首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mineral nutrient uptake can be enhanced in plants inoculated with vesicular‐arbuscular mycorrhizal fungi (VAMF). The effects of the VAMF Glomus fasciculatum on uptake of P and other mineral nutrients in sorghum [Sorghum bicolor (L.) Moench] were determined in greenhouse experiments for plants grown on a low P (3.6 mg kg‐1) soil (Typic Argiudolls) with P added at 0, 12.5, 25.0, and 37.5 mg kg‐1 soil. Enhancements of growth and mineral nutrient uptake because of the VAMF association decreased as soil applications of P increased above 12.5 nig kg‐1 soil. Root colonization with VAMF without added soil P resulted in increased dry matter yield equivalent to 12.5 mg P kg‐1 soil (25 kg P ha‐1). Total root length colonized with VAMF decreased as soil P level increased. Regardless of P added to the soil, mycorrhizal plants had higher leaf P concentrations and contents than did nonmycorrhizal plants. Enhanced contents, but not necessarily concentrations, of the other mineral nutrients were noted in shoots of mycorrhizal compared to nonmycorrhizal plants. Mycorrhizal plants had enhanced shoot contents of P, K, Zn, and Cu which could not be accounted for by increased growth. The VAMF associations with sorghum roots enhanced mineral nutrient uptake when P was sufficiently low in the soil.  相似文献   

2.
Associations between vesicular‐arbuscular mycorrhizal (VAM) fungi and manganese (Mn) nutrition/toxicity are not clear. This study was conducted to determine the effects of excess levels of Mn on mineral nutrient uptake in shoots and roots of mycorrhizal (+VAM) and non‐mycorrhizal (‐VAM) sorghum [Sorghum bicolor (L) Moench, cv. NB9040]. Plants colonized with and without two VAM isolates [Glomus intraradices UT143–2 (UT1 43) and Gl. etunicatum UT316A‐2 (UT316)] were grown in sand irrigated with nutrient solution at pH 4.8 containing 0, 270, 540, and 1080 μM of added Mn (as manganese chloride) above the basal solution (18 μM). Shoot and root dry matter followed the sequence of UT316 > UT143 > ‐VAM, and shoots had greater differences than roots. Shoot and root concentrations and contents of Mn, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and copper (Cu were determined. The +VAM plants generally had higher mineral nutrient concentrations and contents than ‐VAM plants, although ‐VAM plants had higher concentrations and contents of some minerals than +VAM plants at some Mn levels. Plants colonized with UT143 had higher concentrations of shoot P, Ca, Zn, and Cu and higher root Mg, Zn, and Cu than UT316 colonized plants, while UT316 colonized plants had higher shoot and root K concentrations than UT143 colonized plants. These results showed that VAM isolates differ in enhancement of mineral nutrient uptake by sorghum.  相似文献   

3.
Abstract

Survival rate of seedlings planted in arid and semi-arid land parts of Turkey is low. New methods and techniques are needed to increase survival rate and growth performance of seedlings used in afforestation practices in the region. The aim of this study is to evaluate the growth performance of Taurus cedar (Cedrus libani A. Rich) seedlings receiving different mycorrhizae inoculation treatments. The experiment was conducted in the western part of Central Anatolia. Two commercial mycorrhizal cocktails were used for treatments in a completely randomized design experiment. Both ecto- and arbuscular mycorrhizal fungi were observed in the same root system of the seedlings after the mycorrhizal inoculation. But the relationship between ecto- and arbuscular mycorrhiza was antagonistic. Analysis of the data indicated that mycorrhizal colonization was effective on seedlings' morphological characteristics. The significant differences were detected for root collar diameter, shoot height, root length, specific needle area, shoot dry weight, root dry weight, shoot fresh weight, root fresh weight, shoot to root dry weight ratio, and Dickson quality index of seedling received different treatments. Mycorrhizae positively affected plant nutrition by increasing uptake of nutrients.  相似文献   

4.
The effect of elevated nitrate [(NO3‐nitrogen (N)] or ammonium (NH4)‐N on the response of nonmycorrhizal (NM) and ectomycorrhizal (ECM) pitch pine (Pintis rigida Mill.) seedlings to aluminum (Al) was determined in experiments in which N was increased three times above ambient levels. Seedlings with and without the mycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch were grown in sand irrigated with nutrient solution (pH 3.8) containing 0, 10, or 20 mg Al L‐1 (0, 370, or 740 μM Al). The nutrient solution simulated that for the sandy, nutrient‐poor soil of the New Jersey Pine Barrens. Elevated NO3‐N had no significant effect on Al toxicity in NM seedlings, but Al toxicity at ambient NH4‐N was ameliorated by elevated NH4‐N. Symptoms of Al toxicity in roots (thick and stunted) of ECM seedlings at ambient N levels were reduced by elevated NH4‐N and absent at elevated NO3‐N. When N was elevated by an increase in NO3‐N or NH4‐N, uptake of N and relative increases in total biomass were greater in ECM than in NM seedlings.  相似文献   

5.
Mycorrhizal (+VAM) and nonmycorrhizal (‐VAM) maize (Zea mays L.) plants were grown in sand culture in a greenhouse to determine effects of MES [2(N‐morpholino)‐ethanesulfonic acid] (2.0 mM) and pH (4.0, 5.0, 6.0, and 7.0) on mineral nutrient uptake. Plants were inoculated with the vesicular‐arbuscular mycorrhizal (VAM) isolate Glomus intraradices UT143. Shoot and root dry matter yields were lower in plants grown with MES (+MES) than without MES (‐MES), and decreased as pH increased. Shoot concentrations of N, Ca, Mg, Mn, and Zn were generally higher in +MES than in ‐MES plants, and nutrient contents of most nutrients were generally higher in + MES than in ‐MES plants. Concentrations of N, Ca, Mg, and Mn increased and P, S, and Fe decreased, while contents of all measured nutrients except Mn and Zn decreased as pH increased. Concentrations of Mn, Fe, Zn, and Cu were higher in +VAM than in ‐VAM plants, and contents of P and Ca were higher in ‐VAM than in +VAM plants and Zn content was higher in +VAM than in ‐VAM plants. MES had marked effects on mineral nutrient uptake which should be considered when MES is used to control pH of nutrient solutions for growth of maize.  相似文献   

6.
Abstract

Precipitation of Al(OH)3 and aluminum phosphate may occur in nutrient solution if a large amount of Al and P have been added to a relatively high pH. The objective of this study was to develop and test a supernatant‐solution method for Al phytotoxicity studies with large and/or old plant seedlings. Effects of pH and additions of Al and P on ionic strength and concentrations of Al and P in supernatant nutrient solutions were investigated. Two sets of supernatant nutrient solutions at two pH levels were prepared. The pH 4.0 set and 4.5 set contained seven levels of Al (maximum Al concentration of 6355 and 378 μM) and similar P concentration about 32 and 6 μM P, respectively. The Al concentrations in supernatant solutions were dependent on preparation procedure. The pH 4.0 set was tested in the greenhouse study with 6‐month‐old citrus seedlings and found to be successful as culture solutions for Al phytotoxicity studies. These two sets are suitable for growth of large (about 0.3 m) and/or old (about 6 mon.) seedlings. This supernatant‐solution method makes it possible to study Al phytotoxicity of large and/or old seedlings, to avoid the confounding effects of P on Al with respect to plant growth, and to report the actual concentrations of Al and P in growth solutions.  相似文献   

7.
Acid deposition may adversely affect northern forest ecosystems by increasing the concentration of metals in the soil solution. This study investigates the effects of ectomycorrhizal fungi on paper birch and jack pine seedlings exposed to elevated Cu, Ni, or Al in sand culture. One of four mycorrhizal fungi,Scleroderma flavidum, was able to reduce Ni toxicity to the birch seedlings. It did this by reducing transport of Ni to the stems. None of the fungi affected Cu toxicity in birch. In separate experiments, jack pine seedlings were exposed to combinations of Al and Ca. Infection withRhizopogon rubescens increased seedling susceptibility to A1. Seedlings inoculated withSuillus tomentosus showed a greater growth stimulation by Ca than uninoculated jack pines. Thus, for both tree species, the mycorrhizal association could alter the response of seedlings to high concentrations of certain metals, although this varied with fungal species.  相似文献   

8.
Abstract

Manganese (Mn) toxicity may play an important role in the poor survival of seedlings in declining sugar maple (Acer saccharum Marsh.) stands in northern Pennsylvania. To determine the effect of Mn on the growth of sugar maple seedlings, 1‐year‐old seedlings inoculated with vesicular‐arbuscular mycorrhizal (VAM) fungi and growing in sand‐vermiculite‐peat moss medium were irrigated for 7 weeks with nutrient solution (pH 5) containing 0.1 (control), 1, 2, 4, 8, or 16 mg L?1 Mn. Total seedling dry weight was negatively correlated with Mn, becoming significantly different than the control at 2 mg L?1 Mn. Stem and root dry weight were reduced by lower Mn levels than leaf dry weight. Manganese had no effect on the root/shoot ratio. The concentration of Mn in roots and leaves increased as the level of Mn in the nutrient solution increased, with the concentration in the leaves 2.2‐ to 3.7‐fold greater than the concentration in the roots. Except for a reduction of P in the roots, Mn had little effect on the concentration of nutrient elements in the roots or leaves. Colonization of the roots by VAM fungi was increased by Mn, with a maximum percentage at 4 mg L?1 Mn. Manganese toxicity symptoms in the leaves, small discrete chlorotic spots, began to appear at 1 mg L?1 Mn. The sensitivity of sugar maple seedlings to Mn found in this study supports the hypothesis that Mn may affect regeneration in declining sugar maple stands. However, evaluation of the effects of Mn on seedlings in native soils under field conditions will be necessary before the role of Mn in sugar maple regeneration can be understood.  相似文献   

9.
A pot culture experiment was carried out to study the growth of and Cu uptake by maize (Zea mays) inoculated with or without arbuscular mycorrhizal (AM) fungus Acaulospora mellea in sterilized soil with different Cu amounts added (0, 100, 200, 400, 800 mg kg−1). Root colonization rates were significantly lower with the addition of 400 and 800 mg kg−1 Cu. AM inoculation increased shoot dry weights at 200 and 400 mg kg−1 Cu added but showed no effects at other levels, while increased root dry weights at all Cu addition levels except 800 mg kg−1. Compared with the nonmycorrhizal plants, shoot Cu concentrations in mycorrhizal plants were higher when no Cu was added but lower at other levels, while root Cu concentrations were lower at 400 and 800 mg kg−1 Cu added but not affected at other levels. Thus, shoot Cu uptake in mycorrhizal plants increased with no Cu added but decreased at other levels, while mycorrhizal effects on root Cu uptake varied. Compared with nonmycorrhizal controls, Cu uptake efficiency and phytoextraction efficiency in mycorrhizal plants were higher when no Cu was added but lower at other levels, and Cu translocation efficiency was lower at all Cu addition levels. AM inoculation improved shoot and root P nutrition at all Cu addition levels. Soil pH was higher in mycorrhizal treatment than in the control when 200 mg kg−1 or more Cu was added. These results indicate that A. mellea ZZ may be not suitable for Cu phytoextraction by maize, but shows a potential role in phytostabilization of soil moderately polluted by Cu.  相似文献   

10.
Nitrogen nutrition and Al toxicity with young beech plants. I: Development of young beech plants in relation to the source of nitrogen and the Al content of the nutrient solution Young beech plants were grown in aerated nutrient solutions with different Al concentrations over a period of 14 weeks. Nitrogen was supplied in either NO3- or NH4-form. pH-changes of the solutions were either corrected to the initial pH of 4 after two days, or not corrected over a period of two weeks. Root growth of the beech seedlings was inhibited by Al. Reduction of root length and dry matter production was more severe if the plants were fed with ammonium nitrogen compared to nitrate nitrogen. Detrimental effect of Al on root growth was also influenced by the pH of the solution. NH4-N-nutrition led to pH decrease and therefore to increased solubility and toxicity of aluminium. On the contrary, NO3-N-nutrition weakened Al toxicity because of pH increase at the root surface and in the AFS. This led to an inactivation of Al in the form of insoluble hydroxy aluminium polymers. Compared to NO3-N-nutrition NH4-N promoted shoot growth. During 14 weeks no detrimental effect of Al on shoot growth was observed.  相似文献   

11.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

12.
A decrease in soil water content during droughts may increase aluminum (Al) to concentrations that are toxic to the growth of trees. The effects of water stress (WS) on the response of ectomycorrhizal pitch pine (Pinus rigida Mill.) seedlings to aluminum was determined by growing seedlings in sand irrigated with nutrient solution (pH 3.8) containing 0, 5, or 10 mg L‐1 Al. Water stress was imposed for 41 days by withholding nutrient solution for five consecutive days each week. At harvest time, seedlings at high WS had 72% of mean gravimetric water contents of seedlings at low WS. Aluminum decreased growth of seedlings at high WS, but had no effect on growth of seedlings at low WS. Aluminum toxicity symptoms in roots (e.g., dark thickened tips) were observed at lower Al levels at high WS than at low WS. Stem dry weight was the only plant part decreased by water stress alone. Across Al levels, Al concentration in roots was higher at low WS than at high WS. Water stress alone reduced root [phosphorus (P), potassium (K), and calcium (Ca)] and foliar [P, K, and magnesium (Mg)] concentrations of mineral nutrients. Decreases of nutrients in roots with increasing Al was greater at low than at high WS. Calcium was the only foliar nutrient decreased by Al treatment.  相似文献   

13.
Salt stress has become a major menace to plant growth and productivity. The main goal of this study was to investigate the effect of inoculation with the arbuscular mycorrhizal fungi (AMF; Rhizophagus intraradices) in combination or not with plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. (Ps) and Bacillus subtilis) on the establishment and growth of Sulla coronaria plants under saline conditions. Pot experiments were conducted in a greenhouse and S. coronaria seedlings were stressed with NaCl (100 mM) for 4 weeks. Plant biomass, mineral nutrition of shoots and activities of rhizosphere soil enzymes were assessed. Salt stress significantly reduced plant growth while increasing sodium accumulation and electrolyte leakage from leaves. However, inoculation with AMF, whether alone or combined with the PGPR Pseudomonas sp. alleviated the salt‐induced reduction of dry weight. Inoculation with only AMF increased shoot nutrient concentrations resulting in higher K+: Na+, Ca2+: Na+, and Ca2+: Mg2+ ratios compared to the non‐inoculated plants under saline conditions. The co‐inoculation with AMF and Pseudomonas sp. under saline conditions lowered shoot sodium accumulation, electrolyte leakage and malondialdehyde (MDA) levels compared to non‐inoculated plants and plants inoculated only with AMF. The findings strongly suggest that inoculation with AMF alone or co‐inoculation with AMF and Pseudomonas sp. can alleviate salt stress of plants likely through mitigation of NaCl‐induced ionic imbalance, thereby improving the nutrient profile.  相似文献   

14.
AM真菌对烟苗生长及某些生理指标的影响   总被引:6,自引:0,他引:6  
在低浓度营养液条件下,利用漂浮育苗技术培育烟苗,于播种期、小十字期、生根期分别接种不同的AM真菌,研究了它们对烟苗生长、营养和某些生理指标的影响。结果表明,越早接种AM真菌,其侵染率越高;播种期接种,侵染率达到39.2%~59.6%。AM真菌的菌根效应因菌种(株)不同而异,接种球囊霉真菌(BEG-141)后,显著增加烟苗干重、磷含量、氮磷钾吸收量、叶绿素含量,以及根系硝酸还原酶、超氧化物歧化酶和几丁质酶活性。表明在漂浮育苗技术中,播种期接种适宜的AM真菌是培育壮苗的有效措施。  相似文献   

15.
A greenhouse experiment was carried out during the spring–summer 2009 to test the hypotheses that: (1) arbuscular‐mycorrhizal (AM) inoculation with a biofertilizer containing Glomus intraradices gives an advantage to overcome alkalinity problems, (2) mineral fertilization is more detrimental to AM development than organic fertilization on an equivalent nutrient basis. Arbuscular mycorrhizal (AM) and non‐AM of zucchini (Cucurbita pepo L.) plants were grown in sand culture with two pH levels in the nutrient solution (6.0 or 8.1) and two fertilization regimes (organic or mineral). The high‐pH nutrient solution had the same basic composition as the low‐pH solution, plus an additional 10 mM NaHCO3 and 0.5 g L–1 CaCO3. Increasing the concentration of NaHCO3 from 0 to 10 mM in the nutrient solution significantly decreased yield, plant growth, SPAD index, net assimilation of CO2 (ACO2), N, P, Ca, Mg, Fe, Mn, and Zn concentration in leaf tissue. The +AM plants under alkaline conditions had higher total, marketable yield and total biomass compared to –AM plants. The higher yield and biomass production in +AM plants seems to be related to the capacity of maintaining higher SPAD index, net ACO2, and to a better nutritional status (high P, K, Fe, Mn, and Zn and low Na accumulation) in response to bicarbonate stress with respect to –AM plants. The percentage root colonization was significantly higher in organic‐fertilized (35.7%) than in mineral‐fertilized plants (11.7%). Even though the AM root colonization was higher in organic‐fertilized plants, the highest yield and biomass production were observed in mineral‐fertilized plants due to the better nutritional status (higher N, P, Ca, and Mg), higher leaf area, SPAD index, and ACO2.  相似文献   

16.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

17.
Nitrogen nutrition and Al toxicity with young beech plants. II: Mineral contents of young beech plants in relation to the source of nitrogen and the Al content of the nutrient solution Young beech plants were grown in aerated nutrient solutions with different Al concentrations over a period of 14 weeks. Nitrogen was supplied in either NO3 or NH4-form. pH-changes of the solutions were either corrected to the initial pH of 4,0 after two days, or not corrected over a period of two weeks. The cation contents of the roots and shoots were greater if the nitrogen was supplied in NO3-form. Increasing Al concentrations in the nutrient solutions led to an increase in Al contents and a decrease in Ca- and Mg-contents in roots and shoots.  相似文献   

18.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

19.
The objectives of this study were (1) to investigate effects of soil acidity on the formation of mycorrhizas in ash and sycamore, and (2) to elucidate if mycorrhization can improve the acquisition of Ca, Mg, and P by these tree species. Soil substrates with different Ca, Mg, and Al saturation were used in pot experiments with mycorrhizal ash and sycamore seedlings and various Ca and Mg fertilization treatments. The development of vesicular‐arbuscular‐mycorrhizas (VAM) in both species was considerably affected by the chemical soil properties and by the nutritional status of the plants. Mycorrhizal fungi developed well only in plants growing on basalt‐derived, Ca and Mg rich loam and in substrates fertilized with Ca and Mg carbonate. In these substrates, the pH value, Ca and Mg supply and growth of the plants were optimal. The mycorrhizas degenerated in an acid loam derived from phyllite, in tertiary sand and in all treatments receiving Ca and Mg sulfate. Ash and sycamore suffered from Ca and Mg (P) deficiency, and partly from Al antagonism against Ca and Mg uptake (sycamore) or Al toxicity (ash). The symbiosis between fungi and the plants was disrupted since the tree species and the VAM fungi (from fertile nursery soils) did not adapt to the acidic experimental soil substrates with high Al activity. Consequently, the fungi lost their function of supporting the plants by improved nutrient uptake and the plants likely did not produce enough organic substances for the fungi. In addition, N fertilization possibly suppressed the development of VA mycorrhizas and inhibited new colonization in acid substrates.  相似文献   

20.
With the aim of determining whether the arbuscular mycorrhizal (AM) inoculation would give an advantage to overcome salinity problems and if the phosphorus (P) concentration can profoundly influence zucchini (Cucurbita pepo L.) plant responses to AM, a greenhouse experiment was carried out with AM (+AM) and non-AM (−AM). Plants were grown in sand culture with two levels of salinity (1 and 35 mM NaCl, giving electrical conductivity values of 1.8 and 5.0 dS m−1) and P (0.3 and 1 mM P) concentrations. The percentages of marketable yield and shoot biomass reduction caused by salinity were significantly lower in the plants grown at 0.3 mM P, compared to those grown at 1 mM P. However, even at high P concentration, the absolute value of yield and shoot biomass of +AM zucchini plants grown under saline conditions was higher than those grown at low P concentration. The +AM plants under saline conditions had higher leaf chlorophyll content and relative water content than −AM. Mycorrhizal zucchini plants grown under saline conditions had a higher concentration of K and lower Na concentration in leaf tissue compared to −AM plants. The P content of zucchini leaf tissue was similar for +AM and −AM treatments at both low and high P concentrations in the saline nutrient solution. The beneficial effects of AM on zucchini plants could be due to an improvement in water and nutritional status (high K and low Na accumulation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号