首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circulation over the continental shelf off the southern Middle Atlantic Bight (MAB) and northern South Atlantic Bight (SAB) is examined for the fall and winter periods. Observational data are compared with results from a three-dimensional numerical model to identify the dominant processes on the shelf. By considering wind-forcing, tides, and a specified upstream inflow (into the MAB), the observed and modelled flow fields are in close agreement in the mid- and inner shelf regions. The resulting larval drift indicates a seasonal dependence of transport pathways from spawning grounds to estuarine nursery areas for menhaden larvae and other offshore-spawning estuarine-dependent fish. Specifically, the physical oceanography of the MAB and SAB during the fall and winter months suggests a north-to-south shift in spawning areas providing recruits to the Carolina estuaries, in agreement with the observed migration of the spawning populations.  相似文献   

2.
The circulation over the continental shelf off the southern Middle Atlantic Bight (MAB) and northern South Atlantic Bight (SAB) is examined for the fall and winter periods. Observational data are compared with results from a three-dimensional numerical model to identify the dominant processes on the shelf. By considering wind-forcing, tides, and a specified upstream inflow (into the MAB), the observed and modelled flow fields are in close agreement in the mid- and inner shelf regions. The resulting larval drift indicates a seasonal dependence of transport pathways from spawning grounds to estuarine nursery areas for menhaden larvae and other offshore-spawning estuarine-dependent fish. Specifically, the physical oceanography of the MAB and SAB during the fall and winter months suggests a north-to-south shift in spawning areas providing recruits to the Carolina estuaries, in agreement with the observed migration of the spawning populations.  相似文献   

3.
Understanding the interactions among biological and physical processes is essential to determining how the environment affects transport and survival of fishes. We examined vertical distribution in larval Atlantic menhaden (Brevoortia tyrannus) and Atlantic croaker (Micropogonias undulatus) using 126 depth stratified tows in Delaware Bay, USA, during two cruises, in December 2007 and February 2008. Menhaden larvae were 16.8–24.6 and 20.5–26.2 mm standard length in December and February. Corresponding lengths for croaker were 9.3–17.9 and 8.6–19.6 mm. Using empirical observations, and statistically derived models, we explored larval concentration for both species as a function of location, depth, diel period, tidal period, size, and pairwise interactions. Menhaden concentration was best modeled as a function of station, cruise, and interactions between depth and size as well as between station and cruise. No significant differences in larval menhaden concentration were present among tidal and diel periods. Croaker concentration was best modeled as a function of size and interactions between station and diel period, depth and size, cruise and size. Despite tidal period not emerging as a significant model parameter, we observed larger croaker larvae during nighttime flood tides. Our statistical models are consistent with processes of up‐estuary transport for both species, suggesting larvae are increasingly affected by behavioral responses as larvae grow, exhibiting stronger patterns in vertical distribution. The results refine our understanding of the potential importance of size‐related differences in vertical distribution for larval transport in these species. Future research should examine the interactions among size‐specific vertical migratory capabilities, vertical distribution, transport, and retention.  相似文献   

4.
We examined patterns of abundance, age and spawning date distributions of Atlantic menhaden Brevoortia tyrannus larvae immigrating during two seasons through three North Carolina inlets—Oregon, Ocracoke and Beaufort—to elucidate their spawning and transport dynamics. These patterns were examined in conjunction with corresponding predictions from a three-dimensional, wind-and tide-driven hydrodynamic model. Larvae immigrating through different inlets showed consistent similarities as well as marked differences in temporal patterns of abundance, spawning dates and transport times. Intraseasonal patterns in abundance and spawning date distributions among inlets suggest that, in both study years, the spatio-temporal dynamics of menhaden immigration were driven by large-scale patterns along the Atlantic coast, rather than by localized variation in spawning activity. Interannual differences in the temporal patterns of spawning dates and larval immigration indicate interannual differences in transport dynamics and/or the spatial-temporal distribution of spawning. When the spawning locations predicted by the hydrodynamic model are interpreted in conjunction with advanced very high resolution radiometer sea-surface temperature information, the results are consistent with the limited historical information available on spatio-temporal distribution of Atlantic menhaden eggs and larvae. The transport model also predicted distributions of arrival times for immigrating larvae that were comparable in range and variability with observed patterns. Our use of data from immigrating larvae, coupled with a hydrodynamic transport model and sea-surface temperatures, allowed us to uncover relationships between spatio-temporal patterns of Atlantic menhaden spawning and transport dynamics that could not have been identified by either approach alone.  相似文献   

5.
Offshore‐ and deepwater‐spawning flatfish species face the problem of transport of their planktonic stages to shallow juvenile nursery grounds that are often far shoreward in bays or estuaries. We compare life history attributes of four offshore‐spawning flatfish species in the Gulf of Alaska: Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias), rex sole (Glyptocephalus zachirus) and Dover sole (Microstomus pacificus) to examine how their larvae get from a spawning location at the edge or beyond the continental shelf to specific inshore nursery zones. We utilize historical records of survey catches of different life stages to characterize the stage‐specific changes in distribution of spawning, planktonic stages and juvenile nursery areas. We infer transport mechanisms based on the shifts in distribution of the life stages and in comparison with local physical oceanography. This comparison provides insight into the different mechanisms marine species may use to solve the common ‘problem’ of planktonic drift and juvenile settlement.  相似文献   

6.
In the marine environment, pelagic dispersal is important for determining the distribution and abundance of populations, as well as providing connections among populations. Estimates of larval dispersal from spawning grounds are important to determining temporal and spatial patterns in recruitment that may have significant influences on the dynamics of the population. We present a case study of the dispersal of Centropristis striata (black sea bass) larvae on the southeast U.S. continental shelf. We use a coupled larval behavior – 3D circulation model to compare the effects of the timing and location of spawning against that of larval vertical migration on larval dispersal. Using the results of field data on larval vertical distributions, we compare the dispersal of virtual 'larvae' which have ontogenetic changes in vertical behavior with that of particles fixed near the surface and near the bottom. Larvae were released at potential spawning sites four times throughout the spawning season (February through May) for 3 yr (2002–04) and tracked for the assumed larval duration (from 27 to 37 days including the egg stage). Results indicate that adult behavior, in the form of spawning time and location, may be more important than larval vertical behavior in determining larval dispersal on the inner- and mid- continental shelves of this region.  相似文献   

7.
The larval mesopelagic fish assemblage and its distribution patterns were investigated in the Kuroshio region off southern Japan in late winter. A total of 8690 fish larvae was collected, 85.8% of which were mesopelagic fish larvae. Mesopelagic fish larvae were significantly more abundant in the area east of the Kuroshio axis than west of the Kuroshio axis (660.6 versus 194.5 ind 10 m?2). Sigmops gracile, Bathylagus ochotensis, Notoscopelus japonicus, Diaphus slender type and Myctophum asperum were the five most abundant larvae and accounted for 16.9, 16.4, 15.2, 13.9 and 9.3% of the total catch in numbers, respectively. We conclude that these larvae were transported by the Kuroshio Current to the more productive transition waters, where they spend their juvenile stage from spring to early summer. The possibility of expatriation and southward long‐distance spawning migrations of N. japonicus and B. ochotensis are discussed, based on the geographic distribution patterns of their larvae, juveniles and adults.  相似文献   

8.
The transport of particles representing sandeel larvae in the North Sea is simulated with a three-dimensional circulation model for the years 1976 to 1990. A great year-to-year variability in drift patterns is demonstrated. The results may explain some of the observed differences in recruitment between the main sandeel areas in the North Sea. In the northern sandeel area it seems that strong year classes are unlikely if the retention due to unfavourable currents is poor, and that a high retention in the summer may favour a good year class. In the southern sandeel area no clear coupling between year class strength and larval drift is found, possibly because the retention always seems large enough for a potentially good year class. For more quantitative use of such models in relation to sandeel recruitment, more biological knowledge is obviously needed on larval vertical distribution and timing of sandeel hatching and settling.  相似文献   

9.
In this study we developed and utilized a complex model approach to investigate the impact of stage‐specific transport processes on the development and spatial distribution of brown shrimp (Crangon crangon) post‐larvae and juveniles in the German Bight. First, we focused on drift processes during the pelagic larval stage by coupling an individual‐based model for egg and larval development ‘off‐line’ to a 3D hydrodynamic model utilizing the Lagrangian method. Secondly, we investigated tidal‐induced transport processes after juvenile settlement. To determine the tidal cycle, the model coupling was accomplished ‘on‐line’ by resolving the individual‐based model and hydrodynamic model with the same time step. The vertical migration of juveniles, a prerequisite for the selective tidal stream transport (STST), was modelled as a sub‐grid scale physical process (balance of forces: gravitation, buoyancy, Stoke’s friction and dynamic uplift) and considered complex particle dynamics. We applied the model to test temperature and salinity cues as possible tidal indicators utilized by juvenile brown shrimp. Our results indicated that transport processes could significantly change the timing and spatial distribution of post‐larval abundance. We also showed that the small‐scale hydrodynamic forcing acting on the bodies of juvenile brown shrimps was sufficient to account for the vertical migration required to use STST. For both investigated tidal cues STST performing juvenile brown shrimp were transported on‐shore. A faster and more continuous STST was calculated for the salinity cue, resulting in larger abundances of brown shrimp in estuarine areas.  相似文献   

10.
Diel vertical migration (DVM) is a common zooplankton behavior in which organisms reside in surface or near‐surface waters at night and at deeper depths during the day. In many upwelling regions, DVM reduces the transport of organisms away from the region. It is unclear, however, what role DVM plays in recruitment (the arrival of larvae or juveniles to locations where they will become reproducing adults) to upwelling regions. In this study, we estimate the influence of DVM on zooplankton transport, the level of recruitment of locally produced propagules (self‐recruitment), and sources of recruits in the upwelling region near Monterey Bay, California, by simulating the trajectories of fixed‐depth and vertically migrating organisms with a drifter‐tracking algorithm driven by climatological velocity fields from a three‐dimensional hydrodynamic model. Our simulations suggest that DVM into subsurface poleward and onshore currents during the day does not fully compensate for equatorward and offshore transport in the surface Ekman layer at night and does not retain zooplankton in the Monterey Bay region. Our simulations also suggest that DVM decreases the ability of zooplankton to return to the region after being transported away and shifts source regions for recruits closer to the bay. While DVM does not appear to substantially increase the potential for self‐recruitment to the region, this study indicates that other mechanisms, such as transport during non‐upwelling periods, continuous transport below the surface, increases in mean transport depth over time, or seasonal changes in hydrography, may still enable relatively high levels of self‐recruitment to this highly advective region.  相似文献   

11.
Currents that effect the shoreward transport of the larvae of estuarine-dependent fishes spawned in winter in Onslow Bay, North Carolina, USA, were driven by winds and pressure gradients, and influenced by the Gulf Stream. Aside from storms, winds over the continental shelf in Onslow Bay blew predominantly alongshore with velocities approaching 14 m s-1 during February and March 1986, and January and February 1989. Water masses and currents observed at two current-meter moorings, one at mid-shelf and the other on the outer shelf, reflected the onshore (or offshore) advection of interior water in compensation for the offshore (or onshore) advection of wind-driven surface water. Winds and currents reversed direction approximately every 4 to 6 days. The larvae of Atlantic menhaden, Brevoortia tyrannus , spot, Leiostomus xan- thurus, and Atlantic croaker, Micropogonias undulatus , were most abundant in 17–19oC and 20–21oC water of the outer shelf and Gulf Stream fronts. There was little indication of diel vertical migration; larval Atlantic menhaden were most abundant in mid- and surface water, while spot and Atlantic croaker were most abundant in mid- and deep water. Given this distribution, the inferred advective transport of larvae was at times onshore, but at other times it was offshore. Within a spawning season, the prevalence of either reciprocation could determine the number of larvae that reach coastal inlets.  相似文献   

12.
The processes that control the spatial distribution of North Sea whiting (Merlangius merlangus) spawning adults are investigated using a statistical multi‐model approach. Models of external and internal controls on the population, such as environmental conditions, spatial constraints, present or past spatial distribution, and demographic state of the population, are evaluated, compared and ranked to select those that are the best able to predict the observed distribution of spawning adults. Model selection is greatly influenced by the selection method, either based on data fitting or prediction, as well as by the threshold value used to stop the selection. Model selection based on prediction tends to select simpler models than selection based on data fitting. The hypotheses underlying the selected models are inferred to play a significant role in controlling North Sea whiting spatial distribution. The multi‐model inference approach developed in this study enables comparison of several theoretical concepts and hypotheses and the results provide important clues on the processes involved in the control of the spatial distribution of whiting. We conclude that whiting has a high spatial fidelity to spawning site which can be linked to either geographical attachment or year‐to‐year persistence of the spatial distribution of the population. Environmental factors – temperature and salinity – appear to influence the geographical extent of spawning whiting distribution, whereas local abundance levels are primarily controlled by internal factors, i.e., population size and spatial segregation between ages.  相似文献   

13.
A bio‐physical semi‐Langrangian model was developed to follow the drift and abundance of lobster larvae from hatching to settlement as post‐larvae. The geographic domain encompasses Northumberland Strait and the areas surrounding Prince Edward Island in the southern Gulf of St. Lawrence. The model was run for ten larval seasons, 1983–87 and 1997–2001, representing two periods of egg production. The model was forced with tides, winds, heat fluxes, and marine and freshwater fluxes at open boundaries. Biological inputs were location, date, and density of larvae at hatching, development rates, a time window and a minimum bottom temperature required for successful settlement, and two scenarios of daily mortality. Net drift was west to east but stronger on the north than the south side of Prince Edward Island. The hatch was greater in the second 5‐yr period, but the spatial patterns of settlement were similar. For both mortality scenarios, the same five of the 24 larval source areas were important in providing settlers. Horizontal shear of larval distribution indicates fishing communities were dependent on the hatch from fishing grounds of multiple upstream communities. Variation in daily and annual post‐larval settlement was greatest north of Prince Edward Island. From the 24 source areas there was an eightfold range in the fraction of larvae surviving to settlement, with advection into deep water an important cause of mortality. Four to five possible fishery management areas were identified using multidimensional scaling to group sink areas having shared source areas. We hypothesize leaky discontinuity in connectivity between these groups.  相似文献   

14.
An individual‐based model (IBM) was used to investigate the effects of physical and biological variables on the transport via a jet current of anchovy (Engraulis capensis) eggs from spawning to the nursery grounds in the southern Benguela ecosystem. As transport of eggs and early larvae is considered to be one of the major factors impacting on anchovy recruitment success, this approach may be useful to understand further the recruitment variability in this economically and ecologically important species. By coupling the IBM to a 3D hydrodynamic model of the region called Plume, and by varying parameters such as the spatial and temporal location of spawning, particle buoyancy, and the depth range over which particles were released, we could assess the influences of these parameters on transport success. A sensitivity analysis using a General Linear Model identified the primary determinants of transport success in the various experimental simulations, and model outputs were examined and compared with patterns observed in field studies. Model outputs compared well with observed patterns of vertical and horizontal egg distribution. Particle buoyancy and area of particle release were the major single determinants of transport success, with an egg density of 1.025 g cm?3 maximizing average particle transport success and the western Agulhas Bank being the most successful spawning area. This IBM may be useful as a generic prototype for other upwelling ecosystems.  相似文献   

15.
We used modified Leslie matrix models to explore the life history of Atlantic menhaden ( Brevoortia tyrannus ). By examining the sensitivity of long-term population growth rates to changes in vital rates, we identified those life history components which can cause large population level responses. Our models subdivide the first year of life into five stages (eggs, early larvae, late larvae, juveniles, and 'peanuts' or subadults), and population growth rate responds most strongly to changes in juvenile and late larval stages. The relative ranking between these stages is dependent on the magnitude of mortality during the prejuvenile stages relative to juvenile mortality. An examination of low-level model parameters indicates that the population growth rate is influenced by the growth and mortality rates during the time when young-of-the-year menhaden are gaining access to and residing in the estuaries. Sensitivity to changes in many adult metrics, such as fishing mortality, were relatively low. We conclude that a better understanding of biotic and abiotic factors that influence the late larval and juvenile stages will further our understanding of population dynamics in this species.  相似文献   

16.
Surface water in the North Equatorial Current (NEC) is composed of southern low‐salinity water diluted by precipitation to less than 34.2 psu and northern, high‐salinity tropical water greater than 34.8 psu. Analyses of 27‐year historical data, observed in winter and summer along the longitude 137°E by the Japan Meteorological Agency, shows that an obvious salinity front (34.5 psu) generated by the two water masses was usually located around 15°N. However, the salinity front has been moving northward during the past three decades. El Niño/Southern Oscillation (ENSO) affected salinity in the surface layer, while temperature changed in the middle layer. The salinity front sometimes moved southward, mainly south of 5°N, and the movement was well correlated with the southern oscillation index (SOI). Because precipitation at Yap (9.5°N, 138.1°E) fluctuated with SOI, this spike‐like southward movement of the salinity front was probably affected by reduction of low‐salinity water during El Niño in the north‐western Pacific Ocean. However, ENSO only induced such large southward movements of the salinity front when the time lag between the low precipitation and low SOI was short (within four months). This salinity front is quite important for long‐distance migrating fish such as the Japanese eel because the eels spawn just south of the salinity front in the NEC. This behaviour suggests that the movement of the salinity front associated with ENSO may control the success of larval transport from the spawning ground in the NEC to the nursery ground in East Asia. In fact, catch of the Japanese eel larvae in Japan was well correlated with fluctuation of SOI and the location of the salinity front, and lower catch occurred during El Niño. The salinity front has moved from 13°N to 17°N during the past three decades. Considering that conditions of larval transport are worse north of 15°N, we suggest that decadal‐scale linear decrease of glass eel catch during the past three decades also can be explained by the displacement of the salinity front.  相似文献   

17.
We apply a coupled biophysical model to reconstruct the environmental history of larval radiated shanny in Conception Bay, Newfoundland. Data on the larvae, their prey and predators were collected during a 2‐week period. Our goal was to determine whether environmentally explicit information could be used to infer the characteristics of individual larvae that are most likely to survive. Backward drift reconstruction was used to assess the influence of variations in the feeding environment on changes in the growth rates of individual larvae. Forward drift projections were used to assess the impact of predators on mortality rates as well as the cumulative density distribution of growth rates in the population of larvae in different areas of the bay. There was relatively little influence of current feeding conditions on increment widths. Patterns of selective mortality indicate that fast‐growing individuals suffered higher mortality rates, suggesting they were growing into a predator's prey field. However, the mortality rates appeared to increase with decreasing predator abundance, based on the drift reconstructions. The relationship of growth and mortality with environmental conditions suggests that short‐term, small‐scale variations in environmental history may be difficult to describe accurately in this relatively small system (~1000 km2).  相似文献   

18.
A simple 3-D biogeochemical model is coupled to a dynamical model forced by weekly winds deduced from ERS1 scatterometer data, to simulate new production in the equation Pacific from April 1992 to June 1995. The biogeochemistry is modelled as a nitrate sink modulated by chlorophyll, using nitrate/chlorophyll regressions derived from field data. The first simulation was carried out assuming that remineralization below the euphotic layer is totally controlled by sinking particles. In the second simulation, it is shown that the simulation of nitrate and new production by the biogeochemical model is improved, in comparison with field data, by adding an explicit dissolved organic nitrogen compartment. In the equatorial band, the model simulates a nitrate-poor region (low new production) in the fresh warm pool separated from richer waters of the upwelling region by a salinity front. The zonal displacement of this salinity/nitrate front is associated with the El Niño–Southern Oscillation (ENSO). The modelled new production and physics, both in good agreement with the field data, represent useful tools for the study of skipjack tuna ( Katsuwonus pelamis ) forage distribution in the Pacific.  相似文献   

19.
20.
Many demersal marine fish species depend on a dispersive larval stage that connects geographically discrete sub‐populations. Understanding connectivity between these sub‐populations is necessary to determine stock structure, which identifies the appropriate spatial scale for fishery management. Such connectivity is poorly understood for King George whiting (Sillaginodes punctatus; Perciformes) in South Australia's gulf system, even though spawning grounds and nursery areas are adequately defined. In response to declines in commercial catches and estimated biomass, this study aimed to determine the most important spawning grounds and nursery areas to recruitment, and the connectivity between them. A biophysical model was seeded with particles according to the distribution and density of eggs throughout the spawning area in 2017 and 2018. Despite inter‐annual differences in the origins of particles, dispersal pathways and predicted settlement areas remained consistent between years. Predicted settlement was generally highest to nursery areas only short distances from regional spawning grounds, consistent with previous hydrodynamic models. However, the model also predicted that spawning in one region could contribute to recruitment in an adjacent region later in the spawning season, which aligned with the breakdown of thermohaline fronts at the entrance of each gulf. The connectivity between spawning grounds and nursery areas predicted by the model is supported by spatio‐temporal patterns in the otolith chemistry of pre‐flexion larvae and settled juveniles. Consequently, the most parsimonious explanation is that the populations of King George whiting in South Australia's gulf system constitute a single, panmictic stock, which has implications for fishery management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号