首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Striga hermonthica and S. gesnerioides pose serious threats to cereal and cowpea production, endangering peoples' livelihoods on the Abomey plateau, Benin. A 2-year joint experiment was undertaken with farmers in two hamlets to investigate the potential of managing sowing dates of cowpea, sorghum transplanting, and trap cropping as ways of increasing agricultural production and reducing Striga damage. Early sowing of cowpea failed due to dry spells. Late sowing reduced cowpea yield due to water deficiency at the end of the growing season. Transplanting sorghum seedlings raised in fertilised or Striga-free nurseries doubled or tripled cereal yield and substantially reduced S. hermonthica infestation compared to direct early-sown sorghum. Transplanting sorghum from plant hills to fill gaps was unsuccessful. Trap crops such as cowpea and groundnut increased subsequent maize yield. Trap cropping had only a small effect on S. hermonthica infestation. The very poor soils in Somè central were a major constraint upon yield improvement to acceptable levels even after the introduction of the new crop (and Striga) management methods.  相似文献   

2.
Two species of the parasitic genus Striga, S. hermonthica (Del.) Benth. and S. gesnerioides Willd., cause severe damage to graminaceous and leguminous crops, respectively, in tropical and semi tropical areas. Striga seed germination requires the presence of germination stimulants exuded by the roots of host plants. After attachment to the host root, the young parasite exhibits a subterranean stage of development during which it already induces considerable damage in the crop. Then, the parasite emerges from the soil, develops chlorophyllous shoots and, after flowering, produces a large number of minute seeds. Many field experiments performed in the USA to control another species (S. asiatica) have shown that application of chlorthaldimethyl, di camba or dinitroanilines prevented Striga emergence. Nevertheless the phenological stages of the parasite which are sensitive to the herbicides, as well as the mode of action of these products, are still unknown. Our experiments, performed in vitro, clearly show that chlorthal-dimethyl, dicamba or pendimethalin inhibit germination of S. hermonthica and S. gesnerioides seeds in the presence of natural germination stimulants. Moreover dicamba, clopyralid and linuron are able to induce the germination of S. gesnerioides seeds in the absence of stimulants (suicidal germination). Even if the mode of action of these herbicides in inhibition or induction of Striga seed germination has yet to be studied, such products can be useful to control Striga before attachment, thus preventing the crop from suffering the early damaging effect of the parasite. Moreover bromoxynil, ioxynil, bentazone and pyridate are potent inhibitors of photosynthesis in S. hermonthica, while they do not affect the hosts (maize and sorghum). Linuron also inhibits photosynthesis in the parasite, but it may affect these crops according to the rate applied. All these inhibitors of photosystem II could be used to control S. hermonthica after emergence, thus preventing seed production. Nouvelle approche expérimentale pour la recherche de méthodes de lutte chimique contre les Striga: utilisation de modelès simplifiés in vitro Les Striga sont des Scrophulariacées hémi-parasites de racine. Deux espèces, S. hermonth-ica (Del.) Benth. et S. gesnerioides Willd. provoquent des pertes de rendement très importantes respectivement dans les céréales et les légumineuses, notamment dans la zone inter tropicale de l'Afrique. La germination des graines de Striga nécessite la présence de stimulants de germination exsudés par les racines de l'hôte. Après fixation sur les racines de son hôte, le jeune parasite présente une phase de vie souterraine hétérotrophe au cours de laquelle il inflige déjà de sévères dommages à la culture. Après émergence le parasite développe un ap-pareil aérien chlorophyllien fleurit et fructifie, produisant des milliers de graines minuscules. De nombreux essais, réalisés en plein champ aux USA pour lutter contre une autre espèce (S. asiatica) ont montré que l'application de chlorthal-diméthyle, de dicamba ou de diverses dinitroanilines inhibe partiellement l'émergence du parasite. Le stade phénologique du parasite sur lequel ces produits agissent, de même que leur mode d'action sont inconnus. Nos expériences, réalisées in vitro, montrent chlorthal-diméthyle, le dicamba et la pendiméthaline inhibent la germination des graines de S. hermonthica et S. gesnerioides en présence des stimulants de germination. En outre, le dicamba, le clopyralid, et surtout le linuron, sont capables d'induire la germination des graines de S. gesnerioides en l'absence des stimulants (germination suicide). Tous ces produits, dont le mode d'action dans l'inhibition ou l'induction de la germination reste èétudier, ouvrent des perspectives prometteuses pour la lutte préventive—la plus efficace—contre les Striga. En outre le bromoxynil, l'ioxynil, la bentazone et le pyridate, sélectifs du Maïs et du Sorgho, sont d'excellents inhibiteurs de la photosynthèse de S. hermonthica. Le linuron inhibe également la photosynthèse du parasite, mais il est moins sélectif des céréales. Ces herbicides inhibiteurs du photosystème II pourraient être utilisés dans le cadre d'un programme de lutte pour détruire S. hermonthica après émergence, empêchant ainsi la production des graines.  相似文献   

3.
Striga hermonthica is an important parasitic weed that severely reduces yields of sorghum in sub‐Saharan Africa. Pot experiments with the sensitive sorghum cultivar CK60‐B and the tolerant Tiémarifing were conducted in 1999 and 2000 to investigate the role of infection time on the interaction between sorghum and Striga hermonthica. Timing of Striga inoculation was used to establish delays of one and two weeks in first attachment of the parasite. In 1999, early Striga inoculation resulted in a relatively early first Striga attachment on CK60‐B. Although first infection of Tiémarifing occurred one week later, an identical final number of emerged Striga plants was observed. Plants of CK60‐B were more severely affected and supported a higher total Striga biomass. Only with this cultivar the interaction between host and parasite was significantly affected by delayed infection. Parasite biomass was most sensitive and already significantly reduced following a 1‐week delay in infection time. With a further 1‐week delay, an additional reduction in parasite biomass was accompanied by a strong and significant increase in total and panicle dry weight of the host plant. In 2000, first infection of CK60‐B was relatively late and occurred simultaneously with first infection of Tiémarifing and no significant effect of delayed infection on Striga biomass or host‐plant performance was observed. The results indicate that the influence of delayed infection strongly depends on actual infection time and confirm that earlier observed differences in time of first infection between the two cultivars do contribute to the more tolerant response of Tiémarifing to Striga infection.  相似文献   

4.
The foliar absorption and translocation of 14C dicamba were investigated to determine the potential of this chemical as a selective herbicide for Striga control. After application of the labelled herbicide to the host, the uptake, measured 5 days after foliar treatment, reached 46 and 72% for cowpea (Vigna unguiculata) and pearl millet (Pennisetum glaucum), respectively. A high percentage of the herbicide was translocated into Striga plants, particularly into S. gesnerioides. The fraction recovered in this species reached 51.2% of the amount absorbed 5 days after foliar application. The distribution patterns of the herbicide after 1 and 5 days suggest that dicamba might be used as an effective pre-emergence spray for Striga control. Selective application to the parasite leaves showed that the bulk of the radioactivity remained in the parasites, a very low percentage of the amount absorbed (1.6 and 2.5% in pearl millet and cowpea, respectively) being translocated into the host, suggesting that post-emergence application of dicamba might also be useful in the control of Striga. Absorption foliaire et transport du dicamba 14C à Pintérieur de la plante-hôte (petit mil et Vigna) leurs parasites du genre Striga L'absorption foliaire et le transport du dicamba 14C ont étéétudiés en vue de déterminer le potentiel de cette molécule comme desherbant sé1ectif contre le Striga. Après application de ('herbicide marqué sur 1'hôte, 1'absorption, mesurée 5 jours aprés le traitement foliaire atteignait 46% et 72% pour Vigna unguiculata et le petit mil (Pennisetum glaucum) respective-ment. Un taux élevé d'herbicide était transporté dans les plantes de Striga, en particulier dans S. gesnerioides. La part retrouvée dans cette espéce a atteint 51,2% de la quantité absorbée, 5 jours après I'application foliaire. Les modèles de distribution de 1'herbicide après 1 et 5 jours conduisent à penser que le dicamba pourrait être utilisé efficacement comme un herbicide de prélevée contre Striga. Des applications sélectives sur les feuilles du parasite ont montré que la majeure partie de la radioactivité restait dans les parasites, un très faible pourcen-tage de la quantité absorbée (1,6 et 2,5% dans le petit mil et le pois à vache, respectivement) étant transporté dans 1'hôte suggérant qu'une application de post levée de dicamba peut aussi être utilisée pour lutter contre le Striga. Blattaufnahme und Translokation von 14C-Dicamba bei Wirtspflanzen (Perlhirse und Kuhbohne) und parasitischen Pflanzen der Gattung Striga Die Blattaufnahme und Translokation von 14C-Dicamba wurden untersucht, um die Möglichkeiten zur selektiven Bekämpfung von Striga-Arten mit diesem Wirkstoff zu bestimmen. 5 Tage nach der Applikation des radioaktiv markierten Herbizids wurde bei der Kuhbohne (Vigna unguiculata (L.) Walp.) eine Aufnahme von 46% und bei der Perlhirse (Pennisetum glaucum (L.) R.Br.) 72% gemessen. Eine große Menge des Herbizids wurde in die Striga-Pflanzen transloziert, besonders Striga gesnerioides, bei der zu dieser Zeit 51,2% der absorbierten Menge gefunden wurden. Das Verteilungsmuster des Herbizids nach l und 5 Tagen läßt vermuten, daß Dicamba als ein wirksames Vorauflaufmittel zur Striga-Bekämpfung genutzt werden kann. Nach Applikation auf die Blätter der parasitischen Pflanzen verblieb die Radioaktivität größtenteils in diesen Pflanzen, und in die Wirtspflanzen wurde davon nur ein sehr kleiner Teil transloziert (1,6% in die Perlhirse, 2,5% in die Kuhbohne), so daßStriga-Arten wohl auch im Nachauflauf mit Dicamba bekämpft werden können.  相似文献   

5.
Under glasshouse conditions, the ability of Fusarium oxysporum isolate Foxy 2, a fungal pathogen isolated from Striga hermonthica, to control S. asiatica and S. gesnerioides, was investigated on potted plants. In the experiment, the target weed of the fungus, S. hermonthica, was included as a standard. In the present study, S. asiatica was the only species that, besides S. hermonthica showed high susceptibility to Foxy 2. This susceptibility was demonstrated by almost complete prevention of emergence of the parasite. In contrast, S. gesnerioides did not show any susceptibility at all. The susceptibility of two Striga species to the fungus provides an opportunity for simultaneous control of both parasites in those regions where they are co‐existing (e.g. Tanzania and Kenya).  相似文献   

6.
The effects of nitrogen and the extent of sorghum root infection by Striga hermonthica on host-parasite association during vegetative growth were studied using a split root system in a 3 × 3 factorial combination of N (37mg on one, 18.5 or 37mg on both root-halves) and Striga (no, one or both root-half infection). High N increased sorghum shoot weight by 22% more than low N, but did not significantly affect Striga growth 64 days after transplanting sorghum (DAP). Striga reduced sorghum stem height and weight by 22% and 25% at 38 DAP, and by 34% and 36% at 64 DAP, respectively. Leaf weight was not affected. Striga stimulated root growth 38 DAP, but not 64 DAP. In partially infected sorghum, 64 DAP, the parasite shoot number, shoot height and shoot dry weight were 36%, 46% and 35%, respectively and host shoot dry matter was 142% of those in fully infected plants, indicating an inverse relationship between the degree of host root infection and the level of resistance. The results suggest that sorghum released resistance-confering substances to the infection points after sensing infection. When infection points are widely distributed as in fully infected sorghum, less of such substances appear to render the host more vulnerable.  相似文献   

7.
ABSTRACT Initial interactions of Striga asiatica with a susceptible host and non-host plants were examined by histological methods. Haustorial development was initiated when radicles of S. asiatica were placed in contact with host or nonhost roots. Reorganization of the S. asiatica root apical meristem was rapid and involved the formation of a distal group of cells that penetrated the host or nonhost root. Penetration of the epidermis of the host (sorghum) roots and advance into the cortex occurred within 24 to 48 h of inoculation. Penetration of the endodermis by the developing endophyte was delayed for 72 to 96 h after initial contact. However, upon penetration vascular continuity was established between parasite and host. In contrast, interactions with nonhosts provided evidence of active resistance mechanisms. Penetration of lettuce, marigold, and cowpea roots by S. asiatica was most frequently arrested in the cortex, and endophytic cells were necrotic 72 h after inoculation. Some species-specific differences were observed in the reactions of nonhosts to penetration, although in their general nature the interactions with S. asiatica were similar.  相似文献   

8.
The root hemiparasite Striga hermonthica causes very significant yield loss in its dryland staple cereal host, Sorghum bicolor. Striga‐resistant sorghum cultivars could be an important part of integrated S. hermonthica control. For effective resistance breeding, knowledge about the diversity of the parasite is essential. This study aimed (i) to determine the genetic diversity within and between seven S. hermonthica populations from East and West Africa using 15 microsatellite markers and (ii) to assess the virulence and host–parasite interactions of these Striga populations grown on 16 diverse sorghum genotypes in a glasshouse trial. Most of the genetic variance (91%) assessed with microsatellite markers occurred within S. hermonthica populations. Only a small portion (8%) occurred between regions of origin of the populations. A positive correlation (R2 = 0.14) between pairwise geographic and genetic distances reflected the slightly increasing differentiation of S. hermonthica populations with increasing geographic distance. East African S. hermonthica populations, especially those from Sudan, had significantly greater average infestation success across all sorghum genotypes than West African populations. Some specific host–parasite interaction effects were observed. The high genetic variation among individuals of each S. hermonthica population underlines the high potential adaptability to different hosts and changing environments. This points to the need to manage sorghum resistance alleles in space and time and to employ resistant varieties as part of integrated S. hermonthica control, so as to hinder the parasite overcoming resistance.  相似文献   

9.
The parasltie flowering plants, Striga species, represent the largest biological constraint to cereal and legume crop production in sub-Saharan Africa. Eighty-three percent of Striga worldwide (35 species) occurs in Africa. Among them, Striga hermonthica causes the greatest damage. The IITA's scientists began research on breeding maize for horizontal resistance to Striga in 1982. By 1995 a comprehensive approach to combat Striga on maize had been developed and demonstrated. This included the development of a simple field infestation technique, the discovery of durable resistance genes, genetic studies of resistance genes and the formation of many resistant varieties (hybrids and synthetics) with high grain quality, high grain and stover yields and a combined resistance to major biotic and abiotic stresses. Multilocation testing and subsequent seed multiplication of the resistant varieties was carried out by national programmes in Benin, Burkina Faso, Cameroon, the Ivory Coast, Ethiopia, Ghana, Nigeria, and Togo. Striga-resistant maize varieties show horizontal resistance not only to S. hermonthica, but also to another species, Striga asiatica. Based on the results of a 15 year research, an integrated approach using resistant varieties and cereal-legume intercropping or rotation is recommended as a sustainable and permanent solution to combat Striga in Africa. This horizontal resistance package, with a combined resistance to other biotic stresses, could be applicable not only to Striga problems in other crops such as sorghum, millet, rice and cowpea, but also to other parasitic weeds, such as Orobanche species. This paper reviews and discusses why, approximately a century's research work on parasitic weeds, has not led to a major research breakthrough.  相似文献   

10.
Abstract

Striga asiatica (L.) Kuntze, a root parasite, causes severe loss of yield in sorghum and several other crops. The seeds of the parasite are induced to germinate by a stimulant in the host root exudate. Presowing hardening of the host with vanillic acid, caffeic acid and ferulic acid (25 ppm) reduces the induction of seed germination in the parasite by the host root exudate. The treatment causes a slight improvement in the dry matter production in the host and in addition, increases the phenolics level in the host root exudate. The latter effect might be responsible for reducing germination in Striga. If the treatment remains effective under field conditions also, it reduces significantly the incidence of Striga in cultivated fields.  相似文献   

11.

The possibility of reducing Striga hermonthica (Del.) Benth. parasitism in severely infested fields, by means of deep planting - thereby reducing the root length in the upper layers of the soil where Striga seeds are predominantly found - was tested in field trials with maize and sorghum in western Kenya. Sorghum seeds were planted in Striga-infested fields approximately 2.5 cm deep in the soil or at the bottom of conically-shaped plant holes (15-20 cm deep). Depth of plant holes for maize varied from 0 to 30 cm, in un-tilled soil. Deep planting in un-tilled soil gave higher (up to double) grain yields, compared with standard planting in tilled soil. Parasite emergence was related negatively to planting depth of maize (p< 0.05). Deep planting in tilled soil gave 74% more sorghumgrain yield relative to standard planting. In this treatment Striga seed production was not reduced but in un-tilled fields with deeply planted sorghum Striga seed production was completely suppressed. Therefore, a combination of zero-tillage and deep planting seems to be the most effective treatment. The probable mechanism causing these results is avoidance of Striga seed by the host root system, resulting in a delay in the onset of Striga attachment and the formation of smaller numbers of attachments.  相似文献   

12.
Thidiazuron at 0.1 to 10 mg 1?1 induced concurrent germination and haustorium initiation in Striga asiatica (L.) Kuntze and S. hermonthica (Del.) Benth, but it had no effects on S. gesnerioides (Willd.) Vatke. Both millet and sorghum strains of S. hermonthica were equally responsive. The response of Striga seeds to thidiazuron increased with conditioning. Early applications of the compound induced some germination, but had adverse effects on the conditioning process. Induction de la germination des graines de Striga par le thidiazuron Le thidiazuron de 0,1 à 10 mg 1?1 a induit de façon conjointe le germination et l'initiation d'haustoria chez Striga asiatica et S. hermonthica, mais n'a pas eu d'effet sur S. gesnerioïdes. Les souches de S. hermonthica liées au millet et au sorgho ont un comportement équivalent. La réponse des graines de Striga au thidiazuron a augmenté par conditionnement préalable. Des applications précoces de produit ont induit quelques germinations, mais ont eu des effets contraires sur Ie processus de conditionnement. Einleitung der Samenkeimung bei Striga-Arten durch Thidiazuron Mittels Thidiazuron-Lösungen von 0,1 bis 10 mg 1?1 konnten eine gleichzeitige Keimung und Ausbildung der Haustorien bei Striga asiatica (L.) Kuntze und S. hermonthica (Del.) Benth. herbeigeführt werden, nicht jedoch bei S. gesnerioides (Willd.) Vatke. Der Rispenhirsen-und der Sorghum-Typ von S. hermonthica reagierten in gleichem Maße. Konditionierung der Striga-Samen förderte die Wirkung von Thidiazuron. Frühe Anwendung des Wirkstoffs führte zu einer geringen Keimung, beeinträchtigte jedoch die Konditionierung.  相似文献   

13.
We present the results of a histochemical study comparing seedlings of races C and D of Orobanche cumana Wallr. (syn. O. cernua Loefl.) attacking sunflower (Helianthus annuus L.) in southern Russia. Three groups of O. cumana seedlings were distinguished according to the peroxidase content of the cells in the radicles: (1) those with neither extracellular nor intracellubr peroxidase and whose radicles have a smooth apex (these were classified as non-infective): (2) those with a high peroxidase content of the nuclei and the cytoplasm layer adjacent to the cell wall, as well as excretion of peroxidase from the apex of the radicles: (3) those with a similarly high peroxidase activity in the parasite cells, but without extracellular excretion. The apices of the radicles of the last two groups are swollen. It is suggested that these belong to O. cumana races C and D respectively. The extracellular peroxidase in O. cumana race C reacts with phenolic compounds, which are lignin precursors of the host, resulting in host resistance due to the formation of lignin layers in sunflowers possessing the Or3 gene for resistance. The absence of extracellular peroxidase in O. cumana race D prevents lignin formation and enables the parasite to attach to the host vascular system. Comparison of these data with the information on the earlier O. cumana races A and B, and older sunflower cultivars, points to a crucial role of peroxidase in the process of breeding new sunflower cultivars and the evolution of new O. cumana races.  相似文献   

14.
Pot and field experiments were performed in Burkina Faso in 1987 and 1988 to evaluate the resistance of selected ‘low-stimulant’ sorghum (Sorghum bicolor (L.) Moench) varieties to the parasitic weed (Striga hermonthica (Del.) Benth. In a pot experiment, the variety IS-7777 supported the lowest number and had the latest emergence of Striga, compared with the other varieties tested. The varieties IS-14825, IS-6961, IS-7739, IS-14928 and IS-14975 also had signifi cantly lower numbers of emerged Striga per pot than the resistant control Framida. The resist ance of IS-7777 was confirmed in field experi ments, as was that of IS-7739, IS-6961 and IS-14928. However, the yield potential of these poorly adapted varieties was low in Striga-infested fields. The varieties IS-14975, IS–14825 and Seguetana Niarabougou exhibited a low susceptibility associated with a grain yield equivalent to that of the other varieties in farm fields infested by Striga. As Seguetana is already grown by Sahelian farmers, its use could be recommended in the absence of resistant varieties adapted to Sahelian agroclimatic conditions. The exceptionally high level of restance exhibited by IS-7777 could be exploited in studies on the genetics and mechanisms of resistance of the host plant to the parasite, as well as in sorghum improvement programmes.  相似文献   

15.

A bio-economic model of Striga control is developed and applied to Mali's Mourdiah Zone. Various constraints are added, and optimal production practices identified based on Striga infestation levels, rainfall levels, and economic parameters. Model optimization suggests efforts to suppress Striga with nitrogen applications are both expensive and risky. The efficacy of hand-pulling Striga in reducing the Striga seedbank depends on Striga infestation levels and climatic conditions, as does the profitability of hiring labour to expand cultivated acreage. Under all climatic conditions and infestation levels considered, millet in a pure stand generated greater expected net returns than a millet - groundnut or millet - cowpea association. Under conditions of low rainfall, the model suggests planting millet at a density of 0.5 hills m?2. With average or higher rainfall, the model suggests planting millet at a density of 3.5 hills m?2. Estimates of Striga-induced net revenue losses also vary with climatic conditions, ranging from 6% to 85%. Model results are encouraged to be used as a guide in the design and evaluation of research and extension programmes aimed at identifying long-run Striga control strategies and promoting their adoption.  相似文献   

16.
Summary Although the angiospermous parasitic weed Alectra vogelii is a major biotic constraint to cowpea production in Africa, there is little information on the host:parasite association between them. Accordingly, the dry matter production and partitioning in a cowpea: A. vogelii association was studied over the growth cycle. Cowpea was grown in pots containing 1350, 2700 or 4000 A. vogelii seeds kg−1 top soil and with uninfected controls. Alectra vogelii attachment on to cowpea roots was first detected 30 d after crop emergence, and the first shoots emerged 44 d after crop emergence. New A. vogelii attachments on to cowpea roots continued to be produced throughout the growth of the crop. Alectra vogelii infection did not decrease cowpea dry matter production, but it significantly altered dry matter partitioning by increasing the proportion of root dry matter. Alectra vogelii infection significantly reduced dry matter accumulation in cowpea pods. The loss of dry matter in cowpea pods was largely accounted for by dry matter gain in A. vogelii shoots. The data are discussed in relation to how A. vogelii and other parasitic plants influence dry matter partitioning in their hosts.  相似文献   

17.
S.O. EL  HIWERIS 《Weed Research》1987,27(5):305-311
Ten Sorghum vulgare (Pers.) cultivars varying in tolerance to Striga hermonthica (Del.) Benth. parasitism were grown with or without Striga infection. Endodermal thickening, pericycle lignification and silica crystal deposition were studied microscopically and measured for infected and non-infected sorghum cultivars. Although differences in the root character measurements were statistically significant they were not closely related to the response of the plant to infection. Low stimulant producing cultivars showed low or medium root cell thickening. The cv. Framida had both low stimulant production and high root cell thickening and was the best of the tolerant cultivars. High stimulant producing, tolerant cultivars generally showed heavy or intermediate cell thickening. The high stimulant producing, susceptible cultivar Debaikri also showed intermediate root cell thickening.‘Antibiosis', measured by the content of phenolic compounds in the plant, was then studied. Varietal differences in quality and quantity of phenolic substances in the roots and shoots of sorghum cultivars infected or non-infected with Striga were observed. Infection increased total phenolic contents in both shoot and root extracts. Differences in the total phenolic content in the shoot of non-infected cultivars did not reflect tolerance to Striga infection. The total phenolic acid content of the root extracts was closely related to the response of the host plant to Striga infection, tolerant cultivars having greater total phenolic acid content than susceptible ones.  相似文献   

18.
Decimation of cereal growth and yields by hemiparasitic Striga species cannot be accounted for entirely by the removal of host‐plant resources. The production of toxic compounds by the parasite has been suggested. An investigation of three species of the economically important Striga and the related Alectra vogelii has now resulted in the isolation of eight iridoid glucosides (mussaenosidic acid, mussaenoside, gardoside methyl ester, bartsioside, isoaucubin, melittoside, aucubin and eurostoside), two caffeoyl phenylethyl glycosides (calceolarioside  A and verbascoside) as well as shikimic acid and trigonelline, all identified by NMR spectroscopy. The iridoids are potent cytotoxins and probably represent an anti‐herbivore defence system common to Scrophulariaceae (sensu lato). This has the potential to explain differences in tolerance apparent for contrasting host taxa and cultivars. The nature of the iridoids present also provides additional validation of the recent transferral of parasitic Scrophulariaceae (s.l.) to Orobanchaceae.  相似文献   

19.
Striga seeds were extracted from soils collecled in Mali and the viahility of these seeds was estimated. Striga seeds were found in 45 of 46 samples taken from 23 fields. Siriga hermonthica (Del.) Benth. growmg on the host crop millet, was present at all 46 sites sampled. The a size uf the Striga seedbaiik measured lo a depth of 15 cm was estimated to be 38 800 m -2 of surface area (geometnc mean 11 500). The average number of S. hermonthica plants observed per millei hill was 8.83 (geometric mean 3.89) or 13.98 m-2 (gcometrie mean 5.69 m-2). Higher crop hill densities tended to result in higher densities of emerged S. hermonthica per hill. The relationship between seeds m-2 and S. her-monhica plants m-2 was fitied to a reetungular hyperbola and used to reassess an existing model of S. herniouhica control.  相似文献   

20.
Striga hermonthica is a parasitic weed that poses a serious threat to the production of economically important cereals in sub‐Saharan Africa. The existence of genetic diversity within and between S. hermonthica populations presents a challenge to the successful development and deployment of effective control technologies against this parasitic weed. Understanding the extent of diversity between S. hermonthica populations will facilitate the design and deployment of effective control technologies against the parasite. In the present study, S. hermonthica plants collected from different locations and host crops in Kenya and Nigeria were genotyped using single nucleotide polymorphisms. Statistically significant genetic differentiation (FST = 0.15, = 0.001) was uncovered between populations collected from the two countries. Also, the populations collected in Nigeria formed three distinct subgroups. Unique loci undergoing selection were observed between the Kenyan and Nigerian populations and among the three subgroups found in Nigeria. Striga hermonthica populations parasitising rice in Kenya appeared to be genetically distinct from those parasitising maize and sorghum. The presence of distinct populations in East and West Africa and in different regions in Nigeria highlights the importance of developing and testing Striga control technologies in multiple locations, including locations representing the geographic regions in Nigeria where genetically distinct subpopulations of the parasite were found. Efforts should also be made to develop relevant control technologies for areas infested with ‘rice‐specific’ Striga spp. populations in Kenya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号