首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

2.
Fine root biomass, rates of dry matter production and nutrients dynamics were estimated for 1 year in three high elevation forests of the Indian central Himalaya. Fine root biomass and productivity were higher in closed canopied cappadocian maple forest (9.92 Mg ha−1 and 6.34 Mg ha−1 year−1, respectively), followed by Himalayan birch forest (6.35 Mg ha−1 and 4.44 Mg ha−1 year−1) and Bell rhododendron forest (6.23 Mg ha−1 and 2.94 Mg ha−1 year−1). Both fine root biomass and productivity declined with an increase in elevation. Across the sites, fine root biomass was maximal in fall and minimal in summer. In all sites, maximum nutrient concentration in fine roots was in the rainy season and minimum in winter. Fine root biomass per unit basal area was positively related with elevation, Bell rhododendron forest having the largest fine root biomass per unit of basal area (0.53 Mg m−2) and cappadocian maple the least (0.18 Mg m−2). The production efficiency of fine roots per unit of leaf biomass also increased with elevation and ranged from 1.13 g g−1 leaf mass year−1 in cappadocian maple forest to 1.28 g g−1 leaf mass year−1 in Bell rhododendron forest. Present fine root turnover estimates showed a decline towards higher elevations (0.72 year−1 in cappadocian maple and 0.58 year−1 in Bell rhododendron forest) and are higher than global estimates (0.52).  相似文献   

3.
Forest ecosystems can modify the atmospheric CO2 through biomass accumulation mostly in tree stems with diameter at breast height (DBH) ≥ 10 cm. Aboveground biomass increment (ΔAGB), and changes in stand AGB, no. stems and basal area (BA) were calculated from mortality, recruitment, and growth data of tree stems in tropical evergreen broadleaved forest, Central Highland Vietnam. Data were derived from ten 1-ha permanent plots established in 2004, where all stems with DBH ≥ 10 cm were tagged, identified to species, and measured for DBH in 2004 and 2012. In an 8-year duration, the increment was 53 ± 10 stems ha–1, 7.8 ± 0.3 m2 ha–1 for BA and 86.0 ± 4.6 Mg ha–1 for AGB. The stem mortality rate was 0.9% year–1 and the stem recruitment rate was 2.2% year–1. Annual ΔAGB was 10.8 Mg ha–1 year–1, equaling to 5.4 Mg C ha–1 year–1. Of which, tree stems of 35–80 cm DBH classes accounted for 65%. The results indicated that the forest is in stage of carbon sequestration. Any disturbances causing death of 35–80 cm DBH tree stems will much reduce carbon sequestration capacity and it will take a long time for AGB to return to pre-disturbance stage.  相似文献   

4.
The effect of different planting densities (100,000 and 167,000 plants ha?1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha?1 year?1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year?1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha?1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha?1 respectively, compared with 11.6 and 11 ton ha?1 for 100,000 plants ha?1. Growth rate in 167,000 plants ha?1 was higher than in 100,000 plants ha?1 (0.06 compared with 0.03 ton ha?1 day?1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha?1 year?1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha?1 year?1 (87.9 and 93.7 g kg?1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha?1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha?1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year?1 in conditions where phosphorus and potassium are not limiting.  相似文献   

5.
The effects of wax myrtle (Myrica cerifera L.) on the nitrogen cycle were examined in a 23-year-old slash pine (Pinus elliottii Engelm. var. elliottii) plantation located near Gainesville, FL. These shrubs occurred naturally as an understory and had a crown cover of 8% of the study area. The potential rate of nitrogen fixation by wax myrtle was estimated to be 13 g N m?2 year?1, or 10.6 kg N ha?1 year?1 on a stand wide basis. Wax myrtle fixed substantial amounts of nitrogen throughout the year although winter rates were significantly less due to the greatly reduced activity of old nodules during that season. The average accumulation rate of nitrogen beneath wax myrtle was 1.5 g N m?2 year?1 in the soil and 0.9 g N m?2 year?1 in the forest floor. On a stand wide basis this amounted to an accretion of 1.9 kg N ha?1 year?1 in the soil and forest floor.  相似文献   

6.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

7.
The decomposition of harvest residues (brash) in managed forests has an important influence on the carbon (C) and nitrogen (N) stocks of these ecosystems. The brash input from thinning events in a 25-year-old Sitka spruce plantation was determined. A litter-bag method was used to determine the mass loss and decomposition rate of brash left on the forest floor. The changes in C and N concentrations and the C:N ratio of the needles and branches were also monitored as decomposition progressed for 2.5 years. Using the decomposition rate (k b) and estimated brash inputs, we then determined the total cumulative stock of C that the brash could supply to the deadwood pool over a 41-year rotation period. The three thinning events resulted in the addition of 37.99 t C ha?1 and 0.61 t N ha?1 to the forest floor. A significant mass loss of 44 % was recorded from brash decomposition bags after 2.5 years, with a rapid loss of 35 % in the first year, after which the rate of decomposition slowed. The k b-value and residence time (95 % decomposition) were 0.311 year?1 and 9.6 years, respectively. There was a 69 % increase in the N concentration of needles after 1.5 years, while an increase of 185 % in the N concentration of branches was recorded after 2.5 years. The C concentration (48.55 ± 0.20 %) did not differ significantly between the needles and branches over time. The accumulated C stock from decomposing brash at clearfell was estimated at 18.51 t C ha?1.  相似文献   

8.
The effect of ash fertilization on height growth and volume production of Scots pine (Pinus sylvestris L.) was studied on oligotroph peatland in southeast Norway. In the year 1944, plots 15 m × 15 m size were fertilized with 0, 4, 7, and 10 tons ha?1 of wood or peat ash. The area was treeless, but a satisfactory number of pine seedlings were present. All measurements were confined to the central inner plot, 10 m × 10 m area. Most plots were re-fertilized with 10 tons of wood ash ha?1 in the year 1993. Wood ash had higher content of nutrients, and generally, it had greater growth enhancement effect than peat ash. When the amount of ash was increased, volume production significantly increased for the age period 38–50 years and the total production at age 50 years. The mean annual increment during the first 50 years was about 6 m3 ha?1 for the plots applied with 10 tons of ash ha?1. Trees on plots fertilized with 7 or 10 tons in 1944 and replenished with 10 tons ha?1 at age 50 years (1993) had a mean annual increment of 14 m3 ha?1 for the stand age period 51–68 years. Over time some tree roots from control plots and plots fertilized with 4 tons ha?1 have captured nutrients from richer plots. Such effect is to a smaller extent relevant for treatment 7 tons. It is concluded that the content of mineral nutrients of wood and peat ash makes these ashes well suited as fertilizers on peatland.  相似文献   

9.
The objectives of this study were to examine the effects of stand development and soil nutrient supply on processes affecting the productivity of loblolly pine (Pinus taeda L.) over a period approximately equal to a pulpwood rotation (18 years). The experiment consisted of a 2×2 factorial combination of complete and sustained weed control and annual fertilization treatments (C: control treatment, F: fertilization, W: weed control, FW: combined fertilization and weed control), located on a Spodosol in north-central Florida, USA. The reduction of soil nutrient limitations through fertilization or control of competing vegetation resulted in dramatic increases in almost every measure of productivity investigated, including height (19.7 m in the FW treatment versus 12.5 m in the C treatment at age 18 years), basal area (FW=44.2 m2 ha−1, F=39.6 m2 ha−1, W=36.6 m2 ha−1, C=19.9 m2 ha−1 at age 16 years), stemwood biomass accumulation (114 Mg ha−1 in FW versus 42.8 Mg ha−1 in C at age 18 years), foliar nitrogen concentration (1.53% in plots receiving fertilization versus 1.06% in unfertilized plots at age 17 years) and leaf area index (age 16-year peak projected of approximately 3.3 at age 9–10 years in F and FW plots, 2.5 in the W treatment and 1.5 in the C plots). Cultural treatments also decreased the growth ring earlywood/latewood ratio, and accelerated the juvenile wood to mature wood transition. While soil nutrient supply was a major determinant of productivity, production changes that occurred within treatments over the course of stand development were equally dramatic. For example, between age 8 and 15 years, stemwood PAI in the FW treatment declined by 275%; similarly large reductions occurred in the F and W treatments over the same time period. The reductions in PAI in the treated plots were linearly related to stand BA, suggesting the decline in productivity was associated with the onset of inter-tree competition. Responses of stemwood PAI to re-fertilization treatments at age 15 years suggests that the declines in growth and growth efficiency with time were partially attributable to nutrient limitations.  相似文献   

10.
Urban expansion increases the need for, and pressure on, green areas. Reforestation projects in the rural–urban fringe represent an opportunity for enhancing the environmental quality of peri-urban spaces and a means to contribute to cities carbon neutrality policies. Yet, relatively little information exists regarding the long term (10–25 years) survival and growth rate in urban and peri-urban plantations. This paper reports and discusses the results achieved by a reforestation in the peri-urban space of Rome (Italy), 25 years after its establishment. The plantation has been periodically surveyed between 6 and 24 years of age by means of continuous inventories, with the aim of monitoring growth dynamics. Permanent sample plots have been investigated and stratified by tree species composition (broadleaves vs. conifers, single vs. multispecies) for data analysis. On the whole, plantations show suitable results in terms of rate of growth, carbon storage and uptake, especially in coniferous and mixed stands. The average stand volume of the forest plantation, currently ranges from one-and-a third to one-and-a-half times the average values estimated for natural high forest stands of the same age and species groups at country level. The species groups exhibit differential growth patterns over the observed period, that are mainly due to differences in the ecological traits of the planted trees. Ten years after the establishment, the average annual value of carbon uptake in conifer and mixed species group exceeds 10 Mg CO2 equivalent ha?1 year?1, a figure corresponding to 4 times the value of deciduous broadleaves (oaks and other species) and 1.5 times the value of evergreen oaks. Twenty years after the establishment, the average annual carbon uptake peaks to 25 Mg CO2 equivalent ha?1 year?1 in the mixed species group, exceeds 15 Mg CO2 equivalent ha?1 year?1 in the conifers, and ranks between 6 and 12.5 Mg CO2 equivalent ha?1 year?1 in the groups dominated by broadleaved species. Overall with a surface area just under 300 ha, the carbon uptake level of the Castel di Guido reforestation allows to offset the 0.04% of CO2 emissions of the city of Rome. Although the spatial coexistence of even-aged plantation blocks characterized by a range of ecological traits, is expected to ensure a more continuous carbon sequestration, being less susceptible to damage of any kind, the current lack of silvicultural management may also lead to degradation processes, by triggering e.g. fuel accumulation and, by consequence, forest fires. In this line, recommendations are provided in order to improve the ecological and functional efficiency of the investigated reforestation. The field experiment demonstrates, ultimately, the capability of the continuous forest inventory to take the pulse over several decades of tree species performance and carbon uptake levels in urban and peri-urban reforestations.  相似文献   

11.
Nitrogen (N)-fixing tree and crop intercropping systems can be a sustainable agricultural practice in sub-Saharan Africa and can also contribute to resolving climate change through enhancing soil carbon (C) sequestration. A study conducted by Makumba et al. (Agric Ecosyst Environ 118:237?C243, 2007) on the N-fixing tree gliricidia and maize intercropping system in southern Malawi provides a rare dataset of both sequestered soil C and C loss as soil carbon dioxide (CO2) emissions. However, no soil C gain and loss estimates were made so the study failed to show the net gain of soil C. Also absent from this study was potential benefit or negative impact related to the other greenhouse gas, nitrous oxide (N2O) and methane (CH4) emissions from the intercropping system. Using the data provided in Makumba et al. (Agric Ecosyst Environ 118:237?C243, 2007) a C loss as soil CO2 emissions (51.2?±?0.4?Mg?C?ha?1) was estimated, amounting to 67.4% of the sequestered soil C (76?±?8.6?Mg?C?ha?1 in 0?C2?m soil depth) for the first 7?years in the intercropping system. An annual net gain of soil C of 3.5?Mg?C?ha?1?year?1 was estimated from soil C sequestered and lost. Inclusion of the potential for N2O mitigation [0.12?C1.97?kg?N2O?CN?ha?1?year?1, 0.036?C0.59?Mg CO2 equivalents (eq.) ha?1?year?1] within this intercropping system mitigation as CO2 eq. basis was estimated to be 3.5?C4.1?Mg CO2 eq.?ha?1?year?1. These results suggest that reducing N2O emission can significantly increase the overall mitigation benefit from the intercropping system. However, significant uncertainties are associated with estimating the effect of intercropping on soil N2O and CH4 emissions. These results stress the importance of including consideration of quantifying soil CO2, N2O and CH4 emissions when quantifying the C sequestration potential in intercropping system.  相似文献   

12.
India launched National Agroforestry Policy on 10th February, 2014 which has the potential to substantially reduce poverty in rural India and revive wood based industry, besides integrating food production with environmental services. The policy is not only crucial to India’s ambitious goal of achieving 33 per cent forest and tree cover but also to mitigate GHG emissions from agriculture sector. Dynamic CO2FIX-v3.1 model has been used to estimate the carbon sequestration potential (CSP) of existing agroforestry systems (AFS) for simulation period of 30 years in twenty six districts from ten selected states of India. The observed number of trees on farmers’ field in these districts varied from 1.81 to 204 per hectare with an average value of 19.44 trees per hectare. The biomass in the tree component varied from 0.58 to 48.50 Mg DM ha?1, whereas, the total biomass (tree and crop) ranged from 4.96 to 58.96 Mg DM ha?1. The soil organic carbon ranged from 4.28 to 24.13 Mg C ha?1. The average estimated carbon sequestration potential of the AFS, representing varying edapho-climatic conditions, on farmers field at country level was 0.21 Mg C ha?1yr?1. At national level, existing AFS are estimated to mitigate 109.34 million tons CO2 annually, which may offsets one-third (33 %) of the total GHG emissions from agriculture sector.  相似文献   

13.
In the Northern and Baltic countries, grey alder is a prospective tree species for short-rotation forestry. Hence, knowledge about the functioning of such forest ecosystems is critical in order to manage them in a sustainable and environmentally sound way. The 17-year-long continuous time series study is conducted in a grey alder plantation growing on abandoned agricultural land. The results of above- and below-ground biomass and production of the 17-year-old stand are compared to the earlier published respective data from the same stand at the ages of 5 and 10 years. The objectives of the current study were to assess (1) above-ground biomass (AGB) and production; (2) below-ground biomass: coarse root biomass (CRB), fine root biomass (FRB) and fine root production (FRP); (3) carbon (C) and nitrogen (N) accumulation dynamics in grey alder stand growing on former arable land. The main results of the 17-year-old stand were as follows: AGB 120.8 t ha?1; current annual increment of the stem mass 5.7 t ha year?1; calculated CRB 22.3 t ha?1; FRB 81 ± 10 g m?2; nodule biomass 31 ± 19 g m?2; fine root necromass 11 ± 2 g m?2; FRP 53 g DM m?2 year?1; fine root turnover rate 0.54 year?1; and fine root longevity 1.9 years. FRB was strongly correlated with the stand basal area and stem mass. Fine root efficiency was the highest at the age of 10 years; at the age of 17 years, it had slightly reduced. Grey alder stand significantly increased N and Corg content in topsoil. The role of fine roots for the sequestration of C is quite modest compared to leaf litter C flux.  相似文献   

14.
Land-use change from forest to cocoa agroforestry and other tree-based farming systems alters the structure of forest stands and influences the magnitude of canopy water fluxes and subsequent bio-element inputs to the forest floor. The partitioning of incident rainfall (IR) into throughfall (TF), stemflow (SF) and canopy interception loss (ILC) and their associated nutrient element concentrations and fluxes was examined along a replicated chrono-sequence: forest, 3, 15 and 30-year-old smallholder shaded-cocoa systems in Ashanti Region, Ghana. Mean annual precipitation during the 2-year observational period (2007 and 2008) was 1376.2 ± 93.8 mm. TF contributed between 76.5–90.4%, and SF between 1.4–1.7% of the annual IR to the forest floor. There were significant differences in IR, TF and SF chemistry. While TF and SF were enriched in phosphorus (1.33–5.67-fold), potassium (1.1–5.69 fold), calcium (1.35–2.65 fold) and magnesium (1.4–2.68 fold) relative to IR, total N (NH4 ++NO3 ?) declined (0.5–0.91) of IR values in TF and SF in forest and shaded cocoa systems. Incident rainfall was significantly more acidic than TF and SF in both forest and shaded-cocoa systems. Mean annual total N, P, K, Ca and Mg inputs to the forest floor through IR were 5.7, 0.14, 13.6, 9.43 and 5.6 kg ha?1year?1 respectively. Though an important source of available nutrients for plant growth, incident rainfall provides only a small percentage of the annual nutrient requirements. With declining soil fertility and pervasive low cocoa yields, possible effects of the reported nutrient fluxes on nutrient budgets in cocoa systems merit further investigation. Against the background of increased TF and decreased ILC following forest conversion to shaded-cocoa, it is also recommended that more studies be carried out on rainfall partitioning and its impact on ground water recharge as a way of establishing its influence on the availability of moisture for agriculture in these systems.  相似文献   

15.
A comparison was made of annual net ecosystem productivity (NEP) of a closed canopy Sitka spruce forest over 2 years, using either eddy covariance or inventory techniques. Estimates for annual net uptake of carbon (C) by the forest varied between 7.30 and 11.44 t C ha−1 year−1 using ecological inventory (NEPeco) measures and 7.69–9.44 t C ha−1 year−1 using eddy covariance-based NEP (-NEE) assessments. These differences were not significant due to uncertainties and errors associated with estimates of biomass increment (15–21%) and heterotrophic respiration (12–19%). Carbon-stock change inventory (NEPΔC ) values were significantly higher (27–32%), when compared to both NEPeco- and -NEE-based estimates. Additional analyses of the data obtained from this study, together with published data, suggest that there was a systematic overestimation of NEPΔC -based assessments due to unaccounted decomposition processes and uncertainties in the estimation of soil-C stock changes. In contrast, there was no systematic difference between NEPeco and eddy covariance assessments across a wide range of forest types and geographical locations.  相似文献   

16.
Nitrogen fertilization increased largely over the last decade in tropical eucalypt plantations but the behaviour of belowground tree components has received little attention. Sequential soil coring and ingrowth core methods were used in a randomized block experiment, from 18 to 32 months after planting Eucalyptus grandis, in Brazil, in order to estimate annual fine root production and turnover under contrasting N fertilization regimes (120 kg N ha−1 vs. 0 kg N ha−1). The response of growth in tree height and basal area to N fertilizer application decreased with stand age and was no longer significant at 36 months of age. The ingrowth core method provided only qualitative information about the seasonal course of fine root production and turnover. Mean fine root biomasses (diameter <2 mm) in the 0–30 cm layer measured by monthly coring amounted to 0.91 and 0.84 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root production was significantly higher in the 0 N treatment (1.66 t ha−1 year−1) than in the 120 N treatment (1.12 t ha−1 year−1), probably as a result of the greater tree growth in the control treatment throughout the sampling period. Fine root turnover was 1.8 and 1.3 year−1 in the 0 N and the 120 N treatments, respectively. However, large fine root biomass (diameter <1 mm) was found down to a depth of 3 m one year after planting: 1.67 and 1.61 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root turnover might not be insubstantial in deep soil layers where large changes in soil water content were observed.  相似文献   

17.
A 27-year-old stand of flooded gum (Eucalyptus grandis Hill ex Maiden) in the North Coast Region of N.S.W. was assessed in relation to aboveground distribution and turnover of organic matter, nitrogen, phosphorus, calcium, magnesium and potassium. Of the 453 t ha?1 of aboveground organic matter present, 394 t was in the tree, 42 t in the understorey and 28 t in the forest floor. The total nitrogen, phosphorus, calcium, magnesium and potassium contents of the stand were 739, 44, 1254 and 658 kg ha?1, respectively, and the understorey contained 35%, 35%, 16%, 24% and 49% of the above-ground distribution of these nutrients respectively. Although the developing rainforest understorey comprised a relatively small portion (9.3%) of the total aboveground biomass, it played a disproportionate role in nutrient accumulation and uptake, and had an annual net accumulation of 14%, 55%, 59%, 30%, 44% and 69% of the aboveground organic matter, nitrogen, phosphorus, calcium, magnesium and potassium respectively. The net annual removal from the soil was 30, 1, 38, 5 and 31 kg ha?1 year?1 for nitrogen, phosphorus, calcium, magnesium and potassium, respectively. Flooded gum had very high accumulations of calcium in the bark and the effect of this in nutrient cycling is discussed. An idealised management system, to exploit and optimise the nutrient cycle of flooded gum, has been hypothesided.  相似文献   

18.
Narrowing the uncertainties in carbon (C) and nitrogen (N) dynamics during decomposition of coarse woody debris (CWD) can significantly improve our understanding of forest ecosystem functioning. We examined C, N and pH dynamics in the least studied CWD component—tree bark in a 66-year-long decomposition chronosequence. The relative C concentration decreased by ca. 32% in pine bark, increased by ca. 18% in birch bark and remained stable in spruce and aspen bark. Nitrogen increased in bark of all tree species. In conifer bark, it increased along with epixylic succession. Over 45 years, the relative C/N ratio in bark decreased by 63 and 45% for coniferous and deciduous species, respectively. Bark pH did not change. Due to bark fragmentation, the total C and N amounts in bark of individual logs of aspen, birch, pine and spruce decreased at average rates of 0.03, 0.02, 0.26 and 0.05 year?1, and 0.02, 0.02, 0.03 and 0.03 year?1, respectively. At the forest stand level, the total amounts of C and N in log bark were 853 and 21 kg ha?1 or 11.2 and 45.5% of the C and N amounts stored in downed logs and ca. 2.3–3.8 and 2.2–2.4%, respectively, of total C and N amounts stored in forest litter. In boreal forests, decomposing log bark may act as a long-term source of N for wood-inhabiting communities.  相似文献   

19.
Wastewater bioremediation has been practised successfully in several forests without significant adverse effect on water quality of adjacent aquatic systems. However, long-term success of wastewater irrigation systems depends on an overall positive response of the forest ecosystem to substantial amounts of added water and nutrients over time. Municipal wastewater irrigation effects on the fate of added nitrogen in a mature Appalachian hardwood forest were investigated during the first 2 years of irrigation. Wastewater was secondarily treated, chlorinated, and sprayed on the study site at five rates. Forest litter N decreased on irrigated sites due to increased litter decomposition rates. Nitrogen mineralization potential (N0) decreased greatly in soils irrigated at a rate of 140 cm year−1 for 2 years. Net nitrification and relative nitrification (the amount of NO3-N as a proportion of the total mineral N) increased proportionally with irrigation rate. The highest irrigation rates increased denitrification activity and contributed significantly to the bioremediation process by removing nitrate that otherwise would have been subject to leaching. The increase in NO3 production in the soil and limited N sequestration by the forest system nevertheless resulted in a net loss of N via leaching. Nitrate concentrations of soil water increased owing to irrigation, with the highest rate at 11 mg 1−1 on sites receiving 70 cm year−1. During the 2-year period, the forest ecosystem experienced a net leaching loss of N that ranged from 14.8 to 105 kg N ha−1 year−1, depending on the application rate. It is likely that this mature hardwood forest will continue to lose N, and that little or no additional N will be sequestered.  相似文献   

20.
Some land-use systems in Saskatchewan, Canada include the nitrogen-fixing trees buffaloberry (Shepherdia argentea Nutt.), caragana (Caragana arborescens Lam.) and sea buckthorn (Hippophae rhamnoides L.). These species provide various ecological functions such as ameliorating soil moisture, light and temperature but little work has been done quantifying biological nitrogen fixation by these species. Greenhouse experiments were conducted to quantify N2-fixation using the 15N natural abundance and the 15N dilution methods. Buffaloberry failed to form nodules in all but one of the four replicates in the natural abundance experiment. Using the 15N dilution method, the percentage of N derived from atmosphere (%Ndfa) in the shoot of buffaloberry averaged 64 %. For caragana, the mean  %Ndfa was 59 and 65 % and seabuckthorn was 70 and 73 % measured using the natural abundance and dilution methods, respectively. Because of large variability in biomass production between plants grown in the natural abundance experiment and the dilution experiment, the amounts of N2 fixed also were very variable. Buffaloberry fixed an average of 0.89 g N m?2; the average for caragana ranged from 1.14 to 4.12 g N m?2 and seabuckthorn ranged from 0.85 to 3.77 g N m?2 in the natural abundance and dilution experiments, respectively. This corresponds to 16 kg N ha?1 year?1 for buffaloberry; an average of 15–73 kg N ha?1 year?1 in caragana and 11–67 kg N ha?1 year?1 in seabuckthorn. The substantial amounts of N2 fixed by these species indicate that they have the potential to contribute to the overall N balance in land-use systems in which they are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号