首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number of fertile and infertile scales, filled and empty seeds, cone volume, seed efficiency and the incidence of insect and disease damage to seed were evaluated for seven jack pine (Pinus banksiana Lamb) and six black spruce (Picea mariana [Mill.] B.S.P.) seedling seed orchards in northern Ontario, Canada. On average, the seed potential of jack pine and black spruce cones was 50 and 82 seeds, respectively. Cone volume and the number of fertile scales were under strong genetic control and well correlated with one another for both species. Seed efficiency values were high for jack pine (60%) but poor for black spruce (24%). The incidence of seed insect damage was less than 2.5% for both species and nil for seed diseases.  相似文献   

2.
Warmer climates induced by elevated atmospheric CO(2) (eCO(2)) are expected to increase damaging bark beetle activity in pine forests, yet the effect of eCO(2) on resin production--the tree's primary defense against beetle attack--remains largely unknown. Following growth-differentiation balance theory, if extra carbohydrates produced under eCO(2) are not consumed by respiration or growth, resin production could increase. Here, the effect of eCO(2) on resin production of mature pines is assessed. As predicted, eCO(2) enhanced resin flow by an average of 140% (P=0.03) in canopy dominants growing in low-nitrogen soils, but did not affect resin flow in faster-growing fertilized canopy dominants or in carbohydrate-limited suppressed individuals. Thus, pine trees may become increasingly protected from bark beetle attacks in an eCO(2) climate, except where they are fertilized or are allowed to become overcrowded.  相似文献   

3.
Zhang S  Dang QL 《Tree physiology》2005,25(5):523-531
One-year-old jack pine (Pinus banksiana Lamb.) and current-year white birch (Betula papyrifera Marsh.) seedlings were grown in ambient (360 ppm) or twice ambient (720 ppm) atmospheric CO2 concentration ([CO2]) and at three soil temperatures (Tsoil = 7, 17 and 27 degrees C initially, increased to 10, 20 and 30 degrees C two months later, respectively) in a greenhouse for 4 months. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured after 2.5 and 4 months of treatment. Low Tsoil suppressed net photosynthetic rate (Pn), stomatal conductance (g(s)) and transpiration rate (E) in jack pine in both CO2 treatments and g(s) and E in white birch in ambient [CO2], but enhanced instantaneous water-use efficiency (IWUE) in both species after 2.5 months of treatment. Treatment effects on g(s) and E remained significant throughout the 4-month study. Low Tsoil reduced maximal carboxylation rate (Vcmax) and PAR-saturated electron transport rate (Jmax) in jack pine in elevated [CO2] after 2.5 months of treatment, but not after 4 months of treatment. Low Tsoil increased actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/Fm') in jack pine, but decreased DeltaF/Fm' in white birch after 4 months of treatment. In response to low Tsoil, photosynthetic linear electron transport to carboxylation (Jc) decreased in jack pine after 2.5 months and in white birch after 4 months of treatment. Low Tsoil increased the ratio of the photosynthetic linear electron transport to oxygenation (Jo) to the total photosynthetic linear electron transport rate through PSII (Jo/J(T)) in both species after 2.5 months of treatment, but the effects became statistically insignificant in white birch after 4 months of treatment. High Tsoil decreased foliar N concentration in white birch. Elevated [CO2] increased Pn, IWUE and Jc but decreased Jo/J(T) in both species at both measurement times except Jc in white birch after 2.5 months of treatment. Elevated [CO2] also decreased g(s) and E in white birch at high Tsoil, Vcmax in both species and triose phosphate utilization in white birch at low Tsoil after 4 months of treatment, and DeltaF/Fm' in white birch after 2.5 months of treatment. Elevated [CO2] also increased foliar N concentration in both species. Low Tsoil caused no permanent damage to PSII in either species, but jack pine responded and acclimated to low Tsoil more quickly than white birch. Photosynthetic down-regulation and a decrease in photosynthetic electron transport to photorespiration occurred in both species in response to elevated [CO2].  相似文献   

4.
Monitoring soil CO2 efflux rates and identifying controlling factors, such as forest composition or soil texture, can help guide forest management and will likely gain relevance as atmospheric CO2 continues to increase. We examined soil CO2 efflux and potential controlling factors in managed mixed pine forests in southwestern Georgia. Soil CO2 efflux was monitored periodically in two stands that differed in soil texture in 2001 and 2002, and in six additional stands in 2003. We also monitored controlling factors: soil temperature, moisture, organic layer mass, and A layer depth. Soil moisture and CO2 efflux varied with soil texture differences among the stands. As expected, soil temperature had a strong influence on soil CO2 efflux. Soil moisture, organic layer mass, and A layer depth also were correlated with soil CO2 efflux during periods of water stress, but these relationships differed with soil texture. Forest management activities can alter components of soil CO2 efflux, including soil carbon pools, temperature, and moisture; understanding the underlying variation of these components and resultant CO2 efflux over soil types can help guide management toward desired forest carbon balance trends in southeastern mixed pine forests.  相似文献   

5.
Water relations of bare-root jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) planted in a greenhouse and on a boreal cut-over site were examined during the first growing season. In field-planted trees, maximum stomatal conductances (g(wv)) were initially low (< 0.10 cm s(-1)). Base and minimum xylem pressure potentials (Psi(x(base)) and Psi(x(min))) were less than -1.5 and -1.7 MPa for jack pine and -2.0 and -2.6 MPa for white spruce, respectively. During the growing season, maximum g(wv) increased in both species to around 0.2 cm s(-1). Base and minimum xylem pressure potentials also increased in both species to around -0.5 and -1.0 MPa in jack pine and -1.0 and -1.5 MPa in white spruce, respectively. Minimum xylem pressure potentials in white spruce fell below the turgor loss point during the first half of the growing season. Osmotic potential at the turgor loss point Psi(pi(TLP)) decreased after field planting to around -2.7 and -2.3 MPa in jack pine and white spruce, respectively. In the greenhouse, minimum values of Psi(pi(TLP)) were -2.2 and -2.3 MPa in jack pine and white spruce, respectively. Maximum bulk modulus of elasticity was greater in white spruce and underwent greater seasonal change than in jack pine. Relative water content (RWC) at turgor loss ranged between 71 and 74% in jack pine and 80 and 87% in white spruce. Available turgor (T(avail)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and xylem pressure potential at the turgor loss point, was similar in jack pine and white spruce just after field planting. For the rest of the growing season, however, T(avail) in jack pine was two to three times that in white spruce. Diurnal turgor (T(diurnal)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and Psi(x(min)), as a percent of T(avail) was higher in field-planted white spruce than jack pine until the end of the season. Dynamics of tissue water potential components are discussed in relation to plantation establishment.  相似文献   

6.
Many studies have estimated approximately ranges of thresholds of low soil temperature in the growth and ecophysiological traits of trees, but difficultly determined the exact values. To resolve the problem, black spruce (Picea mariana) and jack pine (Pinus banksiana) seedlings were exposed to 5, 10, 15, 20, 25, 30 and 35°C soil temperature in greenhouses. After 90 days of the treatment, net photosynthetic rate (A), stomatal conductance (gs), transpiration rate (E), water use efficiency (WUE) and specific l...  相似文献   

7.
Single Scots pines (Pinus sylvestris L.), aged 20–25 years, were grown in open-top chambers and exposed to elevated temperature (Elev. T), elevated CO2 (Elev. C) and a combination of elevated CO2 and temperature (Elev. C + T) for 4 years. The vertical distribution of needle nitrogen concentration was measured simultaneously with gas exchange of attached shoots. Based on the measurements, the dependencies on needle nitrogen concentrations of four photosynthetic parameters, i.e., RuP2 (ribulose 1,5-bisphosphate)-saturated rate of carboxylation (Vcmax), maximum potential electron transport (Jmax), the rate of respiration in the light (Rd) and light-use-efficiency factor (δ), were determined. Using a crown multilayer model, the performance of daily crown photosynthesis in Scots pine was predicted. Compared to the control treatment, the mean concentration of nitrogen in the foliage decreased by 20% and by 17% for trees grown under Elev. C and under Elev. C + T, respectively, but increased by 4% for trees grown under Elev. T. However, the total content of foliage nitrogen per unit ground area increased by 25% for trees grown under Elev. C, by 19% for trees grown under Elev. C + T and by 6% for trees grown under Elev. T; these were due to the increase in the total needle area index. Regressions showed that the foliage grown under Elev. C and Elev. C + T had steeper slopes representing the responses of Vcmax, Rd and δ to leaf nitrogen concentrations, while Elev. C + T and Elev. T had steeper slopes representing the response of Jmax to needle nitrogen concentrations. Predictions showed that, on a typical sunny day, the daily total of crown photosynthesis increased 22% and 27%, separately for Elev. C and Elev. C + T, and by only 9% for Elev. T alone. Furthermore, the increased daily crown photosynthesis, resulting from treatments involving elevated CO2, can be attributed mainly to an increase in the ambient CO2 concentration and the needle area index, while modification of the intrinsic photosynthetic capacity had only a marginal effect. Based on the current pattern of crown nitrogen allocation, the prediction showed also that the relationship between daily crown photosynthesis and crown nitrogen content was strongly dependent on the daily incident PAR and air temperature. The CO2-elevated treatments led to an increase in the sensitivity of daily crown photosynthesis to changes in crown nitrogen content, daily incident PAR and temperature, while the temperature-elevated treatment had the opposite effect on the sensitivity.  相似文献   

8.
Interactive effects of elevated atmospheric CO2 and soil N fertility on above- and below-ground growth, mycorrhizal colonization, and water relations of juvenile ponderosa pine (Pinus ponderosa Dougl. ex Laws.) were investigated. One-year-old seedlings were planted in undisturbed field soil within open-top chambers which permitted creation of atmospheres with 700 μl l−1, 525 μl l−1, or ambient CO2 concentrations. High and medium soil N treatments were imposed by incorporating sufficient (NH4)2SO4 to increase total N by 200 μg g−1 and 100 μg g−1, respectively, while unamended soil, which had a total N concentration of approximately 900 μg g−1, constituted the low N treatment. Following each of two consecutive field growing seasons, whole seedlings of every combination of CO2 and N treatment were harvested to permit assessment of shoot and root growth and quantification of ectomycorrhizal development. Late in the second growing season, a simulated drought episode was imposed by withholding irrigation during which predawn and midday xylem water potential and soil water potential were measured. The initial harvest revealed that coarse and fine root weights were increased by CO2 enrichment during the first growing season. This result was most apparent in the 525 μl l−1 CO2 treatment and high soil N, which produced the greatest root volume as well. Shoot/root ratio decreased with increasing CO2 at the first harvest. After two growing seasons, elevated CO2 increased seedling diameter, shoot and root volume, and shoot and coarse root weight, again most prominently in high N. Unlike the initial results, however, stimulation of seedling growth by the 700 μl l−1 CO2 atmosphere exceeded that in 525 μl l−1 CO2 after two growing seasons, and shoot/root ratio was unaffected by either CO2 or N. At both harvests, seedlings grown in the enriched atmospheres generally had higher mycorrhizal counts and greater percentages of colonized root length, but differences among treatments in ectomycorrhizal development were nonsignficant regardless of quantification method. During the imposed drought episode, xylem water potential of seedlings grown in elevated CO2 descended below that of seedlings grown in the ambient atmosphere as soil water potential decreased, most notably in the predawn measurements. These results suggest that CO2 enrichment stimulates shoot and root growth of juvenile ponderosa pine under field conditions, a response somewhat dependent on soil N availability. However, below-ground growth is not increased proportionally more than that above ground, which may predispose this species to greater stress when soil water is limited.  相似文献   

9.
Large areas of northern coniferous forests once naturally maintained by stand-replacing wildfires have shifted to an anthropogenic disturbance regime of clearcut harvesting followed by natural or artificial regeneration, with unknown consequences for soil biogeochemical processes. We used a comparative approach to investigate the effects of whole-tree harvesting (WTH) vs. stand-replacing wildfire (WF) on soil C and nutrient availability, and nutrition and growth of the succeeding stand, in jack pine (Pinus banksiana) forests of northern Lower Michigan. We compared total carbon (C), total nitrogen (N), potential N mineralization, and extractable phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) among stands regenerated via WTH or WF in two age classes (4–7 years and 12–18 years). We also measured jack pine foliar nutrition and height growth in these same stands, as well as estimating the contribution of legacy dead wood to ecosystem nutrient capital in young stands. We found some evidence in support of our hypothesis that WTH would leave behind greater pools of soil C and N, but lower pools of P and base cations. However, the differences we observed were confined entirely to surface organic horizons, with the two disturbance regimes indistinguishable when viewed cumulatively to our maximum sampling depth of 30 cm. Estimates of nutrient pools in legacy wood inherited by young jack pine stands were also small in comparison to total soil pools (ranging from 1 to 9% depending on the element), suggesting that decomposition and nutrient release from this material is not likely to result in noticeable differences in soil fertility later in stand development. Similar levels of soil nutrients between WTH- and WF-origin stands were reflected in our measures of jack pine foliar nutrition and height growth, which were both unaffected by mode of stand origin. Results from this study suggest that soil nutrient levels following WTH fall within the natural range of variation produced by WF in these jack pine forests; however, comparison with a similar study on boreal jack pine suggests that latitudinal effects on O-horizon nutrient capital may influence the degree to which WTH matches the effects of WF on soil nutrient availability.  相似文献   

10.
We examined effects of elevated CO(2) and temperature on cold hardiness and bud burst of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Two-year-old seedlings were grown for 2.5 years in semi-closed, sunlit chambers at either ambient or elevated (ambient + ~ 4 degrees C) air temperature in the presence of an ambient or elevated (ambient + ~ 200 ppm) CO(2) concentration. The elevated temperature treatment delayed needle cold hardening in the autumn and slowed dehardening in the spring. At maximum hardiness, trees in the elevated temperature treatment were less hardy by about 7 degrees C than trees in the ambient temperature treatment. In general, trees exposed to elevated CO(2) were slightly less hardy during hardening and dehardening than trees exposed to ambient CO(2). For trees in the elevated temperature treatments, date to 30% burst of branch terminal buds was advanced by about 6 and 15 days in the presence of elevated CO(2) and ambient CO(2), respectively. After bud burst started, however, the rate of increase in % bud burst was slower in the elevated temperature treatments than in the ambient temperature treatments. Time of bud burst was more synchronous and bud burst was completed within a shorter period in trees at ambient temperature (with and without elevated CO(2)) than in trees at elevated temperature. Exposure to elevated temperature reduced final % bud burst of both leader and branch terminal buds and reduced growth of the leader shoot. We conclude that climatic warming will influence the physiological processes of dormancy and cold hardiness development in Douglas-fir growing in the relatively mild temperate region of western Oregon, reducing bud burst and shoot growth.  相似文献   

11.
Noland  Thomas L.  Mohammed  Gina H.  Scott  Maureen 《New Forests》1997,13(1-3):105-119
Number of new roots (root growth potential or RGP), new root length, photosynthesis, total nonstructural carbohydrate content of needles and roots, terminal bud condition, and shoot elongation were measured on jack pine container seedlings for 4 weeks at weekly intervals under greenhouse conditions of 100%, 20%, and 10% sunlight to simulate competition-induced, lower light levels in the field. Both lower light levels significantly reduced photosynthetic rate, RGP, new root length, total nonstructural carbohydrate (especially starch) content of needles and roots, speed of terminal bud flush, and shoot growth. Both light level and photosynthetic rate were positively correlated with RGP and new root length, indicating that jack pine seedlings may use current photosynthate as an energy source to support new root growth. RGP and new root length were also both negatively correlated with root starch content suggesting that jack pine seedlings may also use stored carbohydrates as a potential carbon source for root initiation and initial root growth.  相似文献   

12.
We conducted a greenhouse experiment to determine: (1) if diverse provenances of black spruce (Picea mariana (Mill.) B.S.P.) respond similarly in growth, phenology and physiology to an approximately 300 ppm increase in atmospheric CO(2) concentration, and (2) the influence of photoperiod on both provenance and provenance x CO(2) interaction effects. Seedlings from provenances that originated from the Yukon (63 degrees 34' N, 135 degrees 55' W), British Columbia (58 degrees 47' N, 123 degrees 38' W), Alberta (52 degrees 22' N, 115 degrees 15' W), Newfoundland (50 degrees 54' N, 56 degrees 06' W) and Ontario (48 degrees 59' N, 80 degrees 38' W and 45 degrees 10' N, 77 degrees 10' W) were subjected to growth analysis in greenhouse growth chambers supplied with 712 +/- 93 (SD) ppm CO(2) (elevated) or 394 +/- 59 ppm CO(2) (ambient). Seedlings from Provenances 7000 and 6901 were also subjected to an extended photoperiod treatment and periodically measured for shoot and root gas exchange. In response to a natural photoperiod, southern provenances grew more, broke and set bud later, and partitioned more biomass to shoot versus root than northern provenances. These differences among provenances were influenced by the extended photoperiod treatment but not by the elevated CO(2) treatment. Averaged across all provenances, elevated CO(2) increased seedling final weights by 55%; however, the elevated CO(2) treatment had no effect on the provenance differences in any measured trait. We conclude that the large differences in physiology, phenology and growth among these diverse provenances of black spruce were expressed similarly in both ambient and elevated atmospheric CO(2) concentrations.  相似文献   

13.
14.
A 26 years old agroforestry plantation consisting of four multipurpose tree species (MPTs) (Michelia oblonga Wall, Parkia roxburghii G. Don, Alnus nepalensis D. Don, and Pinus kesiya Royle ex-Gordon) maintained at ICAR Research Complex, Umiam, Meghalaya, India were compared with a control plot (without tree plantation) for soil fertility status and CO2 efflux. The presence of trees improved all the physico-chemical and microbial biomass parameters studied in this experiment. Relative to control, soils under MPTs showed significant increases of 17 % soil organic carbon, 26 % available nitrogen (AN), 28 % phosphorus (AP), 50 % potassium (AK), 65 % mean weight diameter (MWD) of aggregates, 21 % moisture and 34 % soil microbial biomass carbon (MBC) while reducing the mean bulk density (7 %). However, these parameters significantly differed among the tree species i.e., soils under A. nepalensis and M. oblonga had higher values of these attributes except bulk density, than under other species. Irrespective of treatments, the values of all these attributes were higher in surface soils while bulk density was highest in subsurface (60–75 cm). Cumulative CO2 efflux under MPTs was significantly higher (15 %) and ranged from 1.71 g 100 g?1 (M. oblonga) to 2.01 g 100 g?1 (A. nepalensis) compared to control at 150 days of incubation. In all the treatments, increment in temperature increased the oxidation of soil organic matter, thereby increased the cumulative CO2 efflux from soils. Of the tree species, with increment in temperature, A. nepalensis recorded more CO2 efflux (2.50 g 100 g?1) than other MPTs but the per cent increase was more in control plot. P. kesiya and A. nepalensis recorded highest activation energy (59.1 and 39 kJ mol?1, respectively). Net organic carbon sequestered in soil was highest under A. nepalensis (25.7 g kg?1) followed by M. oblonga (19.3 g kg?1), whereas control showed the lowest values. Amount of net carbon stored in the soil had significant and positive correlation with MBC (r = 0.706**), MWD (r = 0.636*), and AN (r = 0.825**).  相似文献   

15.
Soil temperature is proposed to affect the photosynthetic rate and carbon allocation in boreal trees through sink limitation. The aim of this study was to investigate the effect of temperature on CO(2) exchange, biomass partitioning and ectomycorrhizal (ECM) fungi of boreal tree species. We measured carbon allocation, above- and below-ground CO(2) exchange and the species composition of associated ECM fungi in the rhizosphere of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies K.) and silver birch (Betula pendula Roth) seedlings grown in soil maintained at 7-12, 12-15 and 16-22 °C. We found increased root biomass and photosynthetic rate at higher soil temperatures, but simultaneously with photosynthesis rate, higher temperature generally increased soil respiration as well as shoot, and root and rhizosphere respiration. The net CO(2) exchange and seedling biomass did not increase significantly with increasing temperature due to a concomitant increase in carbon assimilation and respiration rates. The 2-month-long growth period in different soil temperatures did not alter the ECM fungi species composition and the below-ground carbon sink strength did not seem to be directly related to ECM biomass and species composition in any of the tree species. Ectomycorrhizal species composition and number of mycorrhiza did not explain the CO(2) exchange results at different temperatures.  相似文献   

16.
To investigate the effect of tree species on soil N dynamics in temperate forest ecosystems, total N (Nt), microbial N (Nmic), net N mineralization, net nitrification, and other soil chemical properties were comparatively examined in beech (64–68 years old) and Norway spruce (53–55 years old) on sites 1 and 2, and beech and Scots pine (45 years old) on site 3. The initial soil conditions of the two corresponding stands at each site were similar; soil types were dystric Planosol (site 1), stagnic Gleysols (site 2), and Podzols (site 3). In organic layers (LOf1, Of2, Oh), Nmic and Nmic/Nt, averaged over three sampling times (Aug., Nov., Apr.), were higher under the beech stands than under the corresponding coniferous ones. However, the Nmic in the organic layers under beech had a greater temporal variation. Incubation (10 weeks, 22 °C, samples from November) results showed that the net N mineralization rates in organic layers were relatively high with values of 8.1 to 24.8 mg N kg–1 d–1. Between the two corresponding stands, the differences in net N mineralization rates in most of the organic layers were very small. In contrast, initial net nitrification rates (0.2–17.1 mg N kg–1 day–1) were considerably lower in most of the organic layers under the conifer than under the beech. In the mineral soil (0–10 cm), Nmic values ranged from 4.1–72.7 mg kg–1, following a clear sequence: August>November>April. Nmic values under the beech stands were significantly higher than those under the corresponding coniferous stands for samples from August and April, but not from November. The net N mineralization rates were very low in all the mineral soils studied (0.05–0.33 mg N kg–1 day–1), and no significant difference appeared between the two contrasting tree species.  相似文献   

17.
We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.  相似文献   

18.
Osmotic adjustment of loblolly pine (Pinus taeda L.) seedlings to fluctuating water supply in elevated CO(2) was investigated. Seedlings were grown in controlled-environment chambers in either 350 or 700 micro l l(-1) CO(2) with weekly watering for four months, after which they were either watered weekly (well-watered treatment) or every two weeks (water-stress treatment) for 59 days. Osmotic adjustment was assessed by pressure-volume analysis of shoots and by analysis of soluble carbohydrates and free amino acids in roots during the last drying cycle. In well-watered seedlings, elevated CO(2) increased the concentration of soluble sugars in roots by 68%. Water stress reduced the soluble sugar concentration in roots of seedling growing in ambient CO(2) to 26% of that in roots of well-watered seedlings. Elevated CO(2) mitigated the water stress-induced decrease in the concentration of soluble sugars in roots. However, this was probably due, in part, to carbohydrate loading during the first four months when all seedlings were grown in the presence of a high water supply, rather than to osmotic adjustment to water stress. Water stress caused a doubling in the concentration of free primary amino acids in roots, whereas elevated CO(2) reduced primary amino acid and nitrogen concentrations to 32 and 74%, respectively, of those in roots of seedlings grown in ambient CO(2). There was no indication of large-scale osmotic adjustment to water stress or that elevated CO(2) enhanced osmotic adjustment in loblolly pine.  相似文献   

19.
20.
Eriksson  Erik; Berg  Staffan 《Forestry》2007,80(2):99-111
Forestry has an important role to play as a provider of energyfrom renewable biomass and through the sequestration of carbonin biomass and soil. Forests are also habitats for a large numberof species which are important for biodiversity. In some cases,these two roles may conflict. The aim of this study was to modelthe implications of specific environmental quality objectiveson the potential of forestry to reduce net CO2 emissions byaddressing interim targets 1 and 2 in the environmental qualityobjective, sustainable forests for Uppsala County and used thisregion as a case study. The carbon stock in the biomass, thesubstitution effect, and the economic consequences associatedwith six forest management scenarios were considered. The developmentfor the scenarios was simulated at stand level using an empiricalmodel. The results of the study showed that the shortest rotationperiod was preferable to mitigate net CO2 emissions since itresulted in more biomass that could replace fossil fuel. However,such a strategy might affect sustainable policies negatively.Increasing the extent of mixed stands could be a preferablestrategy since it may achieve several objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号