱和导水率均有明显降低作用,预示生物结皮在降雨活动中可能会增加径流、降低入渗,阻碍研究区水分亏缺条件下的植被恢复和生态与环境建设。另一方面,与不同的对照相比,生物结皮对土壤饱和导水率的影响截然不同,该结论可在一定程度上解释当前有关生物结皮影响土壤水分入渗方面所存在的分歧。  相似文献   

10.
扩散率与吸水率关系的解析方法   总被引:1,自引:0,他引:1  
A simple method was developed to relate soil sorptivity to hydraulic diffusivity and water absorption experiments were conducted utilizing one-dimensional horizontal soil columns to validate the relationship. In addition, an estimation method for hydraulic diffusivity with disc infiltrometer was developed. The results indicated a favorable fit of the theoretical relation to the experimental data. Also, the experiment with disc infiltrometer for estimating the diffusivity showed that the new method was feasible.  相似文献   

11.
12.
设计7组不同内外径的双环入渗仪,在位于祁连山区的黑河上游平坦草地开展多次野外土壤入渗试验,对比分析双环入渗仪内外环尺寸对土壤入渗率和饱和导水率的影响。结果表明,双环入渗仪内径相同时,外径越大则稳定入渗率和饱和导水率越小;外径相同时,内径越小则稳定入渗率和饱和导水率越小。初始入渗率与双环入渗仪尺寸关系不显著,但稳定入渗率和饱和导水率与入渗仪缓冲指数呈显著负相关。综合考虑安装简便,用水条件,试验可靠等多方面因素,推荐山区使用内径20cm,外径40cm的双环入渗仪。  相似文献   

13.
Agrichemicals usually contaminate groundwater via preferential flow, therefore determination of the preferential flow characteristics of soil is needed. One model that predicts solute transport due to preferential flow is the mobile–immobile (MIM) solute-transport model, which partitions total water content (θ; m3 m?3) into mobile (θm) and immobile fractions (θim). In undisturbed soils, a method is proposed for determining the MIM model parameters, i.e. immobile water fraction (θim), mass transfer coefficient (α) and hydrodynamic dispersion coefficient (D h). Breakthrough curves were obtained for five different soil textures in three replicates, by miscible displacement of Cl? in undisturbed soil columns. Cl? breakthrough curves were evaluated in terms of the MIM model. Analysis suggests that the values of D h and α increased with lighter soil textures and θim increased with heavier soil textures. The values of θim ranged from 5.31 to 14.28% in different soil textures. Furthermore, values of θim were found to be related to soil clay content. Values of α ranged from 0.0257 to 0.32 h?1 and values of D h ranged from 0.36 to 11.2 cm2 h?1 in different soil textures. A significant linear correlation was obtained between α, θim, D h and soil saturated hydraulic conductivity (K s) and pore water velocity (v). A multivariate pedotransfer function was developed to estimate α, θim and D h based on the geometric mean (d g) and the standard deviation (σg) of the diameter of soil particles and soil organic matter content. The pedotransfer functions for D h, θim and α were validated by independent data sets from other investigators.  相似文献   

14.
To reduce water loss in light-textured soils, hydraulic conductivity should be reduced by mixing the soils with some soil conditioners, e.g. sodium-bentonite. The objectives of this study were to investigate the effects of irrigation water with different bentonite concentrations (0, 0.05, 0.1, 0.15 and 0.2%) on hydraulic gradient (i) and relative saturated hydraulic conductivity (K rs) in a laboratory soil column with a loamy sand soil. Addition of sodium-bentonite to the soil increased i throughout each experiment. Furthermore, addition of bentonite reduced K rs, and a 0.2% bentonite–water concentration after infiltration of 48 mm of bentonite–water mixture (BWM), reduced the K rs value to 56% of K s. K rs was reduced as the concentrations of bentonite increased and its value reached ~0.5 to 0.6 as the infiltration of BWM increased. The lowest value of K rs and the greatest reduction rate occurred at a bentonite concentration of 0.2%. It is concluded that BWM can be used as a channel liner. Using a 0.2% bentonite concentration resulted in a reduction in the seepage ratio from 1.0 to 0.08.  相似文献   

15.
Due to the existence of gravelly soils and the lack of sufficient research on such soils, this study was carried out on a gravelly calcareous soil. Selected physico–chemical and hydraulic soil attributes were determined at 69 points on a nested-sampling design. Hydraulic characteristics including unsaturated hydraulic conductivity (K ψ) and sorptivity coefficient (S) at six applied tensions of 0 to 0.2 m, and sorptive number (α) and macroscopic capillary length (λ) at five applied tensions of 0.03 to 0.2 m were determined using a tension disc infiltrometer. Hydraulic and chemical soil attributes were the highest and the lowest variants, respectively. The maximum and minimum values for the coefficient of variation (CV) in all the measured physico-chemical and hydraulic soil attributes were obtained for α0.2 and soil pH, respectively. Minimum, maximum, mean and variance values of K ψ, S and α decreased as applied tension increased. Although the pattern was reversed for λ. The majority of soil attributes showed the spatial structure with dominant spherical and exponential models for physico-chemical and hydraulic attributes, respectively. Range values of semi-variograms were obtained between 4.6 m (for α0.03) and 211 m (for clay, gravel content and soluble Mg). In general, range values were 99.60, 82.05 and 40.2 m for physical, chemical and hydraulic soil attributes, respectively, indicating that the physical soil attributes influenced neighboring values over greater distances than the other soil attributes. This enables soil scientists to use measured soil physical data over greater distances to estimate attributes in the unsampled locations.  相似文献   

16.
A laboratory column experiment was conducted to investigate the effects of 400°C biochar at application rate of 15 g kg?1 (21.9 t ha?1) with different particle sizes (<0.5 mm (S1), 0.5–1 mm (S2) and 1–2 mm (S3)) and application depths (0–2 cm depth (D0), 4–6 cm depth (D5) and 8–10 cm depth (D10)) on hydro-physical properties of sandy loam soil. The results indicated that applying biochar decreased the waterfront and saturated hydraulic conductivity of sandy loam soil. The cumulative evaporation was the highest and amounted to 40.9 mm in the non-treated soil, but it recorded the lowest amount of 32.2–35.5 mm in the biochar-treated soil. Applying biochar caused significant increases in the amount of conserved and retained water with the highest amount of water conserved in soil treated with S2 biochar at D5. Moreover, the cumulative water infiltration through the soil was significantly reduced by S1 and S2 biochars at D0. The values of saturated hydraulic conductivity for biochar treatments were significantly lower than those for the control, with the lowest values for S1 at D0 and D5. These results suggest positive improvement for the hydro-properties of coarse-textured soils following biochar addition, especially with finer particles of biochar.  相似文献   

17.
入渗水水质对土壤导水特性影响的试验研究   总被引:4,自引:2,他引:2  
为探究不同入渗水水质对土壤导水特性的影响,采用圆盘负压入渗法进行试验研究,选取两种水质(蒸馏水和自来水)对黄壤和红壤进行4个压力水头(0,-3,-6,-9cm)下的圆盘入渗试验。结果表明,随着入渗水电导率的增大,土壤入渗率、吸渗率及导水率均随之增大,且红壤在不同电导率的入渗水作用下土壤吸渗率的变化差异显著(P0.05)。在低水头压力下,两种水质入渗条件下测得的土壤导水率差异显著(P0.05);在高水头压力下,两种水质入渗下测得土壤导水率差异不显著,表明入渗水水质对土壤导水率的影响主要发生在低压力水头下即在细孔隙下的导水特性上。两种土壤的大孔隙与中等孔隙对水流贡献率随入渗水电导率的增大而增大,而小孔隙对水流贡献率随入渗水电导率的增大而减小,入渗水水质对红壤土不同级别孔隙水流贡献率的影响显著(P0.05)。研究分析相关参数的变化有利于探讨野外试验时入渗水水质对试验结果的影响,对于正确认识农田水文过程、开发利用劣质水资源、提高农业灌溉灌水质量和灌水效率等具有重要意义。  相似文献   

18.
Estimating soil hydraulic properties, such as infiltration rate and hydraulic conductivity, is important for understanding hydrological processes such as rainfall and irrigation partitioning. Current infiltrometers can require considerable operator input to limit the number of readings that can be simultaneously performed. Therefore, the objective of this work was to develop a simple double-ring infiltrometer for automated data collection under falling head conditions. The design consisted of 15.2-cm tall inner- and outer-rings of 14.6 and 33.0 cm in diameter, respectively. The inner-ring was held in the centre of the outer-ring by a small pipe that also served as a handle. A small hole was drilled 3.8 cm from the bottom of each ring and a slightly larger hose passed through both holes. One hose end led into the inside of the inner-ring and the opposite end to the outside of the outer-ring. A pressure transducer was attached to the outside end of the hose. A datalogger was used to record the transducer output. This design was compared in-situ to a constant head method using a Mariotte bottle system on two distinct soils and tested on four different soil series ranging in textural class from a loamy sand to a clay. Soils had been fallow prior to this work for at least 2 years, except the loamy sand which had a 5-year-old Bahia grass ( Paspalum notatum ) stand. Although there were some differences between the two approaches, values estimated with the proposed method had less variability. This method allows a single user to collect multiple readings. Collected data can be used to estimate quasi-steady state and cumulative infiltration, and in situ hydraulic conductivity of saturated soil. The proposed procedure could be beneficial when multiple readings of soil hydraulic properties are required, such as when characterizing soil spatial variability.  相似文献   

19.
Runoff production conditions in a small gully catchment are studied at four different scales: the point scale (0.001 m2), the local scale (1 m2), the field scale (of the order of 100 m2) and the catchment scale (0.2 km2). At the point scale, infiltration measurements were conducted using a tension infiltrometer. At the local and the field scale, runoff plots were setup on typical soil surface conditions of the catchment (plateau bare soil, hillslope bare soil and fallow grassland). At the catchment scale, stream discharges were measured at two gauging stations.The overland flow yield is significantly nonuniform in space, due to the high spatial variability of infiltration capacities and the depressional storage of the soil surface. The runoff and the infiltration data collected confirmed the major role played by soil crusting on runoff generation in that part of Sahel. At the point scale, hydraulic conductivity measurements have shown that infiltration and runoff were driven by the hydraulic properties of the crust. At the field scale, microtopography and heterogeneity in the soil surface crusting decreased discharge volumes. The influence of vegetation growth on runoff yield was evident in the case of the fallow sites. Analysis of discharge data at the catchment scale highlights that infiltration through the bottom of the gully between two gauging stations leads to considerable runoff water transmission losses.  相似文献   

20.
The purpose of this study was (1) to find a matching factor (u) between infiltration rate and hydraulic conductivity during steady-state infiltration, and (2) to propose equations based on infiltration and soil moisture-retention functions for prediction of the hydraulic conductivity K(θ) within the rapidly (non-capillary) drainable pores (RDP) and capillary-matrix pores of soils. The K(θ) of capillary pores was divided into K(θ)SDP, K(θ)WHP and K(θ)FCP within slowly drainable pores (SDP), water-holding pores (WHP) and fine capillary pores (FCP), respectively. Five soil profiles of calcareous sandy loam, alluvial saline and non-saline clay, located at the Nile Delta, were used to apply the proposed equations. The highest and the lowest values of K(θ)RDP were observed in calcareous and saline clay soil profiles, respectively. Values of K(θ)RDP remained higher than those for capillary pores in the studied soils. The predicted values of K(θ) in capillary and non-capillary pores classes were in the expected range for unsaturated hydraulic conductivity. Water sorptivity (S) was determined at initial unsaturated soil water conditions and calculated at steady-state infiltration (S w) using a derived equation. There was a decrease in S with an increase in soil water content; i.e. at steady-state infiltration, S decreased by 35–40% in calcareous soils and by 45–60% in alluvial clay soils. The parameter values of u and S w tended to be uniform in calcareous soils, but nonuniform in saline and non-saline clay soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号