首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I. Karsai    K. Mészáros    P. Szücs    P. M. Hayes    L. Láng  Z. Bedö 《Plant Breeding》1999,118(5):399-403
The objectives of this research were to determine the individual and interaction effects of the Ppd-H1 and Sh2 loci on agronomic traits under short- and long-photoperiod regimes. Nineteen doubled haploid (DH) lines from the ‘Dicktoo’בMorex’ mapping population, which represented the four genotypes at the Ppd-H1 and Sh2 loci, were pheno-typed in controlled environment photoperiods. Both Ppd-H1 and Sh2 had significant effects on several agronomic traits, in addition to their role in determining first node appearance and flowering time. The magnitude of these effects depended on daylight. Under long-day conditions (18 h) Ppd-H1, and under short-day conditions (12 h) Sh2 was a significant determinant of most characters. The interactions between these two loci were significant for several characters, particularly for yield components, under both long- and short-photoperiod regimes. Under the long-day treatment, Ppd-H1 influenced plant height through the determination of node number. There was an epistatic association between the two loci for both 1000-kernel weight and tillering. The combination of photoperiod insensitivity and vernalization requirement caused a significant increase in tillering. This was paralleled by a decrease in 1000-kernel weight. Under the long-day treatment, neither Ppd-H1 nor Sh2 influenced plant yield. Under short-day conditions, the combination of photoperiod insensitivity and vernalization requirement had a pronounced negative effect on plant yield.  相似文献   

2.
The inheritance of heading time of spring barley was studied in three extremely early genotypes IB, RL and ‘Mona’ (M), which is homozygous recessive for the early maturity ea8 (=eak) gene conferring extreme earliness under short daylengths and is relatively photoperiod insensitive, and five (GP, MA, PS, NU and BA) spring genotypes that are early to intermediate for heading time. Frequency distributions of F2 generations grown at Ouled Gnaou, Morocco (32°15′ N), an environment which maximizes differences between photoperiod‐insensitive and photoperiod‐sensitive genotypes, indicated that across populations many loci were segregating in a complex Mendelian manner. IB and RL were both homozygous recessive for the ea8 gene, which conferred an early heading time. RL had partially dominant alleles at second locus (Enea8), which enhanced its earliness. Recovery of only progeny within the parental range of genotypes for heading time from the crosses of RL/M and IB/M suggests that numerous loci remained suppressed, perhaps latent, given their diverse parentage. The ea8 recessive homozygote in RL suppressed another unidentified locus which, when homozygous recessive in the absence of the ea8 recessive homozygote, conferred extreme earliness in one short daylength environment (Ouled Gnaou, Morocco) but was undetected in another environment (Davis, CA, USA). Epistatic gene action and genotype × environment effects strongly influenced heading time. In addition to a genetic system consisting of single‐locus recessive homozygotes conferring photoperiod insensitivity, a second genetic system, based on dominant alleles at one or a few loci, derived from the early heading Finnish landrace ‘Olli’, also confers extremely early heading time under short daylengths and relative photoperiod insensitivity in the genotype GP.  相似文献   

3.
I. Karsai    K. Mészáros    P. Sz&#;cs    P. M. Hayes    L. Láng    Z. Bed&#; 《Plant Breeding》2006,125(5):468-472
To determine the effect of Vrn‐H2 locus on plant developmental and agronomic traits, detailed controlled environment tests involving a factorial set of vernalization and photoperiod treatments were carried out using doubled haploid lines developed from a facultative (Vrn‐H2?) × winter (Vrn‐H2+) barley cross. The allele phase at the Vrn‐H2 locus influenced heading date as well as the developmental and agronomic traits. The performance of Vrn‐H2+ lines was significantly influenced by vernalization: reproductive fitness traits showed significant decreases without vernalization. However, the effects of alleles at the Vrn‐H2 locus extended beyond simple satisfaction of the vernalization requirement. Vrn‐H2+ lines showed increased reproductive fitness compared with Vrn‐H2? lines when vernalization was followed by a long photoperiod. The responses of the two Vrn‐H2 allele classes to photoperiod duration were quite different in terms of heading date, developmental and agronomic traits. These results suggest that alleles at the Vrn‐H2 locus – and/or tightly linked gene(s) – respond primarily to the exogenous signal of vernalization (temperature), but when the vernalization requirement has been fulfilled, they also respond to photoperiod duration.  相似文献   

4.
X. Li    C. Xu  Q. Zhang 《Plant Breeding》2004,123(1):30-34
This study was conducted to provide additional data for evaluating two important issues surrounding the origin of cultivated barley: (i) the level of genetic diversity of the two‐rowed wild barley from Tibet, and (ii) the distribution of rDNA allele 104 in wild and cultivated barleys in the Occidental region. A total of 198 accessions consisting of three distinct samples were used: 82 entries of two‐rowed wild barley from Tibet, 57 accessions of two‐rowed wild barley from 8 countries with a broad range of representation of two‐rowed wild barley in the world, and 59 landrace accessions from four countries representing a part of the barley‐growing areas in the Middle East. These were assayed for rDNA spacer‐length variants (slvs). In all, 27 rDNA space length pheno types were detected, from which 10 slvs were identified as alleles at the two rDNA loci. The two‐rowed wild barley samples from Tibet had the lowest level of genetic variation as evaluated by rDNA polymorphism. Together with results of previous studies, the two wild forms (two‐rowed and six‐rowed) from Tibet could not account for the large genetic diversity observed in the cultivated barley of this region, suggesting that Tibet is unlikely a centre of origin for cultivated barley. In samples from the Occidental region, allele 104 of Rm2 was very rare in wild barley, but occurred at the highest frequency in cultivated barley, while the reverse is the case for allele 107, which is consistent with previous results. The implications of such a contrasting distribution of these rDNA alleles between wild and cultivated barleys in the origin and evolution of cultivated barley were discussed.  相似文献   

5.
K. Rikiishi    T. Matsuura    M. Maekawa    K. Noda  K. Takeda 《Plant Breeding》2003,122(2):99-104
The barley cultivar ‘Lenins’ was found to be a genotype showing high shoot regeneration ability in cultures derived from immature embryos. Five cultivars different from ‘Lenins’ in shoot regeneration ability were reciprocally crossed with ‘Lenins’ and the inheritance of tissue culture traits was investigated. F2 plants showed continuous distributions in callus growth and percentage of shoot regeneration, suggesting that these traits were controlled by polygenes. The F2 population, derived from a cross between ‘Lenins’ and ‘6721′, showed a monogenic segregation for the number of regenerated shoots, and the segregation ratio fitted 1:2:1. Tissue culture traits of ‘Lenins’ were controlled by several genes, whereas the number of regenerated shoots related to the efficiency of shoot regeneration is controlled by one major gene.  相似文献   

6.
Global heading time data collected by the International Center for Maize and Wheat Improvement (CIMMYT) during the International Barley Yield Trials were used to assess similarity of environments, variation among cultivars, and genotype × environment interactions. Data for 29 spring barley cultivars grown in 89 environments over three years were analyzed by cluster analysis. The deviation m days to heading of the mean of 28 photoperiod sensitive cultivars from the cultivar ‘Mona’ and the mean of ‘Mona’, homozygous recessive for the eak gene conferring photoperiod insensitivity and thermal stability, were used as environmental coordinates. In addition, diversity of heading time responses among genotypes was illustrated by differences among overall means and patterns of deviation for days to heading from ‘Mona’ in selected environments. Three main clusters were identified. Mexican environments were similar to warmer Mediterranean, eastern and southern African, West Asian, and Latin American environments. Heading time responses in Syria were similar to those observed m other cool Mediterranean environments. Early heading cultivars exhibited greater variation for heading response, especially in extremely warm-and equaiorial- short daylength environments, com-pared to late heading cultivars, presumably because of larger photothermal × genotype interactions. Photoperiod flux about the winter solstice appeared to be a major environmental cue for heading time in photoperiod sensitive spring barleys.  相似文献   

7.
Two major genes (eam8 and eam10) and two quantitative trait loci (QTL) determining flowering time in barley were associated with restriction fragment length polymorphism markers. The loci eam8 and eam10 were found to map in regions of chromosomes 1HL and 3HL, respectively, already estimated from previous classical linkage analyses. While investigating doubled haploid lines of a spring habit barley mapping population, two QTL for flowering time were detected on chromosomes 1HL and 7HS, respectively, when the material was grown under long photoperiod conditions. When growing the same lines under short photoperiod, no QTL were discernible. Allelic and homoeologous relationships with flowering time loci described earlier in barley and other Triticeae species are discussed.  相似文献   

8.
The photoperiod‐insensitive barley mutant ‘Atsel’, carrying the recessive gene ea7, was studied together with the donor variety ‘Atlas’ (wild‐type, Ea7) under different daylengths with the aim of analysing pleiotropic effects. Grown under long and short photoperiods ‘Atsel’ flowered about 10 days and 34 days, respectively, earlier than ‘Atlas’. The significantly shorter life‐cycle of the photoperiod‐insensitive mutant resulted in several changes of plant morphology. Tillering, plant height, number of leaves and number of internodes were reduced. A lower number of florets per main spike was observed for ‘Atsel’, but only in the long photoperiod experiment. Finally, photoperiod insensitivity combined with a lower grain yield per plant was most pronounced under long‐day treatment. The data are comparable with results obtained from single chromosome recombinant lines of wheat that have differences in their photoperiod response caused by the genes Ppd1 or Ppd2.  相似文献   

9.
L. Cistué    B. Echávarri    F. Batlle    M. Soriano    A. Castillo    M. P. Vallés    I. Romagosa 《Plant Breeding》2005,124(6):546-550
Four barley doubled haploid populations were produced by anther culture from the reciprocal crosses between two six‐row barley cultivars, ‘Plaisant’ and ‘Orria’; the doubled haploid lines (DHLs) derived from each cross were subsequently assigned to weak or vigorous populations according to the weak or vigorous nature of the originating embryos. Well‐formed embryos at day 25 on the induction medium were considered vigorous, whereas embryos maturing later were considered weak. The classification of vigorous and weak was closely associated with the ratio of green to albino plantlets regenerated. A random set of 25 DHLs from each of the four populations were selected for field testing in a replicated trial. Furthermore, a second set consisting of a total of 454 unreplicated DHLs from the four populations were also field assessed for grain yield. Distortion during in vitro culture may impede regeneration of a random array of microspores from a given cross, and may bias genetic estimates of specific trait/marker association in genetic studies. However, no significant differences were detected in this study among the four populations for days to heading, height, grain yield and thousand‐kernel‐weight when measured on the replicated trial of 100 DHLs, nor for grain yield in the second collection of 454 entries. This suggests that the likelihood of producing improved agronomic pure lines is independent of the direction of crossing and, more importantly, independent of the time when embryos matured in the induction media, at least for these particular six‐row cultivars and for the anther culture method used.  相似文献   

10.
X. Yin    S. D. Chasalow    P. Stam    M. J. Kropff    C. J. Dourleijn    I. Bos  P. S. Bindraban 《Plant Breeding》2002,121(4):314-319
Genes contributing to the quantitative variation of a complex crop trait can be numerous. However, using existing approaches, the number of quantitative trait loci (QTL) detected for a trait is limited. Therefore, rather than looking for QTL for a complex trait itself, determining QTL for underlying component traits might give more information. In this study the potential of component analysis in QTL mapping of complex traits was examined using grain yield in spring barley as an example. Grain yield was divided into three components: number of spikes/m2, number of kernels/spike, and 1000‐kernel weight. These traits were measured for individuals of a recombinant inbred‐line population in field trials conducted over 2 years. By the use of an approximate multiple QTL model, one to eight QTL were detected for each trait in a year. Some QTL were mapped to similar positions in both years. Almost all QTL for yield were found at the position of or in close proximity to QTL for its component traits. A number of QTL for component traits were not detected when yield itself was subjected to QTL analysis. However, relative to the QTL for yield itself, all component‐trait QTL did not explain the variation in yield better. The results in relation to the potential of using component analysis in studying complex crop traits are discussed.  相似文献   

11.
Population structure and relationships within and among 185 accessions of wild (Hordeum vulgare ssp. spontaneum) and cultivated barley (H. v. ssp. vulgare) from five countries in the West Asia and North Africa (WANA) region were studied using 36 simple sequence repeat (SSR) markers. The accessions were divided into subspecies/origin (S/O)‐groups and marker results were analysed in relation to genetic diversity and genetic structure. Wild barley from WANA was found to be highly diverse. The landraces from different countries of the Near East showed genetic diversity that was nearly as high as the wild barley from the same country. Further analyses showed that wild barley from Palestine/Israel represented the group with the highest diversity and the most complex structure. However, this group was distantly related to the cultivated barley in WANA, while the wild barley from the rest of the WANA region was closely related to the cultivated WANA barley. The high diversity and the close relationship to the wild barley make the WANA landraces an interesting genetic resource for both conservation and exploitation.  相似文献   

12.
P. Munoz    J. Voltas    J.L. Araus    E. Igartua  I. Romagosa 《Plant Breeding》1998,117(6):531-535
The objective of this study was to characterize grain yield and adaptation of barley cultivars released in recent decades in north-eastern Spain. Ten six-rowed and 10 two-rowed barley genotypes were grown in eight environments. Mean yields varied among environments between 1.7 and 5.8 tha?1. New releases showed higher mean yields and were specifically adapted to nonlimiting growing conditions. The average genetic advances were estimated as 40.7 and 32.9 kg ha?1 years?1 for two- and six-rowed genotypes, respectively, in the four most productive environments. Old genotypes, with lower overall grain yields, were specifically adapted to the poorer sites. A negative genetic gain, estimated as -14.8kg ha?1 years?1. was reorded for six-rowed culiivars in the four poorest sites. No significant association was observed between heading date and year of release. Variations in carbon isotope discrimination (Δ) were examined to assess whether changes in adaptation could be partially explained by shifts in the genoiypic transpiration efficiency (TE) over time, in the most favourable environments, new releases showed the highest grain yields and carbon isotope discrimination values (Δ). By contrast, older cultivars had constitutively? lower Δs and therefore higher TEs. These results suggest a genetic association between low TE and yield potential and specific adaptation to stress-free conditions so that selection for yield under favourable conditions could have resulted in an indirect downward genetic shift in the TE of modern cultivars.  相似文献   

13.
Five experiments, involving 24 genotypes, were carried out over three seasons to estimate the increase both in grain yield and other selected agronomic traits, and in potential malt extract of spring barley achieved by plant breeders during a period of over 160 years. In all experiments there was neither a chemical control of fungal diseases nor physical support of the tall, older genotypes to prevent yield losses from attack by fungi and lodging, respectively. In all experiments the most modern cultivars yielded more than the older ones. Significant breeding progress was also observed for plant height, resistance score, protein content and potential malt extract. The trend over time was generally of a curvilinear nature, showing no or only a slight increase till the 1950s and/or 1960s, and a greater rate of increase during the last 40 years of barley breeding. Using data from the official trials of cultivars and advanced breeding lines a linear increase in yield per year of 60 kg/ha since the 1950s was calculated for the low‐rainfall conditions of eastern Austria.  相似文献   

14.
The reaction of two barley cultivars (‘Thibaut’ and ‘Arizona’) and three lines (AECS 76,‘Tadmor’ and WI 2291) to infection by Cochliobolus sativus was evaluated by three methods. Deep seeding of inoculated seeds was performed in pots and field. Gibberellin (GA3) was applied to inoculated seeds in vitro. Susceptibility assessments were made in vitro at 2 weeks, and in pots at 7 weeks after inoculation, using a scale of 1 (very resistant) to 5 (very susceptible) according to the percentage infected area of the subcrown internodes. There were no differences between the results using the three methods.‘Arizona’ was the most susceptible, whereas ‘Thibaut’ and AECS 76 were partially resistant genotypes. The WI 2291 line and ‘Tadmor’ were moderately susceptible and moderately resistant, respectively. In vitro tests yielded the same order as tests from pot and field experiments.  相似文献   

15.
Zhang  Jing 《Plant Breeding》2000,119(6):523-524
The inheritance of agronomic traits from the barley dwarfing gene donors ‘Xiaoshan Lixiahuang’ and ‘Cangzhou Luodamai’ was studied. The results indicated that dwarf plants, six‐row and short spikes, dense spikelets and naked kernels, respectively, were controlled by one pair of recessive genes, but a toothed awn was determined by one pair of dominant genes in both barley cultivars. The genes for the six characters in ‘Xiaoshan Lixiahuang’ were allelic to those in ‘Cangzhou Luodamai’. Genetic linkage was found among the genes for plant height, spike length and spikelet density. They were located on the long arm of chromosome 3 (3HL) in the order: plant height, spikelet density, spike length. The genes for naked kernels, six‐row spikes and tooth awns were independent of each other, and carried on the long arms of chromosomes 1(7H), 2(H) and 7(5H), respectively. The dwarfing genes were the same as the gene uz in Japanese and Korean barley cultivars.  相似文献   

16.
Genetic analysis of resistance in barley to barley yellow dwarf virus   总被引:1,自引:0,他引:1  
J. Ovesná    J. Vacke    L. Kucera    J. Chrpová    I. Nováková    A. Jahoor  V. &#;ip 《Plant Breeding》2000,119(6):481-486
The inheritance of resistance to barley yellow dwarf virus (BYDV) was studied in the selected 24 spring and winter barley cultivars that showed a high or intermediate resistance level in 1994‐97 field infection tests. The polymerase chain reaction diagnostic markers YLM and Ylp were used to identify the resistance gene Yd2. The presence of the Yd2 gene was detected with both markers in all the resistant spring barley cultivars and lines from the CIMMYT/ICARDA BYDV nurseries. The results of field tests and genetic analyses in winter barley corresponded with marker analyses only when the Ylp marker was used. Genes non‐allelic with Yd2 were detected by genetic analyses and the Ylp marker in moderately resistant spring barley cultivars ‘Malvaz’, ‘Atribut’ and ‘Madras’, and in the winter barley cultivars ‘Perry’ and ‘Sigra’. Significant levels of resistance to BYDV were obtained by combining the resistance gene Yd2 with genes detected in moderately resistant cultivars. The utilization of analysed resistance sources in barley breeding is discussed.  相似文献   

17.
18.
Barley (Hordeum vulgare L.) is often grown on alkaline zinc (Zn)‐deficient soils where reductions in yield and grain quality are frequently reported. Currently, the use of Zn‐based fertilizer along with Zn‐deficiency‐tolerant genotypes is considered the most thorough approach for cropping the Zn‐deficient soils; however, developing or breeding genotypes with higher Zn efficiency requires a good understanding of the inheritance of tolerance to Zn deficiency. This study was conducted to determine genetic control of this trait in barley. Two parental cultivars ('Skiff, moderately tolerant; and ‘Forrest’, sensitive), 185 F2 plants, and 48 F2‐derived F3 families from this cross were screened to determine inheritance of tolerance to Zn deficiency using a visual score of deficiency symptoms. The segregation ratios observed indicated that greater tolerance to Zn deficiency in ‘Skiff compared with ‘Forrest’ at the seedling stage is controlled by a single gene with no dominance. The results also indicate that visual scores are useful for genetic analysis of tolerance to Zn deficiency.  相似文献   

19.
Genetic analyses of heading date, tiller number, plant height, grain yield, kernel weight, and plump and thin kernels were made in three six-rowed barley crosses (Hordeum vulgare L.) involving four cultivars. Six populations, P1 , P2 , F1 , F2 , BC1 , and BC2 , from each cross were grown and evaluated at Fargo and Prosper, North Dakota, 1982. Parental means within crosses generally were different except for tiller number. Comparison of generation means suggested that late heading was dominant to early, high kernel weight was dominant to low, and kernel plumpness was influenced by additive gene action. The relationship between yield and heading date was not consistent among crosses and positive r values were quite low. It should be possible to select early maturing, high yielding segregates with plump kernels. Heterosis over the mid-parent was quite similar among crosses for heading date, but there was no heterosis over the high parent. Inbreeding depression was fairly constant for heading date, but was less consistent for yield. The lack of uniformity for estimates of inbreeding depression can be related to environmental variation and to its influence on type of gene action. The ratio of additive to dominance variance was inconsistent among crosses for heading date and yield. These data suggest selection for these characters should be delayed past the F 2 generation. Broad sense heritabilities for heading date ranged from 42 to 86%. Values obtained for grain yield were more consistent among broad sense than narrow sense estimates. Genetic advance estimates were low due to lack of additive variance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Choice of selection strategy in breeding barley for stress environments   总被引:1,自引:0,他引:1  
To determine the optimum selection environment for barley (Hordeum vulgare L.) targeted at low-input, stress environment, barley lines were selected for high yield under stress (YS), high yield under non-stress (YNS), or average yield in stress and non-stress conditions (YA) during three breeding cycles (cohorts) of three years each. The lines were then tested in a total of 21 year-location combinations with average grain yields ranging from 0.35 to 4.86 t ha-1. Yield under stress of the YS lines was between 27% and 54% higher than that of the YNS lines, with the top YS lines yielding under stress between 16% and 30% more than the top YNS lines. Realized heritability was between 0.35 and 0.67 when selection was conducted under stress and was significant in all three cohorts. By contrast, selection under non-stress gave a significant response in only one cohort, and its efficiency in improving yield under stress was significantly lower than selection under stress. The best YNS line ranked only 19th for yield under stress. The highest-yielding lines under stress were not only selected under stress, but were also landraces collected in very dry areas (< 250 mm total annual rainfall). This confirms earlier findings and supports the idea that the most effective way to improve productivity of crops grown in less-favored areas is to use locally adapted germplasm and select in the target environment(s). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号