首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Six natural plant extracts and three secondary plant metabolites were tested at five doses (0, 0.3, 3, 30, and 300 mg/L) and two different pH (7.0 and 5.5) in a duplicate 9 x 5 x 2 factorial arrangement of treatments to determine their effects on in vitro microbial fermentation using ruminal fluid from heifers fed a high-concentrate finishing diet. Treatments were extracts of garlic (GAR), cinnamon (CIN), yucca (YUC), anise (ANI), oregano (ORE), and capsicum (CAP) and pure cinnamaldehyde (CDH), anethole (ATL), and eugenol (EUG). Each treatment was tested in triplicate and in two periods. Fifty milliliters of a 1:1 ruminal fluid-to-buffer solution were introduced into polypropylene tubes supplied with 0.5 g of DM of a 10:90 forage:concentrate diet (15.4% CP, 16.0% NDF; DM basis) and incubated for 24 h at 39 degrees C. Samples were collected for ammonia N and VFA concentrations. The decrease in pH from 7.0 to 5.5 resulted in lower (P < 0.05) total VFA, ammonia N, branched-chain VFA concentration, acetate proportion, and acetate:propionate, and in a higher (P < 0.05) propionate proportion. The interaction between pH and doses was significant for all measurements, except for ATL and CDH for butyrate, ATL and EUG for acetate:propionate ratio, and ORE for ammonia N concentration. The high dose of all plant extracts decreased (P < 0.05) total VFA concentrations. When pH was 7.0, ATL, GAR, CAP, and CDH decreased (P < 0.05) total VFA concentration, and ANI, ORE, CIN, CAP, and CDH increased (P < 0.05) the acetate:propionate. The CIN, GAR, CAP, CDH, ORE, and YUC decreased (P < 0.05), and EUG, ANI, and ATL increased (P < 0.05) ammonia N concentration. The effects of plant extracts on the fermentation profile when pH was 7.0 were not favorable for beef production. In contrast, when pH was 5.5, total VFA concentration did not change (ATL, ANI, ORE, and CIN) or increased (P < 0.05) (EUG, GAR, CAP, CDH, and YUC), and the acetate:propionate (ORE, GAR, CAP, CDH, and YUC) decreased (P < 0.05), which would be favorable for beef production. Ammonia N (ATL, ANI, CIN, GAR, CAP, and CDH) and branched-chain VFA (ATL, EUG, ANI, ORE, CAP, and CDH) concentrations also were decreased (P < 0.05), suggesting that deamination was inhibited. Results indicate that the effects of plant extracts on ruminal fermentation in beef cattle diets may differ depending on ruminal pH. When pH was 5.5, GAR, CAP, YUC, and CDH altered ruminal microbial fermentation in favor of propionate, which is more energetically efficient.  相似文献   

2.
Four Holstein heifers (360 +/- 22 and 450 +/- 28 kg of BW in Exp. 1 and 2, respectively) fitted with ruminal trocars were used in 4 x 4 Latin square designs to evaluate the effects on ruminal microbial fermentation of the following: Exp. 1, no additive, alfalfa extract (30 g/d, AEX), a mixture of cinnamaldehyde (0.18 g/d) and eugenol (0.09 g/d; CIE1), and AEX and CIE1 in combination; and Exp. 2, no additive, anise oil (2 g/d), capsicum oil (1 g/d), and a mixture of cinnamaldehyde (0.6 g/d) and eugenol (0.3 g/d). Heifers were fed a 90:10 concentrate:barley straw diet (16% CP; 25% NDF) for ad libitum intake. Each period consisted of 15 d for adaptation and 6 d for sampling. On d 16 to 18, DM and water intakes were measured. On d 19 to 21 ruminal contents were sampled at 0, 3, 6, 9, and 12 h after feeding to determine ruminal pH and the concentrations of VFA, L-lactate, large peptides, small peptides plus AA (SPep+AA), and ammonia N. On d 20 and 21, samples of ruminal fluid were collected at 0 and 3 h after feeding to determine protozoal counts. In Exp. 1, CIE1 and AEX decreased (P < 0.05) total DMI, concentrate DMI, and water intake. The increase (P < 0.05) in SPep+AA and the decrease (P < 0.05) in ammonia N when supplementing CIE1 suggest that deamination was inhibited. Treatment AEX increased (P < 0.05) the acetate to propionate ratio, which is less efficient for beef production. Treatment CIE1 increased (P < 0.05) counts of holotrichs. Effects of AEX and CIE1 were not additive for many of the measured metabolites. In Exp. 2, treatments had no effect on ruminal pH, total VFA concentration, and butyrate proportion. The capsicum oil treatment increased (P < 0.05) DMI, water intake, and SPep+AA N concentration and decreased (P < 0.05) acetate proportion, branched-chain VFA concentration, and large peptide N concentration. The cinnamaldehyde (0.6 g/d) and eugenol (0.3 g/d) treatment decreased (P < 0.05) water intake, acetate proportion, branched-chain VFA, L-lactate, and ammonia N concentrations and increased (P < 0.05) propionate proportion and SPep+AA N concentration. The anise oil treatment decreased (P < 0.05) acetate to propionate ratio, branched-chain VFA and ammonia N concentrations, and protozoal counts. The results indicate that at the doses used a mixture of cinnamaldehyde and eugenol, anise oil, and capsicum oil may be useful as modifiers of rumen fermentation in beef production systems.  相似文献   

3.
This study was conducted to investigate the effect of dextrose, starch, NDF, and a carbohydrate (CHO) mix on utilization of ruminal ammonia in dairy cows. Four ruminally and duodenally cannulated Holstein cows (BW = 788 +/- 31 kg; 217 +/- 35 d in milk) were allocated to four treatments in a 4 x 4 Latin square design trial. Cows were fed an all alfalfa diet at 12-h intervals (DMI = 22.2 +/- 0.25 kg/d). Treatments were control, white oat fiber (NDF); corn dextrose (GLU); cornstarch (STA); and a CHO mix (25% of each): apple pectin, GLU, STA, and NDF (MIX). Carbohydrates were introduced intraruminally during feeding at 20% of dietary DMI. Ruminal ammonia was labeled with (15)N. Ruminal pH was the highest for NDF followed by STA and MIX and GLU (P < 0.001). Ruminal ammonia concentration and pool size were decreased by GLU and STA compared with NDF (P < 0.001 and P = 0.03, respectively). Acetate, isobutyrate, isovalerate, and total VFA concentration in the rumen were decreased (P = 0.009 to 0.001), and butyrate was increased (P < 0.001) by GLU compared with the other CHO. Microbial N flow to the duodenum was decreased (P < 0.05) by NDF compared with the other CHO, and the flow of microbial N formed from ammonia was greater for STA compared with GLU and NDF (P = 0.04 and 0.03, respectively). Urinary N loss was decreased (P = 0.05) by GLU and STA, but overall (feces plus urine) N losses were not affected (P = 0.73) by treatment. Milk urea concentration was lowered by GLU and STA compared with NDF and MIX (P = 0.002). The proportion of bacterial N synthesized from ammonia in the rumen was greater with STA than with NDF and MIX and was least for GLU (P = 0.02). Irreversible ammonia loss and flux were lower (P = 0.09 and 0.02, respectively) for GLU than for STA and NDF. As a percentage of the dose given, cumulative secretion of (15)N ammonia in milk protein was greater for STA than for GLU or NDF (P = 0.01 and 0.001, respectively). This experiment demonstrated that provision of readily fermentable energy can decrease ammonia concentrations in the rumen through decreased ammonia production (GLU), or through enhanced uptake of ammonia for microbial protein synthesis (STA). Rapidly fermentable energy in the rumen decreased ammonia production and flux, but the overall efficiency of ammonia utilization for milk protein synthesis was only increased by enhancing ruminal microbial ammonia uptake.  相似文献   

4.
Two incubation runs were carried out with a Rusitec system to investigate the effects of 2 exogenous pure cellulases on ruminal microbial growth and fermentation of a 70:30 grass hay:concentrate (DM basis) substrate. The substrate was sprayed with buffer (control; pH = 6.5), a cellulase from Trichoderma longibrachiatum (TRI), a cellulase from Aspergillus niger (ASP), or a 1:1 mixture of both cellulases (MIX) 24 h before being placed in the fermenters. Enzymes were applied at a rate of 30 endoglucanase units/g of substrate DM. Treating the substrate with enzymes reduced substrate NDF and ADF content (P < 0.001 to P = 0.002) and increased DM, NDF, and ADF disappearance after 6 and 24 h of incubation (P < 0.001 to P = 0.004) but not after 48 h of incubation. Daily VFA production was increased (P = 0.004) by 15, 9, and 15% for TRI, ASP, and MIX, respectively, with half of the increase being due to production of acetate. All enzyme treatments augmented (P = 0.009) methane production, but none of them altered the methane:VFA ratio (P = 0.70). There were no differences (P = 0.80) among treatments in the daily flow of solid-associated microorganisms, as measured using 15N as a microbial marker. Although the TRI and MIX treatments increased (P < 0.05) the daily flow of liquid-associated microorganisms and the proportion of microbial N in the solid residue after 48 h of incubation, no effects were observed (P = 0.92 and P = 0.95, respectively) for the ASP treatment. The results show that the TRI and MIX treatments enhanced in vitro fermentation by increasing substrate fiber degradation, VFA production, and ruminal microbial growth. The lack of differences between TRI and MIX in most of the measured variables indicates that treating the substrate with a mixture of both cellulases did not further improve the effects of the TRI treatment.  相似文献   

5.
本试验旨在研究2种发酵增效剂(分别简称MAX、MIX)对全株玉米青贮饲料感官质量、营养品质和发酵特性的影响。试验采用单因子试验设计,选取全株玉米作为青贮原料。试验共分3组,MAX组:青贮时将MAX粉末以2.5 mg/kg均匀加入;MIX组:青贮时将MIX的颗粒以1000 mg/kg均匀加入;空白组(CK组):青贮时不添加任何发酵增效剂,每组3个重复,青贮60 d后开桶取样,测定青贮样品感官质量、营养品质及开桶后有氧暴露0、24、48、72 h发酵特性。结果表明:1)MAX和MIX组感官评定与CK组无显著差异(P>0.05),等级均为一级。2)MAX和MIX组干物质(DM)、粗蛋白质(CP)、乳酸(LA)含量均极显著高于CK组(P<0.01),淀粉(Sta)含量显著高于CK组(P<0.05),pH及酸性洗涤纤维(ADF)、中性洗涤纤维(NDF)、乙酸(AA)、氨态氮(NH3-N)含量均极显著低于CK组(P<0.01)。3)玉米青贮饲料开桶后随有氧暴露时间的增加,MAX、MIX和CK组LA含量均呈降低趋势,4个时间段MAX和MIX组LA含量均显著高于CK组(P<0.05);MAX、MIX和CK组青贮样品pH均呈升高趋势,4个时间段MAX和MIX组pH均显著低于CK组(P<0.05);有氧暴露24 h前,MAX和MIX组AA含量显著低于CK组(P<0.05),有氧暴露24 h后,MAX和MIX组AA含量显著高于CK组(P<0.05);有氧暴露72 h前,MAX和MIX组NH3-N含量显著低于CK组(P<0.05);MAX、MIX和CK组有氧稳定性时长分别为112.36、112.97和110.37 h。由此可见,全株玉米青贮时添加MAX和MIX对青贮饲料的感官质量无显著影响;添加MAX和MIX可减少青贮过程中DM、CP、Sta的损耗,降低玉米青贮饲料中ADF、NDF、NH3-N的含量,从而提高玉米青贮的发酵品质;添加MAX和MIX对延长全株玉米青贮饲料有氧稳定性时间效果不明显;MAX、MIX之间对青贮饲料营养品质和有氧稳定性的影响无显著差异。  相似文献   

6.
The negative effect of pH on rumen microbial fermentation has been associated with the total amount of time that pH is below a certain threshold. However, not only the time, but also the magnitude of the pH reduction, is important. Eight 1,325-mL dual-flow continuous culture fermenters were used in 2 replicated periods to determine the effect of the magnitude of pH reduction (5.6 vs. 5.1) during 4 h/d on rumen microbial fermentation. Fermenters were maintained at a constant temperature (38.5 degrees C) and fed 97 g/d of a 60:40 forage:concentrate diet (19.2% CP, 29.0% NDF, and 18.2% ADF, DM basis), and the solid and liquid dilution rates were controlled at 5.0 and 10.0%/h, respectively. Treatments were a constant pH 6.4 (H), 4 h/d at pH 5.6 (L), 4 h/d at pH 5.1 (VL), and 2 h/d at pH 5.1 and 2 h/d at pH 7.1 (HL). Relative to H, L did not affect OM and NDF digestion, the VFA profile, NH(3)-N concentration, CP degradation, or the flow of dietary N. In contrast, VL tended (P < 0.10) to reduce true OM digestion, reduce the NDF digestibility and the acetate and branch-chained VFA proportions, and increase the propionate proportion. Compared with H, VL reduced the CP degradation and the flow of dietary N. Relative to H, treatment HL did not affect OM and NDF digestibility, the acetate proportion, CP degradation, or the flow of dietary N but increased the propionate proportion and decreased the branch-chained VFA proportion and NH(3)-N concentration. There were no differences among treatments in the efficiency of microbial protein synthesis, the flow of bacterial N, or the flow of essential and nonessential AA. In summary, fermentation was not affected by either 4 h/d at pH 5.6 or fluctuating pH between 5.1 (2 h/d) and 7.1 (2 h/d), but when pH was at 5.1 for 4 h/d, rumen microbial fermentation was modified, suggesting that effects of low pH on rumen microbial fermentation are dependent on the magnitude of the pH decrease.  相似文献   

7.
An in vitro experiment was conducted to assess the microbial activity of faeces from unweaned and weaned piglets. Diets of weaned piglets were supplemented with various fructans. Weaned piglets received a corn–soy based basal diet supplemented with either corn starch (control; CON), oligofructose (OF), chicory root (CHR), a mixture of chicory pulp and oligofructose (MIX; 60:40) or corn starch and antibiotic (CONAB). Faecal inocula collected from unweaned (5 kg body weight (BW)) and weaned piglets (15 kg BW) were introduced in airtight 100-mL bottles containing 0.5 g of substrate (basal or mix) in pre-warmed buffered medium. The organic matter cumulative volume (OMCV) was measured for 48 h, and a mono-phasic model was fitted to the data. The concentration of volatile fatty acids (VFA) and ammonia (NH3) was determined after fermentation. Incubation of substrate mix with the different inocula gave a significant higher OMCV compared to substrate basal, except for the inoculum from piglets of the CONAB group. In addition, substrate mix gave a higher Rmax and a lower Tmax compared to substrate basal. With the exception of inoculum obtained from chicory root supplemented animals (CHR) no substrate effects were observed in fermentation end-products (VFA and NH3). However, the proportions of acetic acid were significantly higher and those of butyric acid lower when inocula were incubated with substrate mix. Inocula from weaned pigs tended to show higher proportions of propionic acid when incubated with substrate mix, whilst inocula from unweaned piglets showed the opposite. The differences in fermentation kinetics between substrates after incubation with inocula from weaned and unweaned piglets in combination with an altered composition in VFA, points to a modified faecal microflora following weaning.  相似文献   

8.
Four beef Holstein heifers (BW = 438 ± 71 kg) fitted with a 1-cm i.d. plastic ruminal trocars were used in a 4 × 4 Latin square design to evaluate the effect of 3 doses of capsicum extract (CAP) on intake, water consumption, and ruminal fermentation in heifers fed a high-concentrate diet. Animals were fed (DM basis) 10% barley straw and 90% concentrate (32.2% barley grain, 27.9% ground corn, 7.5% wheat bran, 10.7% soybean meal, 10.7% soybean hulls, 7.2% corn gluten feed, 3.1% mineral-vitamin mix; 16.6% CP, 18.3% NDF). Treatments were no additive (CTR), 125 (CAP125), 250 (CAP250), and 500 (CAP500) mg/d of capsicum oleoresin standardized with 6% of capsaicin and dihydrocapsaicin (XTract 6933, Pancosma, Geneva, Switzerland). Each experimental period consisted of 25 d (15 d for adaptation, 5 d of continuous measurement of DMI, and 3 d for rumen sample collection). Animals had ad libitum access to water and feed offered once daily at 0800 h. Data were analyzed by the MIXED procedure of SAS. The model included the fixed effects of period and treatment, the random effect of heifer, and the residual error. The effects were tested for linear and quadratic effects. A linear response was observed (CTR, CAP125, CAP250, and CAP500, respectively) for DMI (8.56, 9.84, 8.68, and 9.40 kg/d; P < 0.04), ruminal pH (6.03, 5.84, 5.96, and 5.86; P < 0.08) and total VFA (134.3, 144.8, 140.1, and 142.8 mM; P < 0.08). There was a strong correlation between water consumption and DMI (R(2) = 0.98). Dry matter intake in the first 2 h after feeding was reduced (P < 0.05) in all CAP treatments compared with control. The molar proportion of acetate tended to decrease linearly (from 59.6 to 55.5 mol/100 mol; P < 0.06), and ammonia N concentration tended to increase linearly (from 14.4 to 16.0 mg N/dL; P < 0.08). In contrast, the molar proportion of propionate (23.8 mol/100 mol), butyrate (14.2 mol/100 mol), and lactate (0.28 mol/100 mol) were not affected by treatments. Results indicate that capsicum extract stimulated DMI and modified the pattern of DMI in beef cattle fed high concentrate diets.  相似文献   

9.
Diarrhea incidence in weaned pigs may be associated with the concentration of intestinal microbial metabolites (ammonia, amines, and VFA) that are influenced by dietary CP content. Three experiments were conducted to determine effects of a low-protein, AA-supplemented diet on ileal AA digestibility, growth performance, diarrhea incidence, and concentration of microbial metabolites in ileal and cecal digesta of pigs weaned at 14 d of age. In Exp. 1, 8 pigs fitted with a simple T-cannula at the distal ileum were assigned in a crossover design to 2 diets containing 24 or 20% CP using wheat, corn, full-fat soybeans, whey powder, fish meal, and blood plasma as the main ingredients. Supplemental AA were added to the diets to meet the AA standards according to the 1998 NRC recommendations. Chromic oxide was used as an indigestible marker. Diets were fed at 2.5 times the ME requirement for maintenance. The reduction of dietary CP decreased (P < 0.05) the apparent ileal digestibility of most AA, except Lys, Met, Thr, Val, and Pro. Dietary CP content did not affect the pH of ileal digesta or ileal concentrations of ammonia N, cadaverine, putrescine, or VFA. In Exp. 2, 8 pigs fitted with a simple T-cannula in the cecum were assigned to 2 diets, similar to Exp. 1. Dietary CP content did not affect the pH of cecal digesta. The reduction in CP content decreased (P < 0.05) cecal ammonia N, acetic acid, isobutyric acid, isovaleric acid, total VFA, and putrescine concentrations by 28 to 39%. In Exp. 3, 32 pigs were assigned to 2 diets, similar to Exp. 1, according to a randomized complete block design. Pigs had free access to feed and water. Dietary CP content did not affect growth performance or fecal consistency scores during the 3-wk study, and diarrhea was not observed. The results of these experiments indicate that lowering the dietary CP content combined with supplementation of AA markedly reduced the production of potentially harmful microbial metabolites in cecal digesta of early-weaned pigs without affecting growth performance.  相似文献   

10.
Incubations were carried out with batch cultures of ruminal micro‐organisms from sheep to analyse the influence of the N source on in vitro CH4 production. The two substrates were mixtures of maize starch and cellulose in proportions of 75:25 and 25:75 (STAR and CEL substrates, respectively), and the three nitrogen (N) sources were ammonia (NH4Cl), casein (CA) and isolated soya bean protein (SP). Five isonitrogenous treatments were made by replacing non‐protein‐N (NPN) with CA or SP at levels of 0 (NPN), 50 (CA50 and SP50, respectively) and 100% (CA100 and SP100) of total N. All N treatments were applied at a rate of 35 mg of N/g of substrate organic matter and incubations lasted 16.5 h. With both proteins, N source × substrate interactions (p = 0.065 to 0.002) were detected for CH4 production and CH4/total VFA ratio. The increases in CH4 production observed by replacing the NPN with protein‐N were higher (p < 0.05) for STAR than for CEL substrate, but the opposite was observed for the increases in volatile fatty acid (VFA) production. As a consequence, replacing the NPN by increased levels of CA or SP led to linear increases (p < 0.05) in CH4/total VFA ratio with STAR, whereas CH4/total VFA ratio tended (p < 0.10) to be decreased with CEL substrate. Increasing the amount of both proteins decreased linearly (p < 0.05) ammonia‐N concentrations, which may indicate an incorporation of amino acids and peptides into microbial protein without being first deaminated into ammonia‐N. In incubations with the tested N sources as the only substrate, the fermentation of 1 mg of CA or SP produced 1.24 and 0.60 μmol of CH4 respectively. The results indicate the generation of CH4 from protein fermentation, and that the response of CH4 production to protein‐N supply may differ with the basal substrate.  相似文献   

11.
Five ruminally, duodenally, and ileally cannulated steers (376 +/- 8.1 kg of initial BW) were used in a 5 x 5 Latin square to evaluate effects of cooked molasses block supplementation and inclusion of fermentation extract (Aspergillus oryzae) or brown seaweed meal (Ascophyllum nodosum) on intake, site of digestion, and microbial efficiency. Diets consisted of switchgrass hay (6.0% CP; DM basis) offered ad libitum, free access to water, and one of three molasses blocks (0.341 kg of DM/d; one-half at 0600 and one-half at 1800). Treatments were no block (control), block with no additive (40.5% CP; POS), block plus fermentation extract bolused directly into the rumen via gelatin capsules (2.0 g/d; FS), fermentation extract included in the block (2.0 g/d; FB), and seaweed meal included in the block (10 g/d; SB). Steers were adapted to diets for 14 d followed by a 7-d collection period. Overall treatment effect on hay OM intake tended (8.1 vs. 7.6 +/- 0.5 kg/d; P = 0.14) to increase with block supplementation. Total OM intake (8.4 vs. 7.6 +/- 0.5 kg/d; P = 0.01) increased in steers consuming block compared with control. Apparent and true ruminal OM digestibility increased (P = 0.05) with block consumption. Steers fed SB had greater (P = 0.10) true ruminal OM digestibility compared with steers fed POS (61.0 vs. 57.9 +/- 1.6%). True ruminal CP digestibility increased (P = 0.01) with block supplementation compared with control (37.5 vs. 23.6 +/- 3.7%). Addition of fermentation extract did not affect intake or digestion. Treatments did not alter ruminal pH, total VFA, or individual VFA proportions; however, ruminal ammonia increased (P = 0.01) with block supplementation. In situ disappearance rates of hay DM (3.14 +/- 0.44 %/h), NDF (3.18 +/- 0.47 %/h), and ADF (3.02 +/- 0.57 %/h) were not altered by treatment. Seaweed block increased (P = 0.01) slowly degraded CP fraction compared with POS (39.5 vs. 34.0 +/- 2.07%). Similarly, SB increased (P = 0.01) the extent of CP degradability (74.2 vs. 68.9 +/- 1.81%). No treatment effects (P = 0.24) were observed for microbial efficiency. Block supplementation increased intake, and use of brown seaweed meal seemed to have beneficial effects on forage digestibility in low-quality forage diets.  相似文献   

12.
本试验旨在研究玉米皮和大豆皮组合代替饲粮中部分玉米和玉米秸秆对育肥羊生长性能、瘤胃发酵和微生物区系的影响。试验选用36只健康、(120±11)日龄和体重[(22.20±0.92)kg]相近的杜泊×小尾寒羊杂交公羔为试验动物,随机分为3组,每组12只,分别饲喂3种不同的饲粮:1)0玉米皮+0大豆皮(对照组);2)9%玉米皮+9%大豆皮(18MIX组);3)17%玉米皮+17%大豆皮(34MIX组)。试验期共85 d,其中预试期15 d。结果表明:1)34MIX组的末体重和干物质采食量均显著高于对照组(P<0.05),与18MIX组差异不显著(P>0.05);34MIX组和18MIX组的平均日增重和饲料转化率显著高于对照组(P<0.05),34MIX组的平均日增重最高。2)34MIX组的瘤胃乙酸和总挥发性脂肪酸浓度显著高于对照组(P<0.05),而瘤胃氨态氮浓度显著低于对照组(P<0.05),与18MIX组差异不显著(P>0.05)。3)18MIX组和34MIX组瘤胃液中羟甲基纤维素酶和木聚糖酶活性均显著高于对照组(P<0.05)。4)18MIX组和34MIX组瘤胃中黄色瘤胃球菌、白色瘤胃球菌、产琥珀酸丝状杆菌和溶纤维丁酸弧菌的数量显著高于对照组(P<0.05)。综上,利用玉米皮和大豆皮组合代替饲粮中一定比例的玉米和玉米秸秆有利于育肥羊生长和瘤胃代谢效率。  相似文献   

13.
In Exp. 1, four Holstein heifers (112+/-5.5 kg BW) fitted with ruminal cannulas were used in a 4 x 4 Latin square to evaluate the effects of N source on ruminal fermentation and urinary excretion of purine derivatives. A 2 x 2 factorial arrangement of treatments was used; the factors were the type of protein source (soybean meal, SBM, vs a 50:50 mixture of fish meal and corn gluten meal, FMCGM) and the partial substitution of protein source by urea (with vs without). Heifers were allowed to consume concentrate and barley straw on an ad libitum basis. Barley straw:concentrate ratio (12:88) and average ruminal pH (6.25) were not affected (P > 0.05) by treatment. Ruminal NH3 N concentration and urinary excretion of purine derivatives were not affected (P > 0.05) by supplemental N source. In situ CP degradability of supplemented SBM was very low (50%). In Exp. 2, eight dual-flow continuous-culture fermenters were used to study diet effects on microbial fermentation and nutrient flow, using forage:concentrate ratio, solid and liquid passage rates, and pH fluctuation to simulate in vivo conditions. The treatment containing SBM without urea reached the greatest total VFA concentration (P < 0.01), molar percentage of acetate (P < 0.05), and NH3 N concentration (P < 0.05), followed by treatments with partial substitution of protein source by urea, and finally by the treatment containing FMCGM. True OM digestion tended to increase (P = 0.13) in treatments containing SBM. These results suggest that amino N from SBM and NH3 N concentration stimulated nutrient digestion. Microbial protein synthesis was lowest in treatments with FMCGM and without urea, indicating that rapidly available N limited microbial growth. The low CP degradability of SBM observed may have contributed to the limitation in N supply for microbial growth. Efficiency of microbial protein synthesis increased in treatments containing urea (P < 0.05). Protein source affected total (P < 0.05) and essential AA (P < 0.10) flows, which were greater in treatments containing FMCGM. Partial replacement of protein supplements by urea did not affect total and essential AA flows. Because mean dietary protein contribution to total N effluent was 46%, the AA profile of supplemental protein sources had a great impact on total AA flow and its profile.  相似文献   

14.
OBJECTIVE: To determine effects of tylosin on ruminal concentrations of Fusobacterium necrophorum and fermentation products in cattle during rapid adaptation to a high-concentrate diet. ANIMALS: 6 steers fitted with ruminal cannulas. PROCEDURE: Steers were assigned randomly to 2 treatment groups and switched from a 0 to an 85% concentrate diet during a 4-day period. Cattle received this diet, with or without tylosin (90 mg/steer/d), for 4 weeks. Samples of ruminal contents were collected daily beginning 2 days before the treatment protocol and in the first week of concentrate feeding. Four subsequent samples were collected at weekly intervals. Concentration of F. necrophorum in samples was determined, using the most-probable-number technique. Ruminal pH and concentrations of volatile fatty acids (VFA), lactate, and ammonia also were determined. All steers received both treatments separated by 4 weeks (cross-over design), during which time they were fed alfalfa hay only. RESULTS: In control steers, concentration of F. necrophorum increased in response to the high-concentrate diet. Tylosin-fed steers had lower concentrations of F. necrophorum than control steers at all times during concentrate feeding. However, ruminal pH and concentrations of lactate, VFA, and ammonia did not differ between treatment groups. CONCLUSIONS AND CLINICAL RELEVANCE: Tylosin caused a significant reduction in ruminal concentrations of F. necrophorum during rapid adaptation to a high-concentrate diet but had no effect on fermentation products. The reduction in ruminal concentration of F. necrophorum helps explain the reduction in prevalence of hepatic abscesses reported in tylosin-fed feedlot cattle.  相似文献   

15.
在底物精粗比为6∶4的条件下,在底物中添加不同剂量[使发酵液中植物精油的浓度分别为0(对照)、50、100、200和400 mg/L]的丁子香酚、D-柠烯、茴香脑、肉桂醛、百里香酚或香芹酚,通过体外产气法比较研究不同植物精油对体外瘤胃发酵和甲烷(CH4)产量的影响。每种植物精油的每个剂量设3个重复。体外模拟瘤胃发酵培养24 h,测定产气量和气体中的CH4含量以及发酵液的p H、挥发性脂肪酸(VFA)和氨态氮(NH3-N)浓度。结果表明:1)除百里香酚外,添加各种植物精油对体外发酵液p H均无显著影响(P0.05)。2)添加丁子香酚、D-柠烯、茴香脑和肉桂醛对体外发酵液总VFA浓度没有显著影响(P0.05),但总VFA浓度随百里香酚和香芹酚浓度的增加呈二次曲线变化(PQ0.01)。与对照组相比,添加400 mg/L百里香酚和香芹酚显著降低体外发酵液总VFA浓度(P0.01)。D-柠烯、茴香脑、百里香酚和香芹酚的添加改变了各VFA占总VFA的摩尔百分比。与对照组相比,添加50 mg/L D-柠烯和茴香脑使乙酸比例显著增加(P0.05),丙酸比例显著降低(P0.05);而添加400 mg/L D-柠烯和茴香脑则使乙酸比例显著下降(P0.05),丙酸和丁酸比例显著上升(P0.05)。百里香酚和香芹酚的添加对乙酸比例没有产生显著影响(P0.05),与对照组相比,400 mg/L百里香酚和香芹酚使丙酸比例显著下降(P0.05)。3)添加茴香脑、百里香酚和香芹酚显著影响体外发酵液NH3-N浓度(P0.05),与对照组相比,400 mg/L百里香酚和香芹酚显著降低NH3-N浓度(P0.05)。4)添加D-柠烯、茴香脑、肉桂醛对体外发酵24 h产气量没有显著影响(P0.05)。与对照组相比,各浓度的百里香酚和香芹酚均显著降低体外发酵24 h产气量(P0.05),且产气量随百里香酚和香芹酚浓度的增加呈二次曲线变化(PQ0.01)。5)添加D-柠烯、茴香脑和肉桂醛对体外发酵24 h CH4产量没有显著影响(P0.05)。与对照组相比,50和100 mg/L的丁子香酚显著增加体外发酵24 h CH4产量(P0.05),而400 mg/L的百里香酚和香芹酚体外发酵24 h CH4产量分别降低84.7%(P0.05)和73.9%(P0.05)。综合以上试验结果可知,不同植物精油对体外瘤胃发酵和CH4产量的影响结果不同,且与添加剂量有关。其中,低剂量的百里香酚和香芹酚促进体外瘤胃发酵,而高剂量的百里香酚和香芹酚抑制体外瘤胃发酵且显著降低24 h CH4产量。  相似文献   

16.
An experiment was performed using lambs fitted with chronic indwelling catheters in appropriate blood vessels for portal-drained visceral (PDV) flux measurements. The objective of the experiment was to evaluate PDV nutrient flux in alfalfa-fed and intragastrically infused lambs and to evaluate the effects of amount of energy and N infused on PDV nutrient metabolism. Lambs were fed alfalfa or infused with 1.64 and 10.9; 1.82 and 12.3; or 2.37 and 15.0 Mcal GE and g N/d, respectively. Arterial concentrations and PDV fluxes of glucose, L-lactate, acetate and portal blood flow were not different (P greater than .10) between alfalfa-fed and infused lambs. Net flux of alpha-amino N, ammonia N and branched-chain VFA were lower (P less than .05) and net flux of propionate, butyrate and total VFA were higher for intragastric infusion vs alfalfa. No consistent differences in PDV fluxes were noted among the three levels of energy and N infused, although the energy and N levels tested were near maintenance requirements. Nitrogen retention increased as level of energy and N infusion increased. Approximately 47, 70 and 22% of ruminally infused acetate, propionate and butyrate, respectively, were found on a net basis in portal blood as VFA. Measurements of net nutrient utilization by the PDV that eliminate the influence of ruminal fermentation are possible. How the changes in PDV tissues due to intragastric infusion influence these estimates is unknown.  相似文献   

17.
Six ruminally cannulated steers (345 +/- 20 kg initial BW) were used in a 6 x 6 Latin square to evaluate effects of diet and antibiotics on ruminal protein metabolism. Two diets and three antibiotic treatments were arranged factorially. One diet contained (DM basis) 72% dry-rolled corn, 12% soybean meal, 10% alfalfa hay, and 4% molasses (SBM), and the other contained 63% dry-rolled corn, 30% wet corn gluten feed, and 5% alfalfa hay (WCGF). Antibiotic treatments included control, virginiamycin (175 mg/d; VM), and monensin/tylosin (250 and 100 mg/d, respectively; MT). Steers were fed at 12-h intervals at a rate of 2.4% of empty BW daily. Each period included 18 d of adaptation and 3 d of ruminal fluid collections. Samples were collected at 0, 2, 4, 6, 8, and 10 h after the morning feeding on d 19 and 20. On d 21, rumens were dosed 2 h after the morning feeding with 350 g of solubilized casein to evaluate in vivo ruminal protease and deaminase activities. Ruminal fluid samples were collected 1, 2, 3, 4, and 6 h after the casein dose. On d 19 and 20, antibiotics had no effect on ruminal pH or concentrations of VFA, lactate, ammonia, ciliated protozoa, alpha-amino nitrogen (AAN), or peptide N, but VM reduced (P < 0.01) the concentration of isovalerate compared to MT and control. After casein dosing (d 21), peptide N concentration was unaffected by antibiotics, but AAN were higher (P < 0.01) for VM than MT and control. Relative to MT and control, VM reduced ruminal isovalerate (P = 0.05) and increased ruminal propionate (P < 0.01) on d 21. Ruminal pH was lower (P < 0.01) in steers fed SBM than in steers fed WCGF, but lactate concentrations were unaffected by diet. Steers fed SBM had higher (P < 0.05) ruminal concentrations of total VFA and propionate. Ammonia concentrations were lower before feeding and higher after feeding for steers fed WCGF (P < 0.01). Steers fed WCGF had higher counts of total ciliated protozoa than steers fed SBM (P < 0.05) due to greater Entodinium sp. (P < 0.05). Steers fed WCGF had higher (P < 0.01) ruminal AAN and peptide N concentrations than those fed SBM on d 19 and 20. After casein dosing, ruminal peptide N concentrations were similar, but AAN were lower (P < 0.01) for WCGF than SBM. Overall, VM appeared to depress ruminal deaminase activity, and MT had minimal effects on ruminal fermentation products. The protein in WCGF appeared to be more readily degradable than that in SBM.  相似文献   

18.
采用先进的微生物体外累积发酵产气法和分子生物学鉴定技术研究了天然多糖--香菇,银耳和黄芪多糖对鸡肠道微生物菌群及其发酵动力学的影响,观察了中药多糖作为抗生素替代品对鸡的抗病促生长作用以及它们对肠道微生态体系和免疫系统的影响。结果表明,中药多糖经微生物发酵产生挥发性脂肪酸(VFA),使有益菌大量增生,同时发酵产生的酸性物质降低整个肠道pH值,抑制有害菌的生长;多糖还可减少氨气等有害气体产生,减少对环境的影响;多糖能显著提高鸡的细胞和体液免疫应答,增强动物防御系统的作用,可以部分替代抗生素添加剂应用于肉仔鸡的生产。饲养试验表明,多糖和抗生素对健康鸡的促生长作用都不明显,而对感染鸡具有显著的抗病促生长作用。  相似文献   

19.
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six catheterized Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.  相似文献   

20.
The objective of this study was to examine the effects of cinnamaldehyde (CDH), garlic (GAR) and juniper berry (JUN) essential oils (200 mg/kg of DM) on performance and carcass characteristics of lambs fed a barley-based concentrate diet ad libitum. For this purpose, 40 ewes' lambs (23.5 ± 1.11 kg initial live weight, LW) were used in a random block design over a 13-week period. Feeding CDH, GAR or JUN did not affect dry matter intake (DMI) but the average daily gain (ADG) of lambs supplemented with CDH and JUN was higher (P = 0.002) as compared to lambs fed GAR or the control diet. Feed conversion (DMI/ADG) was numerically improved when lambs were fed CDH (4.8) and JUN (4.7) compared to those fed GAR (5.2) or the control diet (5.3). There were no effects of feed additives on ruminal pH and concentrations of ammonia and total VFA. Serum concentrations of glycerol and total glycerides were lower and higher (P ≤ 0.03) in lambs fed CDH or JUN respectively, as compared to lambs fed GAR or the control diet. Hot dressed carcass weight was similar among treatments (23.7 ± 0.75 kg; P = 0.18) whereas saleable meat tended (P = 0.13) to increase (+ 9%) in lambs fed CDH and JUN compared to those fed GAR or the control diet. Feeding CDH, GAR or JUN had little effect on the overall fatty acid composition of back fat and liver and only minor effects on meat flavour characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号