首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
柳州市马尾松、杉木、桉树人工林碳储量及其分配   总被引:1,自引:0,他引:1  
对广西柳州市杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和桉树(Eucalyptus sp.)人工林生态系统碳含量、碳储量进行了研究,结果表明:不同发育阶段马尾松、杉木、桉树人工林林下植被含碳率变化幅度为40.06%~47.71%,枯落物含碳率为35.81%~44.71%.0~~60 cm土层含碳率变化幅度为0.32%~ 1.26%,0~20 cm土层含碳率表现为杉木>马尾松>桉树.马尾松、杉木、桉树人工林生态系统碳储量分别为180.7、124.8、68.5 t/hm2,马尾松和桉树人工林生态系统碳储量均表现为随林龄的增加而增加.马尾松、杉木、桉树人工林乔木碳储量分别为122.54、54.8、32.29 t/hm2,分别占其总碳储量的67.8%、43.91%、49.01%.马尾松、杉木、桉树人工林下植被碳储量表现为马尾松>桉树>杉木.马尾松、杉木、桉树人工林枯落物碳储量分别占其总碳储量的3.21%、3.73%、5.11%.马尾松、杉木、桉树人工林土壤碳储量分别为54.06、67.33、41.22 t/hm2,0~20 cm土层碳储量成为土壤的主体,马尾松0~.20 cm土层碳储量占其土壤总碳储量的48.6%,杉木占44.7%,桉树为41.37%.  相似文献   

2.
柳州市三种人工林土壤有机碳储量的空间分布   总被引:1,自引:0,他引:1  
采用野外调查、取样和实验室分析等方法,对柳州市杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和桉树(Eucalyptus sp.)人工林生态系统的土壤有机碳含量和有机碳储量及其分配进行了研究.结果表明,马尾松、杉木和桉树人工林土壤有机碳含量为3.2~12.6 g/kg,杉木人工林土壤有机碳含量最高,桉树人工林最小.马尾松、杉木和桉树人工林0~20 cm土层的土壤有机碳储量分别为26.25、30.09和17.05 t/hm2,分别占其土壤总有机碳储量的48.56%、44.70%和41.36%,成为土壤有机碳储量的主体,土壤的有机碳含量和有机碳储量均随着土层深度的增加而减少.土壤有机碳储量表现为杉木人工林(67.33 t/hm2)>马尾松人工林(54.06 t/hm2)>桉树人工林(41.22 t/hm2);马尾松人工林土壤有机碳储量表现为中龄林>幼龄林>过熟林>成熟林;杉木中龄林的土壤有机碳储量大于成熟林,彼此间差异不显著;三年生的桉树人工林的土壤有机碳储量高于二年生和四年生的;杉木中龄林和成熟林的土壤有机碳储量分别高于马尾松中龄林和成熟林.  相似文献   

3.
选取贵州黔东南地区3 种典型林分为研究对象,通过外业调查和室内测定,研究常绿阔叶次生林、马尾松和 柏木人工林的碳储量差异及在乔木层、林下层和土壤层的分布规律。结果表明:1)常绿阔叶次生林、马尾松和柏木 人工林乔木层碳储量分别为42.31、30.82 和8.34 Mg/ hm2 ,林下层碳储量表现为常绿阔叶次生林显著大于柏木人 工林和马尾松人工林,常绿阔叶次生林土壤层有机碳密度为112.60 Mg/ hm2 ,分别是马尾松和柏木人工林的1.8 和 4.8 倍。2)林分碳储量分布均表现为土壤层(0 ~30 cm) 乔木层 林下层,土壤碳储量占林分总碳储量的66% 以 上,乔木层碳储量占林分碳储量的26%以上。3)较少受到干扰的植被常绿阔叶次生林碳储量为155.87 Mg/ hm2 , 显著高于马尾松和柏木人工林,表明研究区植被恢复有较高的固碳潜力。研究区植被恢复应以马尾松人工林为 主,适当辅以乡土常绿阔叶树种,将有利于当地森林碳汇效益的增加。   相似文献   

4.
广西沙塘林场马尾松和杉木人工林的碳储量研究   总被引:1,自引:0,他引:1  
【目的】量化广西沙塘林场马尾松(Pinus massoniana)和杉木(Cunninghamia lanceolata)人工林碳储量,为评价其碳汇功能和可持续经营提供依据。【方法】 在广西沙塘林场选择处于中龄和成熟期的马尾松和杉木人工林,设置样地测算乔木、林下植被和枯落物的生物量,按20 cm分层挖取样地0~60 cm土层土样,最后依据有关方程,计算马尾松和杉木中龄和成熟人工林生态系统的含碳率和碳储量。【结果】 马尾松、杉木人工林林下植被含碳率变化于40.06%~45.23%, 枯落物含碳率为40.79%~46.06%,0~60 cm土层含碳率变化于0.34%~1.26%。马尾松和杉木人工林生态系统平均碳储量分别为168.36和128.08 t/hm2,其乔木层的平均碳储量分别为106.33和54.8 t/hm2,分别占总碳储量的63.15%和42.79%;土壤平均碳储量分别为54.96和67.33 t/hm2,其分别占总碳储量的32.64%和52.57%;其林下植被和枯落物平均碳储量分别占总碳储量的1.28%,1.02%和2.93%,3.63%。【结论】 马尾松人工林总碳储量以成熟林显著高于中龄林,杉木则以中龄林略高于成熟林;土壤和乔木层碳储量是马尾松和杉木人工林生态系统碳储量的主体部分,而林下植被和枯落物对碳储量的贡献较小。  相似文献   

5.
蒋林  林宁  莫德祥  卓宇 《安徽农业科学》2012,(18):9728-9730,9861
[目的]对南亚热带低山区柳杉人工林碳汇进行研究。[方法]研究广西国营六万林场低山区的31年生柳杉人工林生态系统碳素含量、碳储量及其空间分配特征。[结果](1)柳杉人工林不同器官平均碳素含量变化在498.5~530.3 g/kg,其含量排列为:叶子枯枝树干根蔸枝条细根干皮中根粗根;碳素含量随土壤深度的增加而逐渐减少。(2)低山区柳杉人工林的生态系统碳储量为393.651 t/hm2,其中植被层碳储量占生态系统碳储量的29.22%,而0~100 cm土壤层占70.78%。31年生柳杉人工林年净固碳量估算为3.709 t/(hm2.a),其中乔木层的年净固碳量为3.537 t/(hm2.a)。(3)0~20 cm土壤表层碳储量为132.418 t/hm2,比植被层的碳储量还高。[结论]加强低山区的植被保护,减少表层土壤的水土流失,可有效保持南亚热带低山区土壤对碳的长期吸存和维持。  相似文献   

6.
【目的】研究河北省太行山区核桃林生态系统碳氮储量及其分配特征,为河北省山区经济林碳氮平衡管理提供基础数据。【方法】选取10 a生的核桃林为研究对象,开展乔木层生物量取样和土壤分层取样,采用重铬酸钾氧化-外加热法测定植物和土壤有机碳含量,采用凯氏法测定植物全氮和土壤全氮含量。【结果】核桃林生态系统总有机碳储量为84.328 t/hm2,其中土壤层碳储量为75.579 t/hm2,占总有机碳储量的89.6%;乔木层碳储量为8.749 t/hm2,占总有机碳储量的10.4%。核桃林生态系统总氮储量为5.375 t/hm2,乔木层氮储量和土壤层氮储量分别占总氮储量的3.1%和96.9%。非线性回归分析表明,核桃树不同器官碳氮含量呈显著非线性负相关关系(P0.05),不同土壤层的碳氮含量呈极显著非线性正相关关系(P0.01)。【结论】土壤是核桃林碳氮的主要储存库。  相似文献   

7.
【目的】探明坡位对不同林分密度长白落叶松人工林生态系统碳储量及其分配特征的影响,为制定长白落叶松人工林增汇经营技术提供科学依据。【方法】以长白落叶松人工林为研究对象,利用生物量与含碳率估算植被层碳储量,土壤剖面法估算土壤层碳储量,并分析不同坡位、不同林分密度长白落叶松人工林生态系统的碳储量及其分配特征。【结果】上坡位和中坡位低密度长白落叶松人工林生态系统碳储量分别为236.69 t/hm2和235.66 t/hm2,二者差异不显著;上坡位和中坡位高密度长白落叶松人工林生态系统碳储量分别为272.26 t/hm2和330.72 t/hm2,中坡位生态系统碳储量显著高于上坡位。长白落叶松人工林生态系统碳储量依次为土壤层>植被层>凋落物层;高密度林分中坡位土壤有机碳储量占比显著低于高坡位,而植被层有机碳储量占比中坡位显著高于高坡位。【结论】立地条件对低密度林分的碳储量影响较小;对于高密度林分,立地条件好有利于提高植被层碳储量,中坡位择伐强度可以适当加大,但不能超过上坡位的2倍。  相似文献   

8.
[目的]分析短轮伐经营对桉树人工林生态系统碳、氮积蓄产生的潜在影响。[方法]以广西七坡林场短轮伐期的桉树人工林为研究对象,分析3年、5年生桉树人工林生态系统碳氮储量及其碳氮分配格局,探讨砍伐和炼山等短轮伐经营对桉树人工林生态系统碳氮损失的潜在影响。[结果]3年、5年生桉树人工林生态系统碳储量分别为128.02、155.90 t/hm2,氮储量分别为9 673.24、8 798.33kg/hm2。②3年、5年生桉树人工林土壤层碳储量分别是植被层碳储量的2.86、2.66倍,氮储量分别是植被层氮储量的31.17、41.59倍,表明短轮伐期桉树人工林生态系统的碳氮库仍主要集中在土壤层。③3年、5年生桉树干材获取对短轮伐期桉树人工林生态系统造成的碳(氮)损失比例分别为17.11%(0.83%)、19.05(0.92%)。[结论]桉树干材获取等桉树短轮伐经营行为可能使其生态系统碳损失较大,氮损失较小。  相似文献   

9.
基于2009年庐山森林资源二类调查小班数据库和一类调查样地调查数据,利用CBM-CFS3模型的估算功能,估算江西庐山2009年森林生态系统碳储量。结果显示:庐山森林生态系统碳储量为6.4 T g(T=106t,t=106g),各主要森林类型之间因森林面积大小不同其碳储量差距很大;其中马尾松碳储量最大,占总碳储量的41.64%,国外松最小为2.18%。庐山森林生态系统平均碳密度为262.55 t/hm2,其中混交林碳密度最大为365.95 t/hm2,杉木碳密度最小为194.96 t/hm2。利用一类样地数据和平均生物量法得到庐山森林生态系统生物量碳密度为32.87 t/hm2,与模型计算结果 31.86 t/hm2基本一致。庐山总生物量碳库碳储量占庐山生态系统碳储量的12.47%,死有机质(DOM)碳库占比为87.53%,土壤碳库在整个生态系统中占有很大的比例为66.30%。  相似文献   

10.
山白兰人工林生态系统碳储量及空间分布特征   总被引:1,自引:0,他引:1  
莫德祥  廖克波  吴庆标  覃静 《安徽农业科学》2011,39(23):14072-14075
[目的]揭示山白兰人工林碳储量的空间分布特征及规律,为森林生态系统碳储量估算提供基础数据,也为进行人工林碳汇造林项目提供科学参考。[方法]以南亚热带地区27年生山白兰人工林为研究对象,采用标准木法、样方收获等方法对其生物量、碳含量分配进行研究。[结果]山白兰人工林生态系统碳储量为158.21 t/hm2,其中乔木层占植被层碳储量的87.24%,灌木层占10.77%,草本层占0.18%,凋落物层占1.81%;土壤层中0~80 cm的碳储量为102.01 t/hm2,为植被层的1.82倍。山白兰人工林乔木层年净固碳量为3.50 t/(hm2.年)。[结论]山白兰人工林生态系统碳储量比较可观,具有较好的发展前景。  相似文献   

11.
城市森林及其管理相关政策作为减少CO2排放的有效策略得到了较为广泛的关注。采用材积源生物量方程与净初级生产力方法来定量分析了广州市城市森林碳储量和碳固定量,根据化石能源使用量及其碳排放因子核算了广州城市能源碳排放,最后评估了城市森林碳抵消效果。结果显示广州市城市森林碳储量为654.42×104t,平均碳密度为28.81 t/hm2,而森林碳固定量为658732 t/a,平均固碳率为2.90 t·hm-2·a-1。2005-2010年广州市年均能源碳排放则达到2907.41×104t。广州城市森林碳储量约为城市年均能源碳排放的22.51%,其通过碳固定年均能够抵消年均碳排放的2.27%,不过从城市森林综合效益来看其仍是城市低碳发展重要举措之一。分析了林型组成和林龄结构对于广州森林碳储量和碳固定量的影响,并从森林管理角度为城市森林碳汇提升提出建议。这些结果和讨论有助于评估城市森林碳汇在抵消碳排放中所起的效果。  相似文献   

12.
中国人工林面积居世界第一位,而马尾松是中国人工林面积较大的树种之一,广泛分布于中国的亚热带区域。马尾松适应能力强,耐干旱、瘠薄,是南方低山丘陵区群落演替的先锋树种,也是荒山绿化造林的主要树种,马尾松人工林对生态防护、生态治理有着重大的意义。但是,绝大部分马尾松人工林为人工纯林,生态系统比较脆弱,生态服务功能较差。人工林的近自然改造对于增加林地生物多样性,提升人工林的生态服务功能具有重要意义。2005年,对中国林业科学院热带林业试验中心1993年造林的马尾松人工林进行4种不同强度(50%、40%、30%、20%)间伐后,套种大叶栎(Castanopsis fissa)、米老排(Mytilaria laosensis)、润楠(Machilus pingii)、红锥(C. hystrix)4个乡土阔叶树种,各种套种密度皆为120株/hm2。分别于间伐前(2004年)及2010年对群落生物多样性及人工套种树种生态情况进行调查,结果表明:(1)间伐处理后,自然更新至乔木层的物种种类和数量都有显著的增加,600 m2的样方中,物种数由(2.75±2.56)种增加到(11.17±4.32)种,个体数由(5.75±4.31)株增加到(32.17±19.09)株,群落中乔木亚层的优势种变化不大,主要有南酸枣(Choerospondias axillaris)、水锦树(Wendlandia uvariifolia),枫香(Liquidambar formosana)、破布木(Cordia dichotoma)、白背桐(Mallotus paniculatus)等。新增加到乔木层的物种大都为之前群落中灌木层的种类,主要有三桠苦(Evodia lepta)、鸭脚木(Schefflera minutistellata)、白花龙(Styrax faberi)、中平树(Macaranga denticulata)、黄毛榕(Ficus esquiroliana)、华南毛柃(Eurya ciliata)、罗浮柿(Diospyros morrisiana)、猴耳环(Pithecellobium clypearia)、木姜子(Litsea pungens)、毛黄肉楠(Actinodaphne pilosa)等。(2)间伐处理前,600 m2样方中出现的灌草种类数量为(24.63±4.24)种,间伐处理后,600 m2样方中出现的灌草种类数量为(27.58±3.80)种,不同间伐强度处理后林下灌草的优势种与间伐前大致相同,灌木层优势种为三桠苦,草本层优势种为弓果黍(Cyrtococcum patens)。不同间伐强度处理林分间,灌木层和草本层的物种丰富度指数、Shannon-Wiener指数、Simpson指数和Pielou指数均无显著差异,且与间伐前林分也无显著差异。(3)间伐促进了4个乡土树种幼树的生长,随着间伐强度的增加,大叶栎、红锥幼树的高度和胸径显著增长;50%的间伐强度的林分中,阔叶树种幼树的长势要显著好于其他间伐强度,50%的间伐强度最有利于马尾松林下套种的阔叶树种生长。(4)在马尾松林下套种的4个阔叶树种幼树的初期生长有明显差异。总体而言,大叶栎与米老排幼树的早期生长速率要明显高于红锥和润楠。  相似文献   

13.
【目的】对10年生火力楠Michelia macclurei人工林不同土层的土壤碳储量及养分储量进行研究,以了解火力楠人工林的固碳能力和土壤养分状况。【方法】在各标准地内用五点取样法,沿土壤剖面按0~20、20~40、40~60、60~80和80~100 cm分层采集土壤样品。用常规方法测定土壤pH以及有机质、全N、全P、全K、碱解N、有效P和速效K的含量,并计算土壤碳储量和养分储量。【结果】林分土壤呈酸性(pH3.54~3.79)。火力楠林地的土壤碳含量随着土壤深度的增加而下降。火力楠林地各层土壤的全P和全K含量差异不显著,全N、碱解N、有效P和速效K含量均随着土层的加深呈现下降的趋势。火力楠林地0~100 cm土壤的碳储量为259.26 t·hm~(-2),N、P和K储量分别为21.50、7.47和209.42 t·hm~(-2)。此外,随着土壤深度的增加,各层土壤的碳储量以及P、K储量总体呈现增加的趋势。【结论】火力楠林地的土壤碳储量高于全国平均水平,说明火力楠林地土壤具有较好的碳汇潜能和改良土壤的能力。深层土壤的碳储量以及P、K储量大于表层土壤,说明表层土壤的固碳能力较低且淋溶侵蚀较为严重。在今后的经营管理过程中,应注意防治水土流失,增强土壤表层的固碳能力。  相似文献   

14.
全球气候的变化已使得人类日益关注森林生态系统的碳储量变化.以福建省长汀县河田盆地为例,开展马尾松林碳储量估算模型的研究.通过2010年的野外样地调查获得了马尾松林的实测数据,并将其与同年的ALOS遥感影像对应样地的植被光谱信息进行比较.通过研究5种遥感植被指数与马尾松林碳储量之间的相关关系,从中选取了基于归一化植被指数(NDVI)的研究区最佳马尾松林碳储量反演模型.精度分析表明,该模型平均相对误差为-1.95%,均方根误差为3.01 t/hm2,因此可以有效地用于反演研究区的马尾松林碳储量.利用该模型反演出河田盆地2010年马尾松林的总碳储量为114.58×104 t,碳密度为34.92 t./hm2.  相似文献   

15.
运用RothC(version 26.3)模型,并结合“时空代换法”对长汀河田红壤侵蚀退化地马尾松人工恢复后林地表层(0-20cm)土壤有机碳库的动态变化进行了反演和预测,研究结果表明:RothC 26.3模型的模拟结果能够较好地反映红壤侵蚀地植被恢复过程中土壤有机碳的变化趋势;RothC 26.3模型适用于中亚热带季风气候条件下马尾松林地土壤碳库的动态模拟;侵蚀退化地在马尾松林建植后,林地表层土壤碳吸存速率以非线性的形式上升,并在15-25a时间内达到最大,马尾松恢复后前30a林地土壤平均碳吸存速率约为0.385 tC·hm-2· a-1,自马尾松建植后演替至当地顶级群落(次生林)全过程中平均碳吸存速率约0.156 tC·hm-2·a-1;根据模拟结果得到的拟合方程,计算得到研究区红壤侵蚀退化地的碳饱和容量约为36.85 tC/hm2,固碳潜力约为33.26 tC/hm2.  相似文献   

16.
以元谋干热河谷10年生印楝和大叶相思为研究对象,采用分层挖掘法对印楝纯林、大叶相思纯林及印楝×大叶相思混交林根系生物量及其分布特征进行研究.结果表明:印楝×大叶相思混交林根系总生物量为2.707 t/hm2,介于印楝纯林(2.264t/hm2)和大叶相思纯林(3.405 t/hm2)之间.混交林内主根总生物量为1.057 t/hm2,为印楝纯林和大叶相思纯林的69.9%和69.7%,而除粗根外,混交林内其它径级的侧根(中根、小根和细根)生物量均介于印楝纯林和大叶相思纯林之间,分别为印楝纯林的228.7%、120.1%、450.0%,为大叶相思纯林的71.3%、65.8%和48.8%.干热河谷印楝和大叶相思人工林根系在土壤表层分布比例大,尤其足0-0.2 m土层内,其根系生物量占根系总生物量的63.6%-76.3%.根系垂直累积生物量与土壤深度可用二次方程拟合,拟合方程的二阶导数表明,垂直方向上,印楝纯林根系分布较混交林均匀,而混交林较大叶相思纯林均匀.  相似文献   

17.
厚荚相思人工幼林生态系统碳贮量及其分布研究   总被引:2,自引:0,他引:2  
对1.5、2.5和3.5年生的厚荚相思人工林生态系统的碳素含量、贮量及其空间分布特征进行了研究。结果表明:厚荚相思不同器官碳素含量的变化范围为457.6~525.1 g/kg,厚荚相思各器官碳素含量高低排列次序基本一致,表现为树叶>树枝>树干>树根>树皮;土壤碳素含量随土层深度增加而减少。3个林龄厚荚相思人工林生态系统碳素贮存量分别为73.04、86.14和96.34 t/hm2,其分布序列为土壤(0~60 cm)>植被层>凋落物层。碳贮量在林木不同器官中的分配基本上与各器官生物量成正比,3个林龄厚荚相思人工林年净固碳量分别为3.89、8.26和9.23 t/(hm2.a)。  相似文献   

18.
人工林是庙岛群岛典型的陆地生态系统的组成部分,对维护海岛地区生态环境具有重要作用。采用现有生物量相对生长方程和样地调查数据相结合的方法,以庙岛群岛中北长山岛为研究区,对海岛黑松纯林与黑松×刺槐混交林两种林型的碳储量进行了估算,并分析了土壤质地及其理化性质对海岛乔木层碳储量的影响。结果表明:黑松乔木层平均碳储量为84.00 t/hm2,接近于世界平均水平(86.00 t/hm2);黑松×刺槐混交林乔木层平均碳储量为29.60 t/hm2,高于山东省乔木层的平均碳储量(27.62 t/hm2)。应用因子分析法研究影响乔木层碳储量的主要因子,结果表明:土壤质地、pH值、含水量及含盐量是影响海岛乔木碳储量重要的影响因子。北长山岛土壤全氮、总磷、土壤有机质、碳氮比等其他理化性质对乔木层碳储量影响不是非常明显。  相似文献   

19.
不同林龄刺槐人工林碳储量及分配规律   总被引:2,自引:0,他引:2  
为研究林龄对刺槐林生态系统碳储量的影响,在样地调查与实测生物量的基础上,对河南省洛宁县灌木林人工改造的8、15和22年生刺槐人工林进行了研究,测定了刺槐林及同区域灌木林不同层次的的碳含量(乔木层、灌草层、枯落物层和土壤层(0~50 cm)),结合生物量及土壤数据分析其生态系统的碳储量和层次分布特征。结果表明,刺槐各器官碳含量在42.60%~50.92%之间,大小顺序为:树干树皮树枝根桩树叶粗根小根大根中根细根;各林分的灌草层、枯落物层碳含量无显著差异;土壤层碳含量均表现为随土壤深度增加而降低,而随着种植年限的增加而增加;灌木林及8、15和22年生刺槐人工林生态系统碳储量分别为78.96、99.78、110.85和132.75 t·hm-2,对比灌木林,8、15和22年生刺槐林碳储量年均增长量分别为2.60、2.13和2.44 t·hm-2·a-1;乔木层及土壤层是刺槐人工林生态系统碳储量的主要来源,两者占生态系统碳储量85.14%~96.63%。随种植年限增加刺槐林土壤层碳储量所占比重下降而乔木层碳储量比重逐渐上升,灌草层、枯落物层碳储量无明显变化规律。  相似文献   

20.
基于相容性生物量模型的樟子松林碳密度与碳储量研究   总被引:3,自引:3,他引:3  
基于不同林龄樟子松人工林生物量调查数据,建立了樟子松林生物量相容性模型,探讨了不同林龄樟子松人工林中乔木层、林下植被层、死地被物层碳密度和碳储量的变化规律。结果表明:樟子松人工林各器官碳密度值的排序为:树叶树枝树干树根;各器官碳密度均随着林龄的增大而增加,27、30、32、36、40和44年生樟子松各器官的平均碳密度分别为449.5、460.2、470.8、485.1、489.2和513.6 g/kg,林下植被与死地被物的碳密度随林龄的变化规律不明显。27~44年期间樟子松人工林群落碳储量都随林龄的增大而增加,从27年生的37.14 t/hm2增加到44年生的168.46 t/hm2,其顺序为:乔木层死地被物层林下植被层,分别占群落总碳储量的90.97%、1.13%和7.90%,乔木层碳储量占主导地位。不同林龄樟子松乔木层、林下植被层和死地被物层年固碳量分别为2.043、0.025 和0.182 t/hm2。研究认为,樟子松人工林群落碳密度及碳储量随林龄的增加变化显著,碳汇作用明显。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号