首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differences between effects of homoeologous group 5 chromosomes on growth phases and agronomic characters were studied by using reciprocal substitution lines between a winter wheat cultivar with a high vernalization requirement (Mironovskaya 808) and one with lowvernalization requirement (Bezostaya 1), in which the presence of different recessive vrn alleles is supposed. The two cultivars and the substitution lines Mironovskaya 808 (Bezostaya 1 5A), Mironovskaya 808 (Bezostaya 1 5B), Mironovskaya 808 (Bezostaya 1 5D), Bezostaya1 (Mironovskaya 808 5A), Bezostaya 1 (Mironovskaya 808 5B),Bezostaya 1 (Mironovskaya 808 5D) were grown at 10 different sowing dates. The results showed that differences between the homoeologous group 5 chromosomes of Mironovskaya 808 and those of Bezostaya 1influenced the growth phases in addition to the impact by the genetic background and sowing date. We inferred from the analysis and comparison of their effect on vernalization response that vrn loci on these chromosomes influence growth phases. It is probably due to pleiotropic effects of the loci. The rare occurrence of significant interactions between group 5 chromosomes × sowing dates probably indicates independence of their effect. Agronomic characters were also markedly influenced by sowing date and the difference in backgrounds between Mironovskaya 808 and Bezostaya 1. A significant impact by at least two of the chromosomes on almost all studied characters was detected. The chromosomes affected the combined characters in the order5D>5B>5A and the positive value of the differences suggests that a content of Mironovskaya 808 chromosomes is more advantageous. It was possible to find certain indices in some agronomic traits, supporting the idea that the expression of some characters can also be connected to vernalization requirement and thus to the expression of the vrn loci. This supposition is most probable in the number of tillers and number of spikes. In some traits significant interactions occurred between homoeologous group 5 chromosomes × genetic background. Sporadic and low significance between homoeologous group 5 chromosomes × sowing dates suggest that the genetic effect of these chromosomes is independent of environmental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Inter-varietal chromosome substitution lines in wheat — revisited   总被引:1,自引:0,他引:1  
Summary The difficulties in developing inter-varietal chromosome substitution lines in wheat are reviewed. The use of genetical, cytological and molecular markers is suggested as a way of overcoming them. These difficulties and the use of markers, as well as the need to develop duplicate lines to detect background variation, are described using the development and analysis of the Cappelle-Desprez (Bezostaya 1) chromosome substitution set as an example. The effects of substituting Bezostaya 1 chromosomes on final plant height and adult-plant resistance to yellow rust are reported. The large number of aneuploids and substitution lines available in wheat provides a tremendous, international resource, which should be exploited in the future.  相似文献   

3.
Sets of D-genome disomic substitution lines of ‘Langdon’ (Triticum turgidum var. durum) were used to study the effect of chromosome substitutions on grain yield and flour technological properties. In general, the substitution of any D-genome chromosome had a detrimental effect on grain yield and growth vigour (some lines were sterile). SDS-sedimentation, SE-HPLC and two-gram mixograph procedures were used to measure dough strength of the lines studied. Significant correlations were observed between protein concentration and grain yield and other quality parameters such as SDS-sedimentation value, the proportion of glutenin, dough mix time and peak resistance. Most of the quality characters were highly correlated with each other. Substitution of chromosomes 1D, 5D, 2D and 7D resulted in positive responses to SDS-sedimentation values, but only chromosome 1D had positive effects on the proportion of peak 1 (P1%), measured by SE-HPLC. Besides the major influence of chromosome 1D on three major mixograph parameters (mixing time, peak resistance and resistance breakdown), chromosome 5D also exhibited significant effects on these mixing parameters. Principal-component analysis showed that the predominant effect on durum-wheat rheological properties was from chromosome 1D, whereas chromosome 5D had a major effect on grain hardness (50%) and increased the whiteness of the flour.  相似文献   

4.
G. Ganeva    T. Petrova    C. N. Law    S. Landjeva    L. Sayers 《Plant Breeding》2008,127(2):121-124
The effect of individual chromosomes of the wheat variety ‘Bezostaya 1’ on plant resistance to low temperatures was studied using the available set of intervarietal ‘Cappelle Desprez’ (‘Bezostaya 1’) chromosome substitution lines. The number of plants surviving after freezing at ?12, ?15 and ?17°C was determined for both parents and lines in trials in 2004/2005 and 2005/2006. Significant differences between the three temperature treatments and between lines were found, implying that two factors, the level of temperature stress and chromosome substitutions, were influencing plant survival. Improved frost resistance in both trials was associated with genes located on five chromosomes: 5A, 2D, 4A, 5D and 6A. An increase in the plant frost resistance because of the effects of 7A and 1A chromosomes was also observed in the 2005/2006 trial, when the overall autumn and winter (January) temperatures were lower than in 2004/2005.  相似文献   

5.
Substitution lines with reciprocal substitutions of chromosomes containing recessive alleles of the homoeologous group 5 chromosomeVrn genes between varieties of winter wheat with high vernalisation requirement (‘Mironovskaya 808’) and low vernalisation requirements (‘Bezostaya 1’) have been created. On this basis the genetic determination of vernalisation requirement was established. Substitution lines Mironovskaya 808 (Bezostaya 1 5A), Mironovskaya 808 (Bezostaya 1 5B), Mironovskaya 808 (Bezostaya 1 5D) and reciprocal substitution lines Bezostaya 1 (Mironovskaya 808 5A), Bezostaya 1 (Mironovskaya 808 5B) and Bezostaya 1 (Mironovskaya 808 5D) were grown under different durations of vernalisation (3, 4, 5, 6, 7 and 8 weeks) and their response was evaluated. Photoperiodic sensitivity of the original parental genotypes was also determined. Reciprocal substitution lines of the same chromosome that carries the same vrn allele responded differently to vernalisation deficit. Differences have been shown between all group 5 reciprocal substitutions. Lines carrying chromosomes 5A and 5D of Mironovskaya 808 had a high vernalisation requirement whereas lines carrying chromosome 5B of Bezostaya 1 (vrn2B) had a low vernalisation requirement. The reciprocal lines had a reverse requirement. This explains the different vernalisation requirements of the original varieties: Mironovskaya 808 with a high vernalisation requirement carries two alleles (vrn1M and vrn3M) in its genotype that increase the vernalisation requirement, whereas Bezostaya 1 with a lower requirement for vernalisation contains only one such allele (vrn2B). By combination of the alleles in the lines with the substitution of chromosome 5B carrying vrn2 allele that in both original genotypes work inversely to the other alleles, transgressive genotypes have been formed: genotype vrn1M vrn2B vrn3M determines a higher vernalisation requirement than original variety Mironovskaya 808, and genotype vrn1B vrn2M vrn3B determines a lower vernalisation requirement than the original Bezostaya 1. An incomplete vernalisation requirement prolonged the time to heading, with exponential dependence on the vernalisation deficit, or prevented heading altogether. The original varieties further differed in photoperiodic sensitivity (Mironovskaya 808 sensitive, Bezostaya 1 less sensitive) that also influenced the background of substitution lines. The impact of the background on the heading time showed itself by about one week difference between Mironovskaya 808 and Bezostaya 1 grown under 8 weeks vernalisation and normal photoperiod. The difference between the lines with Mironovskaya 808 background and the lines with Bezostaya 1 background was approximately the same and was not significantly changed in different vernalisation variants of the lines. This difference may be caused by different photoperiodic sensitivity of the original varieties, but also by other genes, such as genes of earliness per se. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Summary Grain size in wheat is the most stable yield component and has a favorable effect on flour yield. To identify the chromosomes associated with the large grains of line G603-86, (grain weight over 60 mg and grain length of about 9 mm), F3 lines, extracted from F2 populations obtained from F1 monosomics of crosses between G603-86 (P1) and the monosomic set of Favorit (P2) were tested in the field. ANOVA showed significant differences among parents for grain weight and grain length, but not for grain width or the factor expressing the difference in grain form and density. Homoeologous groups had significant effects on grain weight and on all components of grain weight, while genomes were not significantly different for any of these characters. Grain weight was significantly increased by chromosomes 6D and 4A of G603-86. Grain length was significantly increased by chromosomes 4A, 4B, 2B, 3A and 1B, grain width by chromosomes 1A and 1B, and the factor form-density by chromosomes 6D and 6A. The high grain size in G603-86 results from the effects of genes located on many chromosomes which affect grain dimensions, form and density.  相似文献   

7.
Quantitative trait loci (QTL) related to the grain iron and zinc contents of brown rice were mapped by using a doubled haploid population derived from an intra-japonica cross between 'Hwaseonchal' and 'Goami 2'. QTL–QTL, background–QTL, and background–background interactions and candidate genes that affect grain iron and zinc contents were preliminarily identified. Twenty-one iron- and zinc-related QTL were found. The major-effect QTL qFe7 and qZn7 provided the highest contribution to phenotypic variance for grain iron and zinc contents. The colocation of zinc- and iron-related QTL on chromosomes 1, 4, 7 and 11 may account for the strong correlation between iron and zinc contents. A region on chromosome 7 and epistatic interaction between loci on chromosomes 2 and 10 affected iron content. qZn7 and qZn11.3 exerted additive effects on zinc content. Eleven iron- and zinc-related candidate genes colocated with qFe7, qZn7 and the region on chromosome 7 with an additive effect on iron content. The major-effect QTL identified here may be useful for breeding biofortified rice.  相似文献   

8.
硫对不同类型春小麦湿面筋和沉降值及氨基酸的效应   总被引:15,自引:0,他引:15  
以6个不同品质类型春小麦为材料,在不同氮水平下,研究施硫对湿面筋、沉降值及氨基酸的调节效应。结果表明,高氮条件下(施尿素128 kg/hm2),施硫可提高湿面筋含量和沉降值,对高蛋白品种作用更明显。低氮(施尿素60 kg/hm2)条件下施硫,除辽10的湿面筋和沉降值均降低外,其它品种表现湿面筋含量降低而沉降值提高。高蛋白  相似文献   

9.
Hexaploid triticale (X Triticosecale Wittmack) (2n= 6x= 42, AABBRR) and wheat (Triticum aestivum L.) (2n= 6x= 42, AABBDD) differ in their R and D-genomes. This produces differences in both agronomic and end-use quality characteristics. Our objective was to determine how introgressions of individual chromosomes from the D-genome of wheat affect these characteristics of a winter triticale 'Presto'. We studied the effects of 18 D-genome chromosome substitution lines, 15 sib-lines as controls, and five check cultivars at Lincoln, NE in 1996, using a randomized complete block design with two replications. The experiment was repeated at Lincoln and Mead, NE in 1997 and 1998 with 15 substitution lines that survived the first winter in Lincoln, along with their 12 control sibs and five check cultivars. Few D-genome chromosomes had positive effects. Chromosomes 2D, 4D, and 6D significantly reduced plant height when substituted for 2R, 4B, and 6R, respectively. No grain yield increases were associated with any of the D-genome chromosomes tested, but three substitutions decreased the grain yield. Depending on the allele of the hardness gene present, chromosome 5D increased or decreased kernel hardness when substituted for 5R or 5A, respectively. Introgressions of chromosomes 1D and 6D improved end-use quality characteristics of Presto. These results suggest that apart from beneficial effects of individual loci located on the D-genome chromosomes, no major benefit can be expected from D-genome chromosome substitutions.  相似文献   

10.
Summary Gelprotein or SDS-insoluble gel-forming glutenin was isolated from wheat flour by extraction with an aqueous 1.5% SDS solution. Remarkable intervarietal differences were observed both in amount and subunit composition of these proteins.The amount of gelprotein and the SDS-sedimentation volume both proved to be good parameters for the bread-making quality of wheat cultivars. A high correlation was observed between amount of gelprotein and SDS-sedimentation volume. The amount of gelprotein was therefore tentatively assumed to be the essential basis of the SDS-sedimentation test.The subunit composition of the gelprotein was studied by SDS-PAGE after reduction of SS bonds by mercaptoethanol. It was found that the average bread-making quality of wheat cultivars and progeny of the cross Atlas 66 x Atys which possessed subunits 3 and 10, coded for by chromosome 1D, was significantly higher than that of wheat samples possessing subunit 2 and 11, their allelic counterparts.  相似文献   

11.
小麦异附加系数量性状的遗传分析   总被引:1,自引:1,他引:1  
李斯深  尹承佾 《作物学报》1994,20(5):570-577
本文根据小麦二体异附加系的细胞遗传学特点和作物数量遗传学特点和作物数量遗传学原理,提出了对二体异附加系数量性状进行异染色体效应分析和基因效应分析的方法。并分析了小偃麦二体异附加系31505的部分数量性状的异染色体和基因效应。  相似文献   

12.
I. Leonova    E. Pestsova    E. Salina    T. Efremova    M. Röder  A. Börner  G. Fischbeck 《Plant Breeding》2003,122(3):209-212
An F2 population segregating for the dominant gene Vrn‐B1 was developed from the cross of the substitution line ‘Diamant/'Miro‐novskaya 808 5A’ and the winter wheat cultivar ‘Bezostaya 1′. Microsatellite markers (Xgwm and Xbarc) with known map locations on chromosome 5B of common wheat were used for mapping the gene Vrn‐B1. Polymorphism between parental varieties was observed for 28 out of 34 microsatellite markers (82%). Applying the quantitative trait loci mapping approach, the target gene was mapped on the long arm of chromosome 5B, closely linked to Xgwm408. The map position of Vrn‐B1 suggests that the gene is homoeologous to other vernalization response genes located on the homoeologous group 5 chromosomes of wheat, rye and barley.  相似文献   

13.
水稻品种魔王谷粒形、剑叶性状和株高QTL定位   总被引:1,自引:0,他引:1  
彭伟业  孙平勇  潘素君  李魏  戴良英 《作物学报》2018,44(11):1673-1680
以粳稻魔王谷和籼稻CO39配组衍生的280个重组自交系为材料, 2015年和2016年对其粒形、剑叶形态、株高性状进行了相关性分析和QTL检测。剑叶长分别与粒厚和株高存在极显著负相关和正相关, 剑叶宽与粒宽存在极显著正相关。检测到17个粒形QTL, 分布于第1、第2、第3、第4、第5、第6、第7、第9和第10染色体上, 贡献率为3.51%~48.65%; 其中, 第3染色体RM6080-RM6283区间对粒长和千粒重兼具显著作用, 第5染色体RM8211-RM3381区间同时影响粒宽和粒厚。检测到12个控制剑叶形态性状的QTL, 分布于第1、第3、第4、第6、第7和第9染色体上, 贡献率为4.26%~38.40%; 有5个多效QTL区间, 其中, 第4染色体RM252-SFP4_6区间同时控制剑叶长、剑叶宽、剑叶面积和粒长, 第9染色体RM257-RM3909区间同时影响剑叶面积和粒长。只检测到一个控制株高的QTL, 位于第1染色体的RM6333-RM5536区间, 是一个主效QTL, 贡献率为28.76%。这些结果为进一步开展粒形、剑叶形态、株高基因的精细定位、克隆和分子辅助育种奠定了基础。  相似文献   

14.
簇毛麦是小麦的一个野生近缘种,小麦-簇毛麦1V异附加系和异代换系的蛋白质含量和沉降值均高,将簇毛麦1V染色体的优质基因导入普通小麦,进一步创造小麦-簇毛麦1V染色体易位系是小麦品质改良的有效途径.以小麦-簇毛麦1V异染色体系材料为基础,用普通小麦连续回交,结合原位杂交和PCR标记鉴定方法,分析1V染色体以及1V结构变异...  相似文献   

15.
Genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) were used to identify the Leymus multicaulis (XXNN, 2n = 28) chromosomes in wheat-L. muliticaulis derivatives. Fifteen lines containing L. multicaulis alien chromosomes or chromosomal fragments were identified. All alien chromosomes or fragments in these 15 lines were from the X genome and none were from the N genome. Eleven L. multicaulis disomic addition lines and four translocation-addition lines were identified with chromosome rearrangements among homoeologous groups 2, 3, 6 and 7. Only homoeologous group 1 lacked rearrangements in addition or translocation chromosomes. The results revealed that translocation in non-homoeologous chromosomes widely exists in the Triticeae and therefore it is necessary to identify the alien chromosomes (segments) in a wheat background using these combined techniques. During the course of the work, probe PSR112, was found to detect X genome addition lines involving L. multicaulischromosomes. This may prove to be a valuable probe for the identification of alien chromosomes in a wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Under field conditions in Germany over three growing seasons the pleiotropic effects on yield and its components of four sets of near isogenic lines carrying the GA insensitive dwarfing alleles Rht1, Rht2, Rht3, Rht1+2, Rht2+3 or rht (tall) in four different genetical backgrounds were examined together with 24 single chromosome recombinant lines segregating for the GA sensitive dwarfing gene Rht8 and the gene for day-length insensitivity Ppd1 in a ‘Cappelle-Desprez’ background. For the GA insensitive semi-dwarfs it was shown that in all three years a higher number of grains per ear was accompanied by a lower grain weight. Depending on the climatic conditions in a particular year, the increase in grain number was sufficient to compensate for the reduction in grain size and resulted in higher yields. For the Ppd1 allele yield advantages were found for wheats grown under environmental conditions of middle Europe.  相似文献   

17.
N. Jouve  F. Diaz 《Euphytica》1990,47(2):165-169
Summary The EST-6 leaf esterase phenotypes from euploid, nullisomic-tetrasomic and rye chromosome addition and substitution lines of common wheat were determined using polyacrylamide gel electrophoresis. Evidence is presented to demonstrate that Est-6 is a new set of genes, that are expressed in the leaf. The Est-6 gene set were clearly distinguished from the Est-5 genes which are expressed in the grain. The three homoeoallelic loci, Est-A6, Est-B6 and Est-D6, were located on chromosomes 3A, 3B and 3D. An Est-R6 gene was located on chromosome 6R is involved in rye. Some considerations concerning homoeology between homoeologous group 3 of wheat and the rye chromosome 6R are made.  相似文献   

18.
Evaluation of wheat cultivars from different eras allows breeders to determine changes in agronomic and end-use quality characteristics associated with grain yield and end-use quality improvement over time. The objective of this research was to examine the trends in agronomic and end-use quality characteristics of hard red winter wheat cultivars grown in Nebraska. Thirty historically important and popular hard red winter wheat cultivars introduced or released between 1874 and 2000 were evaluated at Lincoln, Mead and North Platte, Nebraska in 2002 and 2003. An alpha lattice design with 15 incomplete blocks of two plots and three replications was used at all locations. Agronomic (days to flowering, plant height, spike length, culm length, grain yield and yield components, and grain volume weight) and end-use quality (flour yield, SDS-sedimentation value, flour protein content, and mixograph time and tolerance) traits were measured in each environment. Highly significant differences were observed among environments, genotypes and their interactions for most agronomic and end-use quality characteristics. Unlike modern cultivars, older cultivars were low yielding, and less responsive to favorable environments for grain yield and yield components. Semidwarf cultivars were more stable for plant height than traditional medium to tall cultivars. All cultivars had high grain volume weight since it is part of the grading system and highly selected for in cultivar release. Modern cultivars were less stable than older cultivars for SDS-sedimentation and mixing tolerance. However, the stability of older cultivars was attributed to their having weak mixing tolerance and reduced SDS-sedimentation values. The reduced protein content of modern cultivars was offset by increased functionality, as measured by mixograph and SDS sedimentation. In conclusion, breeders have tailored agronomic and end-use quality traits essential for hard red winter wheat production and marketing in Nebraska.  相似文献   

19.
Using a pair of near-isogenic lines(NILs) of winter wheat (Triticumaestivum L.) contrasting for the Ppd-D1 and ppd-D1 alleles, in eachof Mercia and Cappelle-Desprez, experimentsin two seasons (1997/8 and 1998/9) on aloamy medium sand examined differences inflowering date, resource capture, biomassproduction and grain yield responses toirrigation. Drought did not occur for anysustained period in unirrigated conditionsin 1998 due to high seasonal rainfall. In1999, drought developed post-floweringunder unirrigated conditions. Ppd-D1on average advanced flowering by 12 days inMercia and 9 days in Cappelle-Desprez.Earlier flowering with Ppd-D1 was dueto a shorter thermal duration from cropemergence to GS31, with no effect on thethermal duration from GS31 to GS61. In bothgenetic backgrounds, Ppd-D1 decreasedabove-ground dry matter (AGDM) at harvestin irrigated conditions by 0.3–0.9 tha-1 (p< 0.05), but thiswas compensated for by increases inharvest index (HI), so that grain yield wasconserved. Although Ppd-D1 decreasedmaximum green area index (GAI) by 0.8–1.9this was countered by greater maintenanceof green area after flowering, so thatradiation interception during grain fillingwas conserved. The Ppd-D1 alleledecreased season-long crop water uptake inthe Mercia NILs in irrigated conditions by39 mm. Effects of drought in 1999,averaging across NILs, were todecrease machine-harvested grain yield by 0.6 t ha-1 in Mercia and by 1.8 tha-1 in Cappelle-Desprez (p<0.05). The Ppd-D1 and ppd-D1NILs, though, responded similarly todrought in both genetic backgrounds. Earlyflowering with Ppd-D1 decreasedpre-flowering water uptake underunirrigated conditions by ca. 25 mm,but increased post-flowering uptake by only10 mm, compared to ppd-D1. This was aresult of smaller season-long water uptakefor Ppd-D1 compared to ppd-D1.Ppd-D1 decreased stem solublecarbohydrate measured shortly afterflowering under drought by ca. 0.3 tha-1. Effects of Ppd-D1 onother drought-resistance traits, such aswater-use efficiency (WUE; AGDM per unitcrop evapotranspiration) and maximumrooting depth, appeared to be neutral. Itis concluded that the effects of the Ppd-D1 allele appeared to be largelyneutral on yield potential and late-seasondrought resistance in the UK's temperateenvironment in these genetic backgrounds.However, there were indications that Ppd-D1 may offer scope for breeding winterwheat cultivars with more efficientproduction of grain DM per unit seasonalcrop evapotranspiration, associated withimproved HI, compared to currentlycommercial UK genotypes.  相似文献   

20.
A restriction fragment length polymorphism (RFLP) map constructed from 99 doubled haploid lines of a cross between two spring barley varieties (‘;Blenheim’בKym’) was used to map QTL controlling hot water extract and grain nitrogen content (predicted by analysis with near-infrared reflectance spectroscopy). Eight QTL affecting predicted hot water extract were identified by a marker-regression approach. The largest effects were found on chromosomes 3HL, associated with the denso dwarfing gene which is present in‘Blenheim’and conferred poorer predicted hot water extract quality, and 4HL. Other QTL were detected on chromosomes IHS. IHL. 2HS, 2HL. 5HL and 6HS. Analysis of single markers by analysis of variance detected an additional effect on chromosome 1H. Eight QTL affecting predicted grain nitrogen content were identified by marker-regression, on chromosomes 1HS, 1HL. 2HL. 5HS, 6H, 7HS and 7HL. There was also evidence for an additional QTL on chromosome 5HL. The positions of the grain nitrogen content QTL on 5HS and 5HL are comparable to QTL on wheat chromosomes 5A and 5D that affect grain protein content. The denso gene had no detectable effect on grain nitrogen content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号