首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
PRECIS和RegCM3对中国区域气候的长期模拟比较   总被引:1,自引:0,他引:1  
以欧洲中期天气预报中心的再分析资料(ERA40)为侧边界及初始条件,在相同模拟区域和分辨率设置下,完成了PRECIS和RegCM3两个区域气候模式对中国区域近44a(1958年12月-2001年11月)的气候模拟,并分析比较两个模式对中国区域温度和降水的气候态和年际变率的模拟能力。结果表明,PRECIS和RegCM3均能较好地模拟出中国区域多年平均气温的空间分布特征,但PRECIS比观测气温平均偏暖1.5℃左右,而RegCM3则以冷偏差为主,平均偏低0.8℃左右,PRECIS整体上比RegCM3偏高2~3℃;两个模式均可基本再现气温年际变率的分布特征,但变率中心的位置和强度与观测值存在一定偏差;对于中国区域降水量的平均态及其年际变率而言,PRECIS和RegCM3均具有较好的模拟能力,但PRECIS模拟的降水高值中心、变率较大区域的位置和强度比RegCM3更接近实际。  相似文献   

2.
CMIP6模式对中国西南地区气温的模拟与预估   总被引:1,自引:0,他引:1  
应用1961-2014年CN05.1月平均气温观测数据集,以及国际耦合模式比较计划第六阶段(CMIP6)的19个全球气候模式数据,基于泰勒图、泰勒指数和年际变化技巧评分,系统评估了CMIP6模式对中国西南地区气温的气候态空间分布以及年际变化的模拟能力,并预估该地区未来气温在SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5情景下的变化特点。结果表明:(1)与其他季节相比,大多数CMIP6模式对研究区1961-2014年秋季气温气候态空间分布的模拟表现最好;CMIP6模式模拟四季和年平均气温年际变化的结果整体偏低。19个模式中对西南地区气温模拟较好的模式有ACCESS-CM2、 CMCC-CM2-SR5和CMCC-ESM5。(2)3个较优模式的等权重集合,在模拟气温的气候态空间分布和年际变化方面优于19个模式的等权重集合。(3)与1961-2014年同期观测结果的多年平均气温相比,未来西南地区四季及年平均气温在4种情景下均呈升高趋势,四季和年平均气温升高0.94~3.48℃。4种气候情景下均表现为夏季升温最多(2.17~3.48℃),且夏季平均气温的年际波动幅度最小;...  相似文献   

3.
NCAR/CLM系列陆面模式对内蒙古地表温度的模拟评估   总被引:2,自引:1,他引:1  
地表温度是影响陆-气之间能量和物质交换的重要地球物理变量,对调节全球气候系统能量循环起着不可或缺的作用。为探讨美国国家大气研究中心(The National Center for Atmospheric Research,NCAR)公共陆面模式(Community Land Model,CLM)对地表温度的模拟能力,利用1948—2004年美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)大气强迫场和NCAR陆面模式CLM3.0、CLM3.5、CLM4.0和CLM4.5对内蒙古地区1981—2004年的地表温度进行off-line模拟,并与观测地面温度资料进行对比。结果表明:NCAR/CLM系列陆面模式模拟地表温度都能较好地再现内蒙古地表温度的时空变化特征,与台站观测有着较好的一致性,其中CLM4.5在内蒙古地区模拟能力最好,与观测的相关系数最高、平均偏差和均方根误差都最小,这主要得益于CLM4.5对粗糙度计算的改进;不同版本CLM模拟地表温度普遍较观测数值偏低,在冬季各版本CLM模拟结果与观测值之间的平均偏差达到最小,在夏季的偏差增大,尤其是在东部地区,夏季偏差3℃以上,说明对最高地表温度的模拟能力东部和中部地区明显低于西部地区;西部地区各个版本差别并不如东部和中部地区明显,这与CLM4.0和CLM4.5改进了雪模式和水文过程有关。综上,CLM4.0和CLM4.5在内蒙古地区有较好的适用性,且模拟值均低于实测地表温度,冬季偏差较小,夏季偏差增大,东部地区偏差大于中部和西部地区。  相似文献   

4.
利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力   总被引:52,自引:8,他引:52  
本文利用1979~1983年的ECMWF再分析数据作为准观测侧边界条件驱动Hadley气候预测和研究中心的区域气候模式系统PRECIS,验证PRECIS对中国区域的气候模拟能力。选择典型的观测站点北京模拟的日最高,最低气温、太阳短波总辐射和月均降水量与观测结果进行直接比较,显示:PRECIS具有很强的模拟地面气候季节变化的能力。全国740个台站的观测与模拟值的统计分析表明:尽管模拟的最高,最低气温在0℃附近有一‘锯齿’状的偏差,PRECIS能够很好地模拟全国范围最高,最低气温的型态分布特征;从全国范围看,模拟的降水值偏高,但显示出很强的模拟极端降水事件的能力;模拟的地面太阳短波总辐射与全国122个台站的观测结果的比较显示:PRECIS模拟的辐射值偏高,全国范围内约高22%。因此,当应用PRECIS输出结果进行气候变化的影响评价时,需要对模式的输出结果进行订正。  相似文献   

5.
利用NOAA/NCEP再分析资料及普兰县站点观测资料,分析近40年青藏高原平均气温和降水量时间和空间变化特征,阐释全球变暖背景下青藏高原气温及降水变化特及普兰县未来的气象发展方向。结果显示,在全球变暖背景下,青藏高原气温和降水分布存在明显时空差异,且不同年份降水量和气温变化情况不同。普兰县气温和年蒸发量逐年增高,但降水量却不断减少,导致普兰县水资源缺少,对环境和气候带来不利影响。  相似文献   

6.
鄱阳湖流域植被气孔阻抗变化对气候影响的探讨   总被引:1,自引:0,他引:1  
为了探讨植被气孔阻抗的变化对主要气候因子的影响,利用2000年6月16日-7月31日的NCAR(美国国家大气研究中心)资料,应用WRF(W eather Research Forecast)模式对植被气孔阻抗进行了三组试验:控制试验(CS)、敏感性试验1(RS↓)和敏感性试验2(RS↑),结合江西省80个气象站的观测资料进行分析。结果表明:控制试验(CS)可以较好的模拟该流域的温度、降水、相对湿度时间变化及空间分布特征,它们与实测数据的相关系数分别为0.71、0.79和0.58,皆通过了0.01水平的t检验;敏感性试验结果显示:当气孔阻抗减小时,降水和相对湿度增加,温度下降;相反,当气孔阻抗增加时,降水和相对湿度减小,温度升高;气孔阻抗的变化对温度和相对湿度的影响在整个区域是一致的增大或减小的,而降水所体现出来的情况则较复杂。研究结果可为植被与大气间通量交换的参数化研究提供参考。  相似文献   

7.
基于EOF的陕西省降水变化时空分异研究   总被引:6,自引:1,他引:5  
应用经验正交函数法(empirical orthogonal function,EOF)对陕西省23 a来96个气象站点的数据进行EOF分解,分别计算出年降水场的特征向量分布和时间系数序列。结果表明,应用EOF方法可以很好地揭示降水场的时空分布特征,且对陕西省而言前3个特征向量揭示了3种典型的分布场,其累计贡献率达81.10%。陕西省降水的空间分布有3种典型的模式,即全局型、南北型和东西型。总体上3种场的特征向量分布值表现为南大北小,且高值中心都出现在陕西省的最南端,这说明南部虽然多雨,但年际变化量较大,北方少雨,但年际变化量较小。对特征向量所对应的时间系数分析发现,陕西省的降水场主要表现为6种类型。从23 a来的统计结果可以看出它与贡献率所反映的降水场的典型程度基本一致。  相似文献   

8.
选定4种大小不同的模拟区域设置25km水平分辨率的PRECIS系统于宁夏地区,利用欧洲中期天气预报中心(ECWMF)1978年12月-1979年9月的再分析数据作为准观测边界条件驱动PRECIS,通过模拟的宁夏地区冬夏两季日平均气温和降水与观测资料的对比,分析25km水平分辨率气候模拟结果对模式区域选择的敏感性。结果表明:25km水平分辨率的PRECIS在4种不同模拟区域下都能较好地模拟宁夏地区典型年的日平均温度和降水量,尤其是对降水的模拟效果更好;总体上,PRECIS的模拟效果随着模拟区域的缩小而下降,但PRECIS在中小模拟区域下仍然能够获得较好的模拟效果。考虑到计算成本,本研究认为在中小模拟区域下25km水平分辨率的PRECIS能够较为高效地进行宁夏地区的气候模拟。  相似文献   

9.
黄土丘陵沟壑区罗玉沟流域水沙特性分析   总被引:2,自引:1,他引:2  
依据罗玉沟流域1986—2010年降水、径流、泥沙观测资料,采用统计学原理,分析研究了流域降水、径流、泥沙特征及其相关关系。罗玉沟流域多年平均降水量552.5 mm,降水年际、年内变化大,时空分布不均;多年平均径流量201.33万m3,多集中在汛期;多年平均输沙量33.83万t,沙量集中在汛期;年降水量与年径流量、汛期降水量与年产沙量、次平均降水量与次洪水输沙量相关性较好,年径流量与年输沙量具有较好的线性相关关系。  相似文献   

10.
本文用近40年(195~1990年)降水资料,统计出广西南部后汛期降水的年际变化特征,并初步分析了低纬度环流系统对广西南部后汛期降水年际变化的影响。结果表明:(1)广西南部后汛期降水年际变化较大,有明显的准三年变化周期;(2)广西南部后汛期降水的年际变化与同期的副高年际变化有密切联系;(3)广西南部后汛期降水与赤道东太平洋海温及厄尔尼诺现象有明显的遥相关关系。  相似文献   

11.
华北平原近45年农业气候资源变化特征分析   总被引:28,自引:4,他引:24  
利用华北平原53个气象站1961—2005年逐日气温、降水资料,运用最小二乘法进行线性倾向估计,分析华北平原主要农业气候资源时间、空间变化趋势及其差异。结果表明:华北平原年≥0℃活动积温、5-10月≥10℃活动积温以及〈0℃负积温绝对值的变化与年平均气温的变化密切相关,20世纪60年代-70年代中期是热量贫乏阶段,70年代中期-90年代末是热量增加阶段,90年代末-2005年热量最丰富,但趋势表现为减少;华北北部和东部沿海热量增加趋势明显,中南部≥10℃活动积温呈减少趋势;华北平原全年、夏季降水量减少趋势不显著,但年际间变化增大,多年来降水偏少,2003—2005年的降水量增加;华北平原降水量分配在南北之间、沿海与内陆之间趋于平均,夏季表现尤为明显。  相似文献   

12.
气候变化对云南气候生产潜力的影响   总被引:1,自引:0,他引:1  
李蒙  朱勇  黄玮 《中国农业气象》2010,31(3):442-446
利用1961-2009年云南省117个台站年平均气温、降水量资料和Thornthwaite Memorial模型计算分析云南省气候生产潜力(TSPV)的分布及年际变化特征,并模拟了未来气候变化情景下气候生产潜力的变化。结果表明:云南多年平均TSPV值为1439.2g.m-2.a-1,滇西北和滇东北最低,滇西南和滇东南最高;近49a云南全省以及各站的平均TSPV变化的年际变化不显著;云南TSPV利用率较低,实际粮食产量平均只占气候生产潜力的19%。在云南气温明显上升、降水略减少、年际波动大的气候变化趋势背景下,TSPV与降水的相关系数(P0.01)大于气温,说明降水是当地TSPV的主要限制因素;敏感性分析显示,未来如果出现"暖湿型"气候对作物生长最为有利,出现"冷干型"对作物生长最为不利。而趋势分析表明,未来云南易出现"暖干型"气候,这不利于当地的农业生产。  相似文献   

13.
基于国内黄芩主要分布区确定的研究区内94个气象站点的气象观测数据,运用非参数统计检验Mann-Kendall、R/S等分析方法,分析了研究区1957-2007年气温、降水量和日照时数变化趋势的时空特征。结果表明:近50a来,研究区气温表现出显著的上升趋势,降水量、日照时数呈现出减少趋势,日照时数的变化趋势通过了0.01水平的显著性检验;Hurst指数分析表明,研究区未来气温、日照时数都表现出很强的持续性,即与过去近50a的变化趋势基本保持一致,降水量在东北段的减少持续性很强,华北段和西北段变化的持续性相对较弱;研究区气温、降水量、日照时数的变化趋势在空间分布上存在着一定的区域差异。  相似文献   

14.
淮河流域主汛期降水气候特征及“旱涝急转”现象   总被引:20,自引:0,他引:20  
淮河流域地处南北气候的过渡地带,主汛期降水变率大,旱涝灾害频繁。利用淮河流域126个地面气象站降水资料,采用EOF分解、线性变化趋势、Mann-Kendall突变检验等方法,对主汛期降水的时空分布特征、典型旱涝年降水特征以及“旱涝急转”气候特征进行了分析。结果表明:淮河流域主汛期的降水量空间分布呈现南部多于北部、山区多于平原、近海多于内陆的特征,并且旱、涝均主要是以南部为主发生;降水量有明显的年际变化特点,尤其是最近10a的年际变率在增大,集中强降水主要出现在7月上旬;淮河流域“旱涝急转”现象频繁发生,尤其是2000年以来频次显著增多,对农业生产造成严重不利影响。  相似文献   

15.
基于186条中国马尾松分布记录和1931-1960年、1961-1990年、1991-2017年3个时期19个气候因子数据,利用最大熵模型(MaxEnt),研究过去近90a影响中国马尾松适生区分布的气候因子、适宜马尾松生长及分布的气候条件,以及马尾松在不同时期适生区分布变化情况,以期为中国南方人工林应对气候变化提供决策支持。结果表明:(1)影响马尾松适生区分布的主要气候因子为最冷季度降水量、最干燥月降水量、气温年较差、温度季节变化标准差、年降水量和最干季度平均温度。(2)1931-1960年适宜地区总面积和较适宜地区面积最大,分别约为184.88万km2和87.45万km2,1961-1990年完全适宜地区面积最大,约为52.71万km2,1991-2017年北侧边界较1931-1960年向北偏移约1°,南侧海南岛适宜区域减至0,雷州半岛分布边界较1931-1960年向北偏移约2°。(3)随着近90a来气候变化,马尾松潜在适生区整体向东向北偏移,原有西侧和南侧零散的适生区域减退,适宜地区总面积呈现先减少后增加的趋势,现状...  相似文献   

16.
辽西北地区气温和降水变化对气候生产潜力的影响   总被引:1,自引:0,他引:1  
利用辽西北地区23个气象站1961-2010年逐日平均气温和降水量数据,基于Thornthwaite Memorial模型计算其农业气候生产潜力,通过线性趋势分析、MannKendall突变检验等方法对该区域多年平均气温、降水量和气候生产潜力的时间变化趋势及空间分布特征进行分析,研究农业气候生产潜力对气候变化的响应。结果表明:(1)50a来辽西北地区年平均气温气候倾向率为0.28℃·10a-1(P<0.01),增温极显著,1987年气温发生突变;(2)50a来辽西北地区年降水量呈波动变化,线性变化趋势不显著,空间分布差异大,降水量呈减少趋势的地区占82.6%;(3)辽西北地区气候生产潜力的时空变化特征与降水量变化相似,其时间变化趋势不显著,气候生产潜力下降的区域占全区的43.5%;(4)气温和降水对农业气候生产潜力的影响作用明显,并以降水的影响为主。气温和降水的组合变化,可以解释气候生产潜力变化的95%以上,暖湿型气候对作物生长最有利,冷干型气候对作物生长最不利;(5)50a来,粮食产量与气候生产潜力的相关性不明显,但两者的波动特点相似,其气候利用率逐年代增加,研究区未来仍存在作物可能增产空间。  相似文献   

17.
本研究利用直线滑动平均模型对中国各省区1950-2006年旱作和稻作的趋势产量进行了模拟,计算出历年的气象产量,并采用减产率指标、减产率浮动性指标、高风险概率指标3个评价指标以及综合性指标进行了气象产量的气候变化减产风险评价,同时采用变异系数对我国各省产量波动状况进行了分析,并将各指标与年平均降水变率、年平均气温变率进行耦合分析。结果表明,旱作高减产风险和波动风险主要分布在华东和华南地区,而稻作则体现为由南向北风险逐渐增加。年平均降水变率和年平均气温变率高的地区,其水稻气象减产风险较大。由于人口增长和经济发展的压力,中国农业面l临着应对气象减产和保证粮食增产的双重压力。  相似文献   

18.
秦岭不仅是中国南北方地理—生态过渡带,也是中国重要的自然、经济和农业区划界线。在当前秦岭气候增暖背景下,再识别气候分界指标时空变化规律,对科学进行自然区划实践具有重要指导意义。为了明确这一气候特征,基于秦岭山地1970—2020年126个气象站点降水、气温观测资料,选取年降水量、1月和7月均温指标,采用薄盘样条插值、趋势分析方法,对研究区年降水量、1月和7月均温时空特征进行分析,进而选择秦岭太白山、伏牛山剖面探讨气候分界指标高度的趋势变化。结果表明:(1)薄盘样条插值可获得精度较高的年降水量和1月均温序列,相关系数为0.712~0.919; 误差分析表明,7月均温插值较观测值偏差为2~3℃,得到秦岭山地7月均温校正系数为0.893,经校正插值结果显著改善(误差缩小3~6倍);(2)时空趋势上,近51 a秦岭山地东部“暖干化”、西部“暖湿化”,秦岭北部、西部增暖显著(p<0.05);(3)年降水量800 mm高度变化呈“东西反向”,1月0℃和7月25℃高度变化呈“东西同向”,西部平均速率大于东部,如年降水量800 mm高度(西部:-166 m/10 a,东部:49 m/10 a)和1月0℃高度(西部:70 m/10 a,东部:37 m/10 a);(4)1970—2020年秦岭气候分界指标位置高度沿山地呈上升或下降变化,但在2010s(2010—2019年)时段,气候分界指标位置高度北坡为800~1 400 m、南坡为800~1 300 m均未越过秦岭主脊,秦岭山地气候分界作用仍具有稳定性。  相似文献   

19.
基于气候适宜度模型,利用Anusplin软件对中国北方谷子一作区314个气象站点谷子生长季气候资源和气候适宜度进行1km×1km的精细化插值,分1960-1989年、1990-2019年两个气候年代对其空间分布和年代变化特征进行分析。结果表明:(1)北方谷子生长季气候资源呈现出日照时数由东到西、由南到北递增,累积降水量由北向南、由西向东递增,平均气温南高北低的空间分布;随着气候变暖,研究区谷子生长季平均气温呈上升趋势,日照时数和累积降水量均呈下降趋势。(2)北方谷子生长季气候适宜度呈现出温度适宜度由东向西、由南向北递减,降水适宜度由西北向东南递增,日照适宜度由西北向东南递减的态势;由于气候变暖,温度适宜度和降水适宜度高值区增多,日照适宜度高值区减少。(3)根据综合气候适宜度的计算结果,利用自然断点法将其划分为最适宜、适宜、次适宜和不适宜4个等级。1960-1989年(前30a)北方约21.5%的地区为谷子种植气候最适宜区,随着气候变暖,1990-2019年(后30a)约有10.5%的地区从适宜区转变为最适宜区,主要分布在山东、山西一带,未来可以考虑在该区域根据实际情况扩大种植规模。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号