首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjeCTIVE: To evaluate a total intravenous anaesthetic technique in dogs undergoing craniectomy. STUDY DESIGN: Prospective clinical study. ANIMALS: Ten dogs admitted for elective surgical resection of rostro-tentorial tumours. METHODS: All dogs were premedicated with methadone, 0.2 mg kg(-1) intramuscularly 30 minutes prior to induction of anaesthesia. Anaesthesia was induced with propofol administered intravenously (IV) to effect, following administration of lidocaine 1 mg kg(-1) IV and maintained with a continuous infusion of propofol at < or =0.4 mg kg(-1) minute(-1) during instrumentation and preparation and during movement of the animals to recovery. During surgery, anaesthesia was maintained using a continuous infusion of propofol at 相似文献   

2.
Prolonged surgical anaesthesia in the dog was induced with propofol (6.5 ± 1.3 mg/kg) followed by alfentanil (25.5 ± 5 μg/kg) (mean ± 1 sd) and maintained with a continuous infusion of propofol (0.14 to 0.18 mg/kg/min) and alfentanil (2 to 3 μg/kg/min). Neuromuscular blockade was produced with vecuronium (0.1 mg/kg). After induction of anaesthesia with propofol, administration of alfentanil to dogs which had received no pre-anaesthetic medication produced cardiac arrest and apnoea. Administration of atropine intravenously immediately prior to alfentanil prevented these cardiac depressant effects. The cardiac depressant effect of alfentanil was not as severe in a second group of dogs in which anaesthesia was induced with thiopentone. After commencing the continuous infusion anaesthetic regime and establishment of IPPV, blood pressure and heart rate remained stable during the remaining 4 to 6 h period of anaesthesia. Recovery from anaesthesia was smooth and uneventful. The depressant effects of alfentanil on respiration and on consciousness were reversed rapidly by administration of nalbuphine (10 mg total dose). The smooth recovery and the integration of anaesthesia and post operative analgesia attained by the reversal of alfentanil with nalbuphine make this an attractive anaesthetic regime for major surgery in dogs, provided that facilities for IPPV are available.  相似文献   

3.
An 18-month-old Lurcher was anaesthetized for surgical ligation of a patent ductus arteriosus using a target-controlled infusion (TCI) of propofol and a variable rate infusion of remifentanil. Before anaesthesia, radiographic and echocardiographic examination indicated that the dog had left-sided congestive heart failure and impaired left ventricular systolic function. Ramipril and furosemide were administered pre-operatively. Following pre-anaesthetic medication with morphine, 0.5 mg kg(-1), by intramuscular injection, and pre-oxygenation, remifentanil was infused for 5 minutes at 0.2 microg kg(-1) minute(-1), followed by induction of anaesthesia using intravenous propofol administered by TCI, set at a target concentration of 3.5 microg mL(-1) of propofol in blood. Tracheal intubation was performed and 100% oxygen delivered through a non-rebreathing (Bain) system and then a circle system in the operating theatre. Anaesthesia was maintained with propofol and remifentanil, adjusted according to clinical requirements. Peri-operative analgesia consisted of intercostal bupivacaine nerve block, with meloxicam, morphine and remifentanil.  相似文献   

4.
OBJECTIVE: To evaluate concomitant propofol and fentanyl infusions as an anesthetic regime, in Greyhounds. ANIMALS: Eight clinically normal Greyhounds (four male, four female) weighing 25.58 +/- 3.38 kg. DESIGN: Prospective experimental study. METHODS: Dogs were premedicated with acepromazine (0.05 mg/kg) by intramuscular (i.m.) injection. Forty five minutes later anesthesia was induced with a bolus of propofol (4 mg/kg) by intravenous (i.v.) injection and a propofol infusion was begun (time = 0). Five minutes after induction of anesthesia, fentanyl (2 microg/kg) and atropine (40 microg/kg) were administered i.v. and a fentanyl infusion begun. Propofol infusion (0.2 to 0.4 mg/kg/min) lasted for 90 minutes and fentanyl infusion (0.1 to 0.5 microg/kg/min) for 70 minutes. Heart rate, blood pressure, respiratory rate, end-tidal carbon dioxide, body temperature, and depth of anesthesia were recorded. The quality of anesthesia, times to return of spontaneous ventilation, extubation, head lift, and standing were also recorded. Blood samples were collected for propofol and fentanyl analysis at varying times before, during and after anesthesia. RESULTS: Mean heart rate of all dogs varied from 52 to 140 beats/min during the infusion. During the same time period, mean blood pressure ranged from 69 to 100 mm Hg. On clinical assessment, all dogs appeared to be in light surgical anesthesia. Mean times (+/- SEM), after termination of the propofol infusion, to return of spontaneous ventilation, extubation, head lift and standing for all dogs were 26 +/- 7, 30 +/- 7, 59 +/- 12, and 105 +/- 13 minutes, respectively. Five out of eight dogs either whined or paddled their forelimbs in recovery. Whole blood concentration of propofol for all eight dogs ranged from 1.21 to 6.77 microg/mL during the infusion period. Mean residence time (MRTinf) for propofol was 104.7 +/- 6.0 minutes, mean body clearance (Clb) was 53.35 +/- 0.005 mL/kg/min, and volume of distribution at steady state (Vdss) was 3.27 +/- 0.49 L/kg. Plasma concentration of fentanyl for seven dogs during the infusion varied from 1.22 to 4.54 ng/mL. Spontaneous ventilation returned when plasma fentanyl levels were >0.77 and <1.17 ng/mL. MRTinf for fentanyl was 111.3 +/- 5.7 minutes. Mean body clearance was 29.1 +/- 2.2 mL/kg/min and Vdss was 2.21 +/- 0.19 L/kg. CONCLUSION AND CLINICAL RELEVANCE: In Greyhounds which were not undergoing any surgical stimulation, total intravenous anesthesia maintained with propofol and fentanyl infusions induced satisfactory anesthesia, provided atropine was given to counteract bradycardia. Despite some unsatisfactory recoveries the technique is worth investigating further for clinical cases, in this breed and in mixed breed dogs.  相似文献   

5.
OBJECTIVE: To evaluate the isoflurane-sparing and clinical effects of two constant rate infusions of remifentanil in healthy dogs undergoing orthopaedic surgery. STUDY DESIGN: Prospective, randomized clinical study. ANIMALS: Forty-one American Society of Anesthesiologists I-II client-owned dogs (age, 7 months-9 years; body mass 11-59 kg). METHODS: Dogs were randomly assigned to one of three groups and received either: intramuscular (IM) meperidine 2 mg kg(-1) every 2 hours throughout surgery (control group (C); n = 13); remifentanil infused intravenously (IV) at 0.1 microg kg(-1) minute(-1) (low remifentanil group (L); n = 14) or remifentanil infused at 0.25 microg kg(-1) minute(-1) IV (high remifentanil group (H); n = 14). Anaesthesia was induced with thiopental administered to effect and maintained using isoflurane in 100% oxygen. During controlled ventilation when the end-tidal CO(2) was maintained between 4.65 and 5.98 kPa [35-45 mmHg], the end-tidal isoflurane concentration (e'iso%), mean arterial blood pressure (MAP) and heart rate (HR) were measured every 5 minutes. Bradycardia (HR < 40 minute(-1) lasting >5 minutes) was corrected with 0.01 mg kg(-1) IV glycopyrrolate. Data were analysed using the Kruskal-Wallis test with a post-hoc Mann-Whitney U-test and Bonferroni correction. Statistical significance was accepted at < or = 0.05. Data are expressed as mean +/- standard deviation. RESULTS: The e'iso% was reduced in a dose-dependent manner by remifentanil. In C, e'iso% was 1.28 +/-0.13 and was significantly different from L (0.78 +/- 0.17, p < 0.001) and H (0.65 +/- 0.16, p < 0.001). HR was significantly different between groups (p < 0.001). There were no significant differences in MAP between groups. Glycopyrrolate was required in two, three and six dogs in the C, L and H groups respectively. CONCLUSIONS: Remifentanil infusion reduced the isoflurane concentration required for surgical anaesthesia during orthopaedic surgery. CLINICAL RELEVANCE: Remifentanil infusions may be a useful additive to isoflurane anaesthesia in healthy dogs.  相似文献   

6.
OBJECTIVES: To assess attributes of sevoflurane for routine clinical anaesthesia in dogs by comparison with the established volatile anaesthetic isoflurane. METHODS: One hundred and eight dogs requiring anaesthesia for elective surgery or diagnostic procedures were studied. The majority was premedicated with 0.03 mg/kg of acepromazine and 0.01 mg/kg of buprenorphine or 0.3 mg/kg of methadone before induction of anaesthesia with 2 to 4 mg/kg of propofol and 0.5 mg/kg of diazepam. They were randomly assigned to receive either sevoflurane (group S, n=50) or isoflurane (group I, n=58) in oxygen and nitrous oxide for maintenance of anaesthesia. Heart rate, respiratory rate, indirect arterial blood pressure, haemoglobin saturation, vaporiser settings, end-tidal carbon dioxide and anaesthetic concentration and oesophageal temperature were measured. Recovery was timed. Data were analysed using analysis of variance and non-parametric tests. RESULTS: Heart rate (85 to 140/minute), respiratory rate (six to 27/minute) and systolic arterial blood pressure (80 to 150 mmHg) were similar in the two groups. End-tidal carbon dioxide between 30 and 60 minutes (group S 6.4 to 6.6 and group I 5.8 to 5.9 per cent) and vaporiser settings throughout (group S 2.1 to 2.9 and group I 1.5 to 1.5 per cent) were higher in group S. There was no difference in time to head lift (18+/-16 minutes), sternal recumbency (28+/-22 minutes) or standing (48+/-32 minutes). No adverse events occurred. CLINICAL SIGNIFICANCE: Sevoflurane appeared to be a suitable volatile anaesthetic for maintenance of routine clinical anaesthesia in dogs.  相似文献   

7.
Studies were carried out on 40 dogs premedicated with acepromazine (0·05 mg. kg-1) and atropine (0·02 mg. kg-1) to determine the minimum infusion rate of propofol needed to maintain anaesthesia and to compare the quality of the anaesthesia with that produced by halothane/nitrous oxide/oxygen. In 30 dogs anaesthesia was induced with propofol and maintained with a continuous infusion and in the other ten dogs anaesthesia was induced with thiopentone and maintained with the inhalation agents. An infusion rate of 0·4 mg. kg-1 min-1 of propofol produced surgical anaesthesia in dogs breathing oxygen or oxygen-enriched air. Cardiovascular and respiratory effects were similar to those in dogs anaesthetized with halothane/nitrous oxide and with both anaesthetic regimens myocardial oxygen consumption appeared to increase with increasing duration of anaesthesia. A possible familial susceptibility resulting in a more prolonged recovery was revealed and propofol infusion was associated with a 16 per cent incidence of vomiting in the recovery period. It was concluded that in canine anaesthesia the continuous infusion of propofol to maintain anaesthesia in healthy dogs was safe but less satisfactory than the use of halothane/nitrous oxide.  相似文献   

8.
Propofol as an intravenous anaesthetic agent in dogs   总被引:1,自引:0,他引:1  
Studies in dogs with an emulsion formulation of the intravenous anaesthetic, propofol, showed that induction of anaesthesia was smooth and it was possible to maintain anaesthesia by intermittent injection. The mean dose for induction of anaesthesia in unpremedicated dogs was 5.95 mg/kg body-weight. When no premedication was administered anaesthesia was maintained by a total dose of approximately 0.806 mg/kg/minute. Premedication with between 0.02 and 0.04 mg/kg of acepromazine reduced the mean induction dose by about 30 per cent and the maintenance dose by more than 50 per cent. In 68 unpremedicated dogs given one dose, recovery was complete in a mean time of 18 minutes and after maintenance of anaesthesia by intermittent injection in 65 dogs the mean recovery time was 22 minutes from administration of the last dose. Premedication with acepromazine did not produce statistically significant increases in these recovery times. The quiet, rapid and complete recovery proved to be most valuable in cases where the animal had to be returned to the owners' care with the minimum of delay.  相似文献   

9.
OBJECTIVE: To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats. ANIMALS: 8 adult cats. PROCEDURES: On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, i.v.) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 microg/kg/ min, i.v.) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (> or = 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II). RESULTS: In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 microg of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 microg of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 microg/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes. CONCLUSIONS AND CLINICAL RELEVANCE: Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 microg/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.  相似文献   

10.
The cardiopulmonary, anesthetic, and postanesthetic effects of an IV infusion of the hypnotic agent propofol were assessed in 6 Greyhounds and 7 non-Greyhounds. After IM injection of acetylpromazine and atropine, a bolus injection of propofol sufficient to allow endotracheal intubation (mean +/- SEM = 4.0 +/- 0.3 mg/kg of body weight in Greyhounds; 3.2 +/- 0.1 mg/kg in non-Greyhounds) was administered, followed by continuous infusion at a rate of 0.4 mg/kg/min for 60 minutes, during which time dogs breathed 100% oxygen. In 23% of all dogs (3 of 13), apnea developed after initial bolus administration of propofol. Arterial blood pressure was well maintained in all dogs, but heart and respiratory rates were decreased significantly (P less than 0.05) during the infusion in Greyhounds. In Greyhounds, mild respiratory acidosis developed after 45 minutes, whereas arterial carbon dioxide tension was increased at all times after propofol administration in non-Greyhounds. In all dogs, PCV and total plasma proteins were unaffected by propofol. Rectal temperature decreased during treatment. Muscle tremors were observed in approximately 50% of dogs (in 3 of 6 Greyhounds and 3 of 7 non-Greyhounds) during and after infusion of propofol. Non-Greyhounds lifted their heads, assumed sternal recumbency, and stood 10 +/- 1, 15 +/- 3, and 28 +/- 5 minutes, respectively, after the end of the infusion; in Greyhounds, the corresponding times were 36 +/- 4, 43 +/- 6, and 63 +/- 7 minutes.  相似文献   

11.
Propofol by infusion was administered to 6 adult beagle dogs on 2 separate occasions. The dogs received either no premedication or 20 μg/kg im medetomidine 15 min before induction of anaesthesia, with propofol given at 7 mg/kg/min to permit tracheal intubation. After tracheal intubation the infusion rate was maintained for 120 min at 0.4 mg/kg/min in the non-premedicated, and 0.2 mg/kg/min in the premedicated dogs. The latter group received atipamezole 50 μg/kg im immediately at the end of the infusion. After induction of anaesthesia, a 7F balloon catheter designed for thermal dilution measurement of cardiac output was inserted via the right jugular vein. Blood propofol concentrations were measured by HPLC with fluorescence detection and kinetic variables calculated using non-compartmental moment analysis. The induction dose of propofol was 7.00 (sem 0.55) mg/kg in non-premedicated compared with 3.09 (0.25) mg/kg in premedicated dogs. There were differences in systemic clearance and mean residence time (MRTiv); 47.5 (6.2) ml/kg/min vs 29.0 (4.4) ml/kg/min (non-premedicated vs premedicated) and 132.3 (5.2) min vs 152.4 (3.1) min (P < 0.02 and P < 0.001, respectively). Cardiorespiratory effects were similar in the 2 groups although heart rate was lower in the premedicated dogs. Venous admixture was high (20–45%) but similar in the 2 groups.  相似文献   

12.
13.
Studies were carried out on 40 dogs premedicated with acepromazine (0.05 mg kg-1), and atropine (0.02 mg kg-1) to determine the minimum infusion rate of propofol needed to maintain anaesthesia and to compare the quality of the anaesthesia with that produced by halothane/nitrous oxide/oxygen. An infusion rate of 0.4 mg kg-1 min-1 of propofol produced surgical anaesthesia in dogs breathing oxygen or oxygen-enriched air. Cardiovascular and respiratory effects were similar to those in dogs anaesthetized with halothane/nitrous oxide and with both anaesthetic regimes myocardial oxygen consumption appeared to increase with increasing duration of anaesthesia. Propofol infusion was associated with a 16 per cent incidence of vomiting in the recovery period. Maintenance of anaesthesia in healthy dogs by the continuous infusion of propofol appeared to be safe but less satisfactory than the use of halothane/nitrous oxide.  相似文献   

14.
Anaesthesia using propofol alone and in combination with guaiphenesin, after detomidine premedication, was evaluated for performance of minor surgical procedures (castration and tenotomy) in horses. Twelve male horses were premedicated with 0.015 mg/kg of detomidine intravenously (iv) and divided into two groups of six. One group of horses received 2 mg/kg of propofol iv and the other group received 0.5 mg/kg of propofol mixed with 100 mg/kg of a 7.5% solution of guaiphenesin in saline iv. Induction of anaesthesia was fast and smooth in both groups. All horses were easily intubated immediately afterwards but intubation was easier in the horses which received propofol and guaiphenesin. Heart rate fell by 20% in both groups after detomidine injection, stabilising between 45 and 53 beats/minute during anaesthesia with no difference between the groups. Respiratory depression developed after detomidine injection and was slightly intensified after induction of anaesthesia. Respiratory rate was significantly lower in the propofol group (14 ± 3 breaths/minute) than with propofol/guaiphenesin (19 ± 4 breaths/minute) at five minutes after induction. Anaesthesia induced respiratory acidosis in both groups and hypoxaemia also occurred, but once the horses stood up the arterial blood oxygen partial pressure returned to basal values. Surgical time ranged between 8 and 16 minutes and with the exception of one horse in the propofol/guaiphenesin group the horses did not show signs of pain or discomfort during surgery. Recovery to standing was fast and took 26 ± 2 minutes in the propofol and 29 ± 5 minutes in the propofol/ guaiphenesin group. Most horses stood up at the first attempt with minimal ataxia. These two anaesthetic techniques appear to be useful for minor surgical procedures performed within 16 minutes of induction of anaesthesia.  相似文献   

15.
ObjectiveTo assess the cardiorespiratory and hypnotic-sparing effects of ketamine co-induction with target-controlled infusion of propofol in dogs.Study designProspective, randomized, blinded clinical study.AnimalsNinety healthy dogs (ASA grades I/II). Mean body mass 30.5 ± SD 8.6 kg and mean age 4.2 ± 2.6 years.MethodsAll dogs received pre-anaesthetic medication with acepromazine (0.03 mg kg?1) and morphine (0.2 mg kg?1) administered intramuscularly 30 minutes prior to induction of anaesthesia. Heart rate and respiratory rate were recorded prior to pre-medication. Animals were allocated into three different groups: Group 1 (control) received 0.9% NaCl, group 2, 0.25 mg kg?1 ketamine and group 3, 0.5 mg kg?1 ketamine, intravenously 1 minute prior to induction of anaesthesia, which was accomplished using a propofol target-controlled infusion system. The target propofol concentration was gradually increased until endotracheal intubation was possible and the target concentration at intubation was recorded. Heart rate, respiratory rate and noninvasive blood pressure were recorded immediately prior to induction, at successful intubation and at 3 and 5 minutes post-intubation. The quality of induction was graded according to the amount of muscle twitching and paddling observed. Data were analysed using a combination of chi-squared tests, Fisher's exact tests, Kruskal–Wallis, and anova with significance assumed at p< 0.05.ResultsThere were no significant differences between groups in the blood propofol targets required to achieve endotracheal intubation, nor with respect to heart rate, noninvasive blood pressure or quality of induction. Compared with the other groups, the incidence of post-induction apnoea was significantly higher in group 3, but despite this dogs in this group had higher respiratory rates overall.Conclusions and clinical relevanceUnder the conditions of this study, ketamine does not seem to be a useful agent for co-induction of anaesthesia with propofol in dogs.  相似文献   

16.
The cardiorespiratory parameters, the depth of anaesthesia and the quality of recovery were evaluated in six spontaneously breathing dogs that had been premedicated with medetomidine (40 microg/kg, supplemented with 20 microg/kg an hour later), administered with either propofol (1 mg/kg followed by 0.15 mg/kg/minute, intravenously), or with ketamine (1 mg/kg followed by 2 mg/kg/hour, intravenously) and propofol (0.5 mg/kg followed by 0.075 mg/kg/minute, intravenously). The dogs' heart rate and mean arterial blood pressure were higher and their minute volume of respiration and temperature were lower when they were anaesthetised with propofol plus ketamine, and a progressive hypercapnia leading to respiratory acidosis was more pronounced. When the dogs were anaesthetised with propofol/ketamine they recovered more quickly, but suffered some unwanted side effects. When the dogs were anaesthetised with propofol alone they recovered more slowly but uneventfully.  相似文献   

17.
The effects of propofol alone or propofol and ketamine for the induction of anaesthesia in dogs were compared. Thirty healthy dogs were premedicated with acepromazine and pethidine, then randomly allocated to either treatment. Anaesthesia was induced with propofol (4 mg/kg bodyweight intravenously) (group 1), or propofol and ketamine (2 mg/kg bodyweight of each intravenously) (group 2). Anaesthesia was maintained with halothane, delivered in a mixture of oxygen and nitrous oxide (1:2) via a non-rebreathing Bain circuit. Various cardiorespiratory parameters were monitored at two, five, 10, 15, 20, 25 and 30 minutes after induction, and the animals were observed during anaesthesia and recovery, and any adverse effects were recorded. During anaesthesia, the heart rate, but not the systolic arterial pressure, was consistently higher in group 2 (range 95 to 102 beats per minute) than in group 1 (range 73 to 90 beats per minute). Post-induction apnoea was more common in group 2 (11 of 15) than in group 1 (six of 15). Muscle twitching was observed in three dogs in each group. Recovery times were similar in both groups. Propofol followed by ketamine was comparable with propofol alone for the induction of anaesthesia in healthy dogs.  相似文献   

18.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

19.
The clinical efficacy and safety of an emulsion containing 10 mg/ml of the intravenous anaesthetic propofol were evaluated in cats and dogs by veterinary surgeons in eight practices in the United Kingdom. A total of 290 dogs and 207 cats were anaesthetised with propofol either as a single injection for procedures of short duration, or as an induction agent with maintenance provided by further incremental injections or as an induction agent with maintenance by gaseous agents. The mean induction doses of propofol for unpremedicated dogs and cats were respectively 6.55 mg/kg and 8.03 mg/kg. The mean induction doses after premedication with a tranquilliser were 4.5 mg/kg and 5.97 mg/kg for dogs and cats, respectively. Mean recovery times ranged, depending on the method of anaesthesia, from 23 to 40 minutes in dogs and from 27 to 38 minutes in cats; recovery was defined as the time at which the animals were alert and able to stand. Adverse side effects were infrequent, apnoea during induction being the commonest. Acepromazine and atropine were most often used as premedicants although in a few cases diazepam, xylazine and other agents were employed. No clinical incompatibility was observed between propofol and any of the other agents administered during the study. The rapid and usually excitement-free recovery of the animals was a valuable feature of anaesthesia with propofol.  相似文献   

20.
The effects of propofol infusion were compared with propofol/isoflurane anaesthesia in six beagles premedicated with 10 microg/kg intramuscular (i.m.) dexmedetomidine. The suitability of a cold pressor test (CPT) as a stress stimulus in dogs was also studied. Each dog received isoflurane (end tidal 1.0%, induction with propofol) with and without CPT; propofol (200 microg/kg/min, induction with propofol) with and without CPT; premedication alone with and without CPT in a randomized block study in six separate sessions. Heart rate and arterial blood pressures and gases were monitored. Plasma catecholamine, beta-endorphin and cortisol concentrations were measured. Recovery profile was observed. Blood pressures stayed within normal reference range but the dogs were bradycardic (mean heart rate < 70 bpm). PaCO2 concentration during anaesthesia was higher in the propofol group (mean > 57 mmHg) when compared with isoflurane (mean < 52 mmHg). Recovery times were longer with propofol than when compared with the other treatments. The mean extubation times were 8 +/- 3.4 and 23 +/- 6.3 min after propofol/isoflurane and propofol anaesthesia, respectively. The endocrine stress response was similar in all treatments except for lower adrenaline level after propofol infusion at the end of the recovery period. Cold pressor test produced variable responses and was not a reliable stress stimulus in the present study. Propofol/isoflurane anaesthesia was considered more useful than propofol infusion because of milder degree of respiratory depression and faster recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号