首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以工业废弃物木质素磺酸钠为碳源,高含氮量的三聚氰胺为氮源,通过共混物直接热解制得高氮氧含量的木质素基炭材料(NSL-x),当三聚氰胺与木质素磺酸钠的质量比值为2、4和6时,分别标记为NSL-2、NSL-4和NSL-6;采用SEM、XRD和XPS等方法对其形貌和结构进行了表征。结果表明:NSL-x整体是由尺寸为几百纳米到几微米的无规则炭块堆积而成;氮氧掺杂并没有改变其形貌和结晶结构,炭化产物以无定形碳为主。炭材料NSL-4含氮量可达2.41%,含氧量达到20.12%,同时NSL-4中所含的羰基最高(10.27%)。样品的电化学性能测试结果表明:以6 mol/L KOH为电解液,在0.1 A/g的电流密度下,NSL-4的比电容达到229 F/g,在20 A/g的高电流密度下,比电容仍维持在137 F/g。在10 A/g的电流密度下,经过10 000次的充放电循环测试,NSL-4的库伦效率仍然保持在100%左右,比电容仅下降了1%,表现出良好的倍率性能和极佳的电化学稳定性。  相似文献   

2.
以竹炭为前驱体、三聚氰胺为氮源、碳酸钾为预活化剂,采用两次活化工艺成功制备了氮掺杂竹活性炭超级电容器电极材料。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、比表面积及孔隙分析(BET)和X射线光电子能谱(XPS)等测试方法对制备的电极材料的形貌、结构、化学成分进行表征。通过控制活化过程中的炭碱比(质量比)优化样品的电化学性能,结果表明:炭碱比为1∶1时制备的NC-1样品比表面积高达1 984.4 m2/g,平均孔径为1.26 nm,样品具有清晰的介孔以及内部蠕虫状的微孔。炭材料中氮元素和氧元素含量(质量分数)分别为2.20%和4.65%,有利于增加活性炭表面的亲水性和赝电容,从而提高其比电容量。经电化学性能测试,NC-1样品循环伏安曲线(CV曲线)具有良好的对称性,呈近似矩形;其中在低电势窗口出现明显的宽峰,表明充放电过程中材料表面的含氮官能团与电解液之间发生氧化还原反应,贡献赝电容。恒流充放电显示在1 A/g电流密度下质量比电容高达224 F/g,与未采用该活化工艺的样品比较提高了86.7%。在50 A/g电流密度下其质量比电容高达144 F/g,且在10 A/g下经5 000次循环充放电后仍可达到93%的初始电容保持率,显示了氮掺杂竹活性炭超级电容器电极材料较优异的电化学性能和稳定的循环性能。  相似文献   

3.
以蔗糖为碳源、Fe(NO_3)_3·9H_2O为活性前体、氯化钠为模板剂,通过简单有效的原位沉积结晶和热解等步骤制备了二维Fe_3O_4@C纳米片,采用多种技术手段对Fe_3O_4@C纳米片的结构进行了表征,并测试了其电化学性能。结构表征结果表明:Fe_3O_4@C纳米片由厚度为纳米级的石墨化C片和嵌插在C层表面尺寸分布均匀的Fe_3O_4纳米颗粒组成; Fe_3O_4@C纳米片厚度小于100 nm,比表面积达255 m~2/g,平均孔径为3.79 nm,Fe_3O_4质量分数为36.98%。电化学性能测试结果表明:Fe_3O_4@C纳米片具有较高的比电容量和优异的倍率性能,1 A/g电流密度下比电容量为436 F/g,20 A/g电流密度下比电容量仍高达332 F/g;但循环稳定性较差,10 A/g下充放电500次后的比电容量为178 F/g,仅有初始比电容量的50.71%。  相似文献   

4.
以乙酸木质素为原料,采用液相沉积法制备了木质素纳米粒子。考察了制备过程中制备条件对形成木质素纳米粒子的影响,得到最佳制备条件为搅拌速率300 r/min、滴加速度5~40 mL/h、四氢呋喃(THF)/H2O体积比5∶100~10∶100、木质素质量浓度10~20 g/L。通过电子显微镜、红外光谱、X射线衍射、元素分析、X射线光电子能谱和水接触角测试等分析方法研究了木质素纳米粒子的结构形貌和表界面性质。结果表明,制得的木质素纳米粒子平均粒径约为150 nm,保持非晶形态,其亲水内核形成过程增加了木质素纳米粒子的稳定性。  相似文献   

5.
以椰壳为原料,水蒸气活化法制备了椰壳活性炭(AC),并以乙醇和水作为溶剂,采用水热法将AC与石墨烯(GR)按质量比90∶0、90∶5、90∶54、90∶90和54∶90复合,将制得的复合材料(GAC1~GAC5)作为电极应用于超级电容器。通过氮气吸脱附、X射线衍射(XRD)、扫描电镜(SEM)方法表征了活性炭的孔结构和表面形貌;采用循环伏安(CV)、恒电流充放电(GCD)方法分析比较不同复合比例下超级电容器电极材料的性能。实验结果表明:在炭化温度800℃,活化温度900℃及活化时间1.5 h的条件下制备的椰壳活性炭比表面积为2482 m^2/g,其孔径主要分布在2~4 nm,孔容可达1.33 cm^3/g,在6 mol/L KOH电解液中比电容为85 F/g,石墨烯改性的复合材料GAC-5作为电极材料具有优异的电化学性能,在电流密度1 A/g时比电容可达186 F/g。  相似文献   

6.
随着经济的发展和社会的进步,人们对具有长的循环寿命、高的功率密度和绿色廉价的能源设备的需求逐渐增加,基于生物质活性炭的超级电容器近年来备受关注。然而,生物质基活性炭的电化学性能仍然缺少竞争力,此外,对其微观结构的控制也是较大难题。笔者以糠醛渣为原料,KOH为活化剂,在氩气氛围下通过两步炭化的方法制备三维多孔炭材料,并将制备的多孔炭用做超级电容的电极材料。通过SEM、TEM、Raman、XPS、XRD等手段系统分析表征了所获多孔炭材料的形貌、结构、组成,并探讨活化剂的比例对糠醛渣多孔炭结构性能的影响。研究结果表明:当KOH和糠醛渣的质量比为3∶1时,所制备的多孔炭材料比表面积为2 164.3 m~2/g,具有良好的电容性能(当电流密度1 A/g时,比电容为235.6 F/g)、倍率性能和循环稳定性(当循环充放电10 000次后,比电容仍能保留96%以上)。本研究从生物精炼废弃物中制备了性能优异的超级电容器用活性炭,为降低高性能超级电容器成本,实现生物质的高值化应用提供新思路。  相似文献   

7.
以工业滤纸为炭基材料,聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段聚醚(普朗尼克F127)为软模板,1,3,5-三甲苯为扩孔剂,在添加3-氨基苯酚(氮源)和六次甲基四胺的条件下进行水热合成反应制得纸基复合材料,并经炭化制得氮掺杂介孔炭化复合材料(NMC-700),进一步KOH活化后制得活化氮掺杂介孔炭化复合材料(ANMC-700),同时以工业滤纸直接炭化制得的炭化滤纸(C-700)样品为对照,采用SEM、TEM、XRD、XPS等方法对3种炭材料进行了表征。研究结果表明:ANMC-700表面形成了粒径0.6~7μm的炭微球,孔结构由随机分布、蠕虫状的孔组成,比表面积高达1 559 m~2/g,孔容为0.80 cm~3/g,且氮原子已经成功掺杂到炭骨架中,含氮量为3.60%,含氧量为13.65%。电化学性能测试结果表明:以6 mol/L KOH为电解质溶液,在1 A/g的电流密度下,ANMC-700的比电容可达284 F/g,在20 A/g的电流密度下其比电容仍能保持在173 F/g,并在此电流密度下经过10 000次循环充放电,其电容保持率在98.6%,表现出良好的电化学稳定性。  相似文献   

8.
以桉木木质纤维素作原料,六对羧基苯氧基环三磷腈(HCPCP)作为氮磷掺杂剂,NaOH作为共活化剂,采用先炭化后活化制备了木质纤维素基氮磷掺杂介孔炭(NPC)材料,采用SEM、XRD、XPS和拉曼光谱等方法对介孔炭材料进行表征。研究结果表明:活化温度650℃下得到的样品(NPC-650)具有丰富的蜂窝状孔隙结构,平均孔径为5.18 nm,介孔体积比89%。用介孔炭NPC-650作为阴极材料组装成锌离子混合电容器,在0.2 A/g电流密度下比电容为194 F/g,能量密度为87.3(W·h)/kg,功率密度为179.5 W/kg,在10 A/g电流密度下充/放电5 000次,电容保持率98.9%。  相似文献   

9.
为提高制浆造纸工业废水中的木质素的利用率,以减少对环境的污染,利用碱木质素改性制备了两种木质素胺盐,并以这两种木质素胺盐为模板剂,通过水热合成法制备了二氧化钛纳米粒子。通过X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)和BET比表面积分析等手段对制得的二氧化钛纳米粒子进行表征测试。结果表明:以木质素的乙二胺盐和三甲胺盐所制得的二氧化钛纳米粒子的粒径分别为15~25 nm和20~35 nm,粒子分散均匀,两种样品的比表面积分别为104.2 m2/g和71.7 m2/g。通过在紫外光下催化降解罗丹明B考察了所制备的二氧化钛的光催化活性,实验结果表明所制备的二氧化钛具有与P25相当的光催化活性。  相似文献   

10.
以林业废弃物杉木树皮作原料,通过低温炭化和KOH高温活化两步法制备了具有高表面积和孔隙率的杉木树皮基活性炭并应用于超级电容器电极材料。以碱炭比和活化温度为试验因素,以电流密度0.5 A/g下的质量比电容为响应值,进行中心复合设计(CCD)和响应面分析。研究结果表明:杉木树皮基活性炭的比表面积最高可达1 522 m2/g,最大孔容可达0.84 cm3/g,此时平均孔径为1.12 nm,且同时存在大量的中孔和微孔。碱炭比和活化温度的交互作用对比电容的影响显著,响应面法优化得到杉木树皮基活性炭最佳制备工艺为:碱炭比值为3,活化温度605℃,此条件下炭材料的比电容为185.7 F/g。对优化条件下制备的活性炭进行电化学性能测试发现:在0.5 A/g条件下的最大比电容为188 F/g,且具有良好的倍率性能(85.1%)。  相似文献   

11.
通过"从主链接枝"原子转移自由基聚合(ATRP)法,采用分步聚合策略,成功制备了一种乙基纤维素接枝嵌段共聚物乙基纤维素-g-甲基丙烯酸月桂酯-b-甲基丙烯酸四氢糠基酯(EC-g-P(LMA-b-THFMA))。对聚合物的热力学性能研究发现:共聚物中存在两个热转变,分别发生在-35℃和49~56℃时,表明该共聚物存在微相分离;机械性能分析表明该共聚物具有优异的热塑性弹性体行为,伸长率为89%~147%,拉伸强度为1.7~9.5 MPa。循环拉伸机械性能研究表明EC-g-P(LMA-b-THFMA200)的弹性恢复系数高达92%以上。乙基纤维素接枝共聚物的机械性能具有明显的增强作用,较线性聚合物P(LMA-b-THFMA)的机械强度提高了1.36倍。  相似文献   

12.
采用溶胶-凝胶法制备纳米SiO_2,并通过加入硅烷偶联剂1,1,3,3-四甲基二硅氧烷对纳米SiO_2进行硅烷化,用硅烷化后的纳米SiO_2制备改性酚醛树脂(PR1~PR6),将改性酚醛树脂制成相应的酚醛泡沫(PF1~PF6)。采用FT-IR、TGA/FT-IR和TGA等方法对酚醛树脂的性能进行表征和检测。测试结果表明:改性后的酚醛树脂成功引入硅烷化的纳米SiO_2,并与树脂发生了化学交联反应,形成Si—O—Si和Si—O;游离酚测试结果显示,随着纳米SiO_2含量的增加游离酚含量急剧下降,正硅酸四乙酯(TEOS)含量相同而硅烷偶联剂含量不同时对游离酚含量影响不大,当硅脂为3.22 g,硅烷偶联剂为2 g时与PR4组成时其效果最好;羟甲基含量检测结果显示随着纳米SiO_2含量的增加,羟甲基含量迅速增加至高值;机械性能测试显示,当硅脂质量分数为0.5%(以酚醛树脂的质量计),硅烷偶联剂为0.3%时,PF4的弯曲强度和抗压强度较PF1分别提高了73.3%和83.4%,较好地提高了泡沫的机械性能。  相似文献   

13.
以造纸废料木质素磺酸钠和柠檬酸为原料制备了氧化改性木质素磺酸钠/石墨烯复合量子点(HSL/GQDs),利用紫外可见光谱、荧光光谱、红外光谱和透射电镜等研究了复合量子点的荧光性能、结构及其对金属离子的选择性吸附性能,并考察了复合量子点结构与吸附性能之间的关系。研究表明:HSL/GQDs的荧光强度(F_0)是单纯的石墨烯量子点的2倍多,对Fe3+有较好的荧光响应信号,可用于对Fe3+的检测。在10~500μmol/L范围内,加入Fe3+以后的该荧光探针的荧光猝灭强度(F)与Fe3+的浓度有良好的线性关系,线性方程为:F/F_0=0.851 12-0.001 11C(Fe3+),线性系数为0.99。  相似文献   

14.
以肉桂及其同源根皮为原料,采用80%乙醇分别对两者进行回流提取,经系统溶剂法萃取得到两者的石油醚部位、乙酸乙酯部位、正丁醇部位和水部位,并采用滤纸片法研究各极性部位对常见的3种致病菌(金黄色葡萄球菌、大肠杆菌、绿脓杆菌)的抑菌活性。研究结果表明:相同质量的肉桂和根皮提取得到的各极性部位的质量、成分种类及含量均有所差异,其中石油醚部位所含成分大致相同,但主要成分反式肉桂醛、邻甲氧基肉桂醛含量差异较大;两者乙酸乙酯部位、正丁醇部位和水部位分别含有黄酮类,皂苷类和多糖类成分;此外根皮乙酸乙酯部位还含有邻甲氧基肉桂醛、乙酸肉桂酯,根皮水部位含有D-半乳糖。肉桂石油醚部位、根皮石油醚部位、根皮乙酸乙酯部位对3种菌均有一定的抑制作用,当这3个部位的质量浓度均为500 g/L时,对金黄色葡萄球菌、大肠杆菌、绿脓杆菌的抑菌圈直径分别大于(17.62±0.22)、(25.21±2.09)和(12.82±0.30)mm,肉桂乙酸乙酯部位抑菌作用较弱,肉桂和根皮正丁醇部位和水部位对3种供试菌种均无抑制作用。  相似文献   

15.
首先对银杏叶聚戊烯醇含量测定的方法及方法学进行了考察,结果表明:采用高效液相色谱,以C18为色谱柱,以异丙醇/甲醇(体积比32∶18)为流动相,在210 nm下测定聚戊烯醇具有较高的精密度(RSD为0.89%)、较好的稳定性(RSD为3.26%),平均加标回收率为97.4%(RSD为1.75%)。然后通过正己烷提取、皂化、乙醇和丙酮脱蜡,以及硅胶柱层析(V(乙醚)∶V(正己烷)=3∶97)获得纯度为98.6%的聚戊烯醇。在此基础上,对高纯度聚戊烯醇末端羟基进行亲水改性,先与邻苯二甲酰亚胺进行光延反应(mitsunobu反应),再与水合肼进行还原反应,合成了氨基聚戊烯醇,并通过红外和核磁共振氢谱对其结构进行了表征,确认了氨基聚戊烯醇的成功合成。  相似文献   

16.
脱氢枞酸与二氯亚砜反应得到脱氢枞酸酰氯,再与氨基硫脲反应制备脱氢枞基氨基硫脲,脱氢枞基氨基硫脲再与芳香醛和乙酰乙酸乙酯反应,合成了10个脱氢枞酸酰胺基-3,4-二氢嘧啶酮衍生物,分别为:4-苯基-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3a)、4-(4-甲氧基苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3b)、4-(2-甲氧基苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3c)、4-(4-甲基苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3d)、4-(4-溴苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3e)、4-(4-对三氟甲基苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3f)、4-(4-氯苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3g)、4-(2,6-二氯苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3h)、4-(2-硝基苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3i)、4-(3-硝基苯基)-6-甲基-1-脱氢枞酸酰胺基-3,4-二氢嘧啶-2-硫酮(3j)。通过FT-IR、MS、~1H NMR和13C NMR表征了目标化合物结构。选取猴胚胎肾细胞MA-104作为受试细胞,测试了化合物3a~3j的细胞毒性;利用四甲基偶氮唑蓝(MTT)比色法测试了这些化合物对单纯疱疹病毒Ⅰ型(HSV-1)的体外抗病毒活性。数据显示,该系列衍生物的细胞毒性较小,与阳性对照药物利巴韦林相比,化合物3a、3b、3d、3e、3h、3i和3j体现出更小的细胞毒性;化合物3j具有较好的抑制HSV-1活性,半数抑制浓度(IC50)0.465 g/L,选择指数(SI)12.18,达到与阳性对照药物利巴韦林相近的抑制活性(IC50为0.156 g/L,SI为12.6),其余样品具有较弱的抑制HSV-1活性。  相似文献   

17.
通过微波、水浴两种加热方式下浸渍木片吸液量的比较,探究了微波对桉木渗透性的影响,结果显示:在其它浸渍条件(NaOH质量分数4%,木片质量分数20%)相同的情况下,木片浸渍时,经微波加热后其吸液量较水浴加热显著提高,微波处理5 min即可达到水浴处理45 min的吸液量,大大提高了浸渍效率。将微波用于化学机械法制浆的预浸渍阶段,经微波处理所得纸浆二段漂白白度最高可达68.9%(ISO),较汽蒸保温提高3~6个百分点;在加拿大游离度为305 mL时,微波处理浆的抗张指数可达19 N·m/g,撕裂指数可达2.15 mN·m^2/g,耐破指数达0.8 kPa·m^2/g,分别比汽蒸处理样高3 N·m/g、0.2 mN·m^2/g和0.1 kPa·m^2/g。  相似文献   

18.
分别以纤维素、木质素、杉木屑与核桃壳为原料,经过炭化后在Ni的催化作用下于1 400℃下进行了石墨化反应,并以X射线衍射(XRD)、Raman光谱和高分辨率透射电镜(HRTEM)分析了产物的石墨化程度。研究结果表明:纤维素在生物质的石墨化过程中起主要作用,在相同处理条件下,由纤维素得到的产物石墨化程度最高,由木质素得到的产物石墨化程度最低,杉木屑和核桃壳2种生物质原料得到的产物石墨化程度介于纤维素和木质素之间,不同原料石墨化程度的显著差异可能是由于原料结构的差异造成的。同时电导率测试结果表明:20 MPa条件下,由纤维素得到的产物的电导率为54 S/cm,而由木质素得到的产物仅为31 S/cm,与石墨化程度的高低相对应。纤维素/木质素混合物的石墨化程度介于纤维素和木质素之间,两者不同质量比对混合物的石墨化程度影响不大。  相似文献   

19.
以歧化松香为原料先制得脱氢枞酸,然后通过对脱氢枞酸进行酯化、溴代、硝化、加氢还原、C—N偶联等方法合成了一种含双萘的脱氢枞酸三芳胺化合物——13-[N,N-双(α-萘)]胺基-脱异丙基脱氢枞酸甲酯,并用IR、~1H NMR、13C NMR和MS等手段对其结构进行表征。研究了化合物在甲醇、二氧六环、四氢呋喃、二氯甲烷和环己烷5种不同极性溶剂中的紫外吸收和荧光发射特征,以及化合物的荧光寿命和量子产率,结果显示:化合物有3个紫外吸收峰,在甲醇、二氧六环和环己烷中,第一个吸收峰在218 nm处,而在四氢呋喃和二氯甲烷中吸收峰有较大红移,且吸光度有较大不同;在265、342 nm处的两个吸收峰,不同溶剂中的吸收波长一致,且吸光度相差不大;在这5种溶剂中,化合物在甲醇中发射波长最大(448 nm),荧光强度最小,在环己烷中发射波长最小(405 nm),而荧光强度最大,在二氧六环、四氢呋喃和二氯甲烷溶液中,随着溶剂极性减小,发射波长依次增大;化合物有明显的溶致变色效应。化合物在甲醇溶液中的荧光寿命为3.72 ns,量子产率为8.32%。  相似文献   

20.
以末端带氨基的甲氧基聚乙二醇(mPEG-NH_2)、十四胺、5-氨基-1-戊醇、1,4-丁二醇二丙烯酸酯和1,3-戊二胺为原料,采用一锅法合成了一种两亲共聚物聚乙二醇-聚β-氨基酯(mPEG-PBAE),通过FT-IR、GPC、芘荧光探针对聚合物的结构、相对分子质量和临界胶束浓度(CCMC)进行了表征;以漆酚为药物模型分子,采用透析法制备了漆酚/两亲共聚物胶束,采用TEM和DLS对载药胶束的粒径、Zeta电位、形貌进行了表征,考察了载药胶束的pH响应性、体外释药性和体外抗肿瘤活性。研究结果表明:两亲共聚物mPEG-PBAE已经成功合成,重均相对分子质量为11 445,与设计的理论相对分子质量相差不大,聚合物的CCMC值为18.25 mg/L;制备得到的漆酚/两亲共聚物胶束的包封率为82.29%,载药量为23.21%,外观呈规则球形结构,大小均一,平均粒径为160.1 nm,Zeta电位值为33.6 mV,其在pH值为5.0的缓冲溶液中粒径增大明显高于pH值为6.5和7.4的缓冲溶液,具有明显的pH响应性;当pH值为5.0、6.5和7.4时,72 h内累计释药率分别为98.7%、61.6%和31.5%;载药胶束对HepG2和A549肿瘤细胞的半数抑制浓度(IC50)分别为1.38和0.87 mg/L,体外抗肿瘤活性明显优于游离漆酚。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号