首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The aim of the study was to investigate the possibility of strength grading Norway spruce [Picea abies (L.) Karst.] saw logs on the basis of simulated X-ray LogScanner measurements and to evaluate the potential accuracy of X-ray LogScanner measurements of green heartwood density and percentage of heartwood. The study was based on 272 logs for strength grading and 29 logs for measurements of green heartwood density and percentage of heartwood. The logs were scanned using computed tomography (CT). After sawing, the modulus of elasticity (MOE) of the centre boards was measured using a strength-grading machine. The CT images were used for simulations of an X-ray LogScanner, resulting in simulated measurements of different variables such as diameter, taper, percentage of heartwood, density and density variations. Multivariate models for prediction of MOE were then calibrated using partial least squares (PLS) regression. The MOE of a log was defined as the mean value of the MOE of the two centre boards. The study showed that the simulated X-ray LogScanner measured the percentage of heartwood and green heartwood density with relatively high accuracy (R 2 = 0.94 and R 2 = 0.73, respectively, after removing two outliers) and that these and other variables measured by the simulated X-ray LogScanner could be used to predict the stiffness of the centre boards. These predictions were used to sort the logs according to the predicted MOE. When sorting out 50% of the logs (''high-strength'' logs), the percentage of C30 boards increased from 73% (all logs in the study) to 100% (only ''high-strength'' logs). The rest of the logs could then be divided into two groups, one of them with 100% C24 and C30 boards.  相似文献   

2.
As sawmills become increasingly efficient, the importance of focusing on value recovery becomes obvious. To maximize value recovery, sawmills require the ability to sort logs according to quality. This study compares four different combinations of three-dimensional (3D) and X-ray scanning that can be used to grade logs automatically. The study was based on 135 Scots pine (Pinus sylvestris L.) logs that had been scanned with both a 3D scanner and an X-ray scanner with two X-ray sources. The percentage of boards with correct grade sawn from automatically graded logs varied from 57% when using only 3D scanning to 66% when using a combination of 3D scanning and X-ray scanning in two directions. The highest possible result, with ideal log grading, was 81%. The result also shows that the combination of a 3D scanner and one X-ray direction results in higher accuracy than a scanner based on two X-ray directions.  相似文献   

3.
Timber storage is a key aspect of storm damage management. After huge storms, sprinkling storage is usually the most used conservation process but anaerobic storage in sealed silos appears as good alternative to preserve wood quality over long periods. This paper investigates the impact of long-term (57 months) storage of Norway spruce logs in anaerobic atmosphere on wood properties. Tests were performed on clear wood specimens and on lumbers to determine the modulus of elasticity (E), the static bending strength (σf) and the dynamic bending strength (K). Storage effects on impregnability and colour variation were also studied. Results show no effect of storage on E, σf and K. The naturally poor impregnability of Norway spruce is not improved by the anaerobic conditions, compared to traditional wet storage. Triangle tests reveal no discernible colour variation between logs that underwent anaerobic storage and the control sample. As a conclusion, despite a mould (Gliocladium solani) frequently observed on logs surface after the storage, the process offers ideal conservation conditions. While overall cost remains the main drawback for using anaerobic storage at large scale, the process can be recommended for high value logs, especially since it has few environmental impacts.  相似文献   

4.
As the sawmill industry strives towards customer orientation, the need for sorting of logs according to quality has been recognized, and automatic sorting based on measurements by three-dimensional (3D) optical log scanners has been implemented at sawmills. There is even a small number of sawmills using the X-ray log scanner for automatic log-sorting. At the log-sorting stage, the potential of the raw material to fulfil the needs has already been reduced by the decisions taken when the trees were bucked (cross-cut) into logs. Thus, the application of predictions of the boards’ properties at the bucking stage is desirable. This study investigates the possibility of predicting board values from logs based on 3D scanning alone and 3D scanning in combination with X-ray scanning of stems. This study is based on 628 logs scanned by computed tomography that make up the Swedish Pine Stem Bank. Simulated sawing of the logs gave product values for each log. Prediction models on product value were adapted using partial least squares regression and x-variables derived from the properties of the logs and their original stems, measurable with a 3D log scanner and the X-ray LogScanner. The results were promising. Using a 3D scanner alone, R 2 was 0.68, and using a 3D scanner in combination with an X-ray LogScanner, R 2 was 0.72.  相似文献   

5.
The bending and growth characteristics of large fresh stems from four silver fir (Abies alba Mill.) and three Norway spruce (Picea abies (L.) Karst.) trees were studied. Twenty logs taken from different stem heights were subjected to four-point bending tests. From the bending test records, we calculated stress-strain curves, which accounted for detailed log taper, shear deformation and self weight. From these curves we determined, among other parameters, the modulus of elasticity (MOE), the modulus of rupture (MOR) and the work absorbed in bending (W). No significant differences were found between species for the wood properties examined. Values of MOE, MOR and W generally decreased with stem height, with MOR in the range of 43 to 59 MPa and MOE ranging from 10.6 to 15.6 GPa. These MOE values are twice or more those reported for stems of young Sitka spruce (Picea sitchensis (Bong.) Carr.) trees. Based on the radial growth properties measured in discs from the logs, we calculated predicted values of MOE and MOR for the stem cross section. The predictions of MOE were precise, whereas those of MOR were approximate because of a complex combination of different failure mechanisms. Methods to test and calculate MOE, MOR and W for the stems of living trees are discussed with the aim of improving analyses of tree biomechanics and assessments of forest stability protection.  相似文献   

6.
Norway spruce structural timber is one of the most important products of the Norwegian sawmilling industry, and a high grade-yield of structural timber is therefore important for the economic yield. Presorting of logs suited for production of structural timber might be one option to increase the grade yield. In this study, dynamic modulus of elasticity (Edyn) of structural timber was predicted based on forest inventory data at site level and single-tree data from airborne laser scanning (ALS) and harvester. The models were based on 611 boards from 4 sites in southeastern Norway. Important variables at site level were elevation, site index (SI), and mean stand age. However, when combining data from all information sources, mean stand age and site index were the only significant variables at site level. Tree height and variables describing the crown, like crown length and crown volume, were important vaiables extracted from ALS data. Stem diameter measures and tapering were important variables measured by the harvester. The combined model with variables from all three information sources reduced the variance the most, especially when using individual tree age instead of average stand age. However, combining all these data requires accurate positioning of the trees by the harvester.  相似文献   

7.
Both foresters and sawmillers are interested in the knot structure of trees; in particular, position and number of knots, knot diameter, knot length and dead knot border. For research purposes, it is possible today to carry out non‐destructive measurements using computer tomography (CT) and image analysis. The aim of this study was to measure knot parameters on Norway spruce (Picea abies (L.) Karst.) using a non‐destructive method developed for Scots pine (Pinus sylvestris L.), and to compare the results of this method with the results of two different destructive methods. In order to do this, two Norway spruce stems were scanned by CT. Then five logs from one stem were cut into flitches 20 mm thick and the defects on the sawn surfaces were scanned manually. The other stem was cut just above every whorl and then each knot was split through its centre and the knot parameters were measured manually. The study showed that the CT method compares well with the destructive methods. It is a reasonably fast, non‐destructive method which measures position and diameter of knots and detects larger knots with acceptable accuracy. The study also showed that a large number of smaller knots were not found by the CT method and that the CT method measured knot length and dead knot border with low accuracy. This means that the CT method has to be adjusted to Norway spruce in order to improve its ability to measure knot length and dead knot border and to detect smaller knots.  相似文献   

8.
In breeding Norway spruce, selection for improved growth and survival is performed at age 10–15 years in order to optimize genetic gain per year. We investigated whether a selection based on wood traits such as density and grain angle, measured under bark in the field at the same age would be informative enough with respect to structural quality traits of sawn boards. To achieve this objective, a sawing study was conducted on the butt logs of 401 trees from a 34-year-old Norway spruce progeny trial situated in southern Sweden. Stem discs were excised from the top of the logs and radial profile data of grain angle, and wood density was recorded for specific annual rings. The sawn and dried boards were assessed for structural traits such as twist, board density, bending stiffness (static modulus of elasticity, sMoE) and bending strength (modulus of rupture, MoR). Additive genetic correlations (ra) between single annual ring density measurements and board density, sMoE and MoR were consistently strong (ra>?0.7) for annual rings 5–13. Genetic correlations of similar magnitude between grain angle and board twist were estimated for all investigated annual rings (from 2 to around 26 under bark). Consequently, it was found that indirect selection for wood density and grain angle at the tree age 10–16 years would result in more genetic gain per year than selection at later ages. This makes it feasible to perform simultaneous selection of progeny in the field for both growth and wood traits at similar ages.  相似文献   

9.

This study establishes the basis for the assignment of Danish - grown Sitka spruce (Picea sitchensis) to the European strength class system (EN 338). In total, 712 boards were chosen to be representative of the normal Danish commodity. These were visually graded for strength according to Nordic rules (INSTA 142), and subsequently tested to failure in either bending or tension. The results show that Danish - grown Sitka spruce graded to levels T1 and T2 satisfy the requirements of EN 338 at the C18 and C24 levels, respectively. Results for Danish - grown Sitka spruce concur with those for Danish - grown Norway spruce (Picea abies). This study shows that Sitka spruce and Norway spruce of similar origins exhibit highly comparable mechanical properties.  相似文献   

10.
With the development of scanning technology in sawmills, it is possible to optimise log rotational position when sawing. However, choosing a different rotational position than horns down might be detrimental for the board shape after drying, especially for curved logs. Thus, there is a need to investigate at what level of log curve it is possible to freely rotate logs without causing board warp. This study was carried out through a test sawing that was conducted at a sawmill situated in the middle of Sweden. The tests were made on 177 Norway spruce logs, with varying amount of curve. Half of the logs were sawn in the horns-down position, half were sawn rotated perpendicular to horns down. Log shape and warp of the dried boards were measured. The results indicated a relationship between board spring, log curve and choice of rotational position. Furthermore, board bow was related to log curve but not rotational position. It can be concluded that for straight logs, with a bow height of less than 15 mm, an unconventional rotational position does not cause excess spring in the boards. Bow and twist are not affected by the rotational position at all.  相似文献   

11.
This study provides an analysis on the variability of structural timber of Norway spruce (Picea abies) grown in Norway. Density, modulus of elasticity (MOE) and bending strength were measured on 1188 boards from 205 trees, sampled from 14 sites throughout Southern Norway, Eastern Norway and Trøndelag. The area represents the procurement area for the majority of Norwegian sawmills. The variability of the timber properties was analysed in a linear mixed model where the random variance was divided into variance due to site, variance due to trees and within-tree variance. Models describing variance due to site based on site index, altitude and latitude were developed, and combined with data from the Norwegian National Forest Inventory to estimate mean values and variability of the timber properties. The results showed that major parts of the variance due to site are explained by altitude and site index, and for density also by latitude. Major parts of the variance due to site and the variance due to trees in bending strength and MOE were explained by density.  相似文献   

12.
13.
The individual tree growth in stands of mixed Norway spruce (Picea abies (L.) Karst.) and birch (Betula pendula Roth & Betula pubescens Ehrh.) is estimated using basal area and height growth functions for each species separately. The individual tree growth models are distant dependent and the number, size and proximity of neighbours are expressed as size‐ratio competition indices. The competition indices were calculated using a basal area factor gauge to define competitors. The tree growth functions are based on data from nine mixed stands of Norway spruce and birch. The recursive multivariate regression approach is used. The growth functions have standard deviation about the function/standard deviation about the mean (sf/sm) values between 31 and 61% and the evaluations made with root mean square error (rmse) give estimates which vary between 8 and 45 % of the observed mean value. These values are comparable with the precision reported in other studies. In the present investigation the distant dependent indices are important independent variables. It seems suitable to describe the change in growth conditions from retarded to released growth by means of size ratio competition indices. For birch, a positive effect on growth is obtained the more the total competition consists of Norway spruce. For Norway spruce a negative effect on growth is obtained the more the total competition consists of Norway spruce. The lower competitors have a positive effect on the growth of the spruce trees. The interpretation should be that it is better to have a small competitor than a larger one, not that small competitors as such have a positive effect on growth of Norway spruce.  相似文献   

14.
《Southern Forests》2013,75(3-4):137-147
The objectives of this study were to determine the bending strength and stiffness properties of young Pinus elliottii x P. caribaea var. hondurensis timber from the Southern Cape, South Africa, and to evaluate the predictability of these properties from acoustic measurements on standing trees, logs and their sawn boards. The timber has good bending strength (MOR) properties but the mean stiffness (MOEstat) was significantly lower than that required for structural-grade timber. The mean MOEstat was also about 30% lower than a P. radiata control sample. The MOEstat of sawn boards could be predicted from acoustic stress wave measurements on standing trees with a correlation (r) of 0.48 and from acoustic resonance frequency measurements on sawn boards with a correlation of 0.85. The MOR of sawn boards was not significantly correlated with acoustic stress wave measurements on standing trees and only moderately correlated with acoustic resonance frequency measurements on sawn boards (r = 0.45).  相似文献   

15.
When disjoining a log, several factors affect the value of the sawn timber. There are log features, such as outer shape, knots, rot, and so on. There are also sawing parameters, such as sawing pattern, log position, and so on. If full information about log features is available, sawing parameters can be adapted in order to maximize product value in sawmills. This is soon possible, since computed tomography (CT) scanners for the sawmill industry are being realized. This study aimed at investigating how CT data can be used to choose rotational position, parallel displacement, and skew of sawlogs, to maximize the value of the sawn products. The study was made by sawing simulation of 269 CT scanned logs of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] H. Karst.). The results showed that value recovery could be improved by 13% in average, compared to a sawing position based on log outer shape, and 21% compared to sawing logs centered and horns down. It can be concluded that a CT scanner, used in a sawline to optimize sawing parameters, has a large potential for increasing value recovery and thus profit.  相似文献   

16.
The orientation of the tracheid cells with respect to the stem axis (grain angle, spiral grain) exerts a strong influence on numerous material properties. Therefore, several methods have been developed to assess this wood anatomical feature. The current study compares SilviScan spiral grain measurements, which uses X-ray diffractometry, with direct goniometer readings. The correlation between these two methods yielded an r2 of 0.874 and a root mean square error of prediction (RMSEP) of 1.21 clearly demonstrating that X-ray diffractometry can provide accurate and rapid information on the grain orientation in Norway spruce (Picea abies (L.) Karst.) or similar structured softwoods.  相似文献   

17.
Compression wood is formed by the living tree to compensate for external loads. It creates wood fibers with properties undesirable in sawn products. Automatic detection of compression wood can lead to production advantages. A wood surface was scanned with a spectrometer, and compression wood was detected by analyzing the spectral composition of light reflected from the wood surface within the visible spectrum. Linear prediction models for compression wood in Norway spruce (Picea abies) were produced using multivariate analysis and regression methods. The resulting prediction coefficients were implemented in a scanning system using the MAPP2200 smart image sensor combined with an imaging spectrograph. This scanning system is capable of making a pixelwise classification of a wood surface in real time. Classification of one spruce plank was compared with analysis by scanning electron microscopy, showing that the automatic classification was correct in 11 of 14 cases.  相似文献   

18.

Grades of centre and side boards from 277 Norway spruce logs were combined to form binary response variables, here denoted as sorting criteria. Four different grading systems were tested. The log geometry variables unevenness, butt taper and top taper were used in logistic regression models. The classification accuracy ranged from 58 to 83%. The accuracy was higher for visual stress grade criteria than for more complex criteria such as the Nordic timber grading rules. The number of tested criteria and thus possible comparisons limited the ability to establish significant differences. The low associations between board grades within logs and between graders, highlight key issues when developing and improving automatic log sorting systems.  相似文献   

19.
Thirty Norway spruce trees (Picea abies (L.) Karst.) from the forest district of the ETH Zurich were tested for bending MOR, static MOE of bending and dynamic MOE (calculated from eigenfrequency and sound velocity). The specimens were clear and were sampled from the whole of the stem. Their correlations to density, annual ring width, height in the tree, distribution over the stem diameter and the percentage of compression wood were statistically analysed. All three elasticity modules and the maximal stress can be very well predicted from a linear function of the sample density with a common gradient across the compression wood values but with different intercepts that decrease with increasing compression wood content. The other variables have highly significant impacts on the response variables too, however, this is largely irrelevant for the goodness of fit. Further, a clear increase of density, of MOE and of bending MOR was measured from pith to bark and similarly with decreasing annual ring width. Concerning the height of the stem, no distinct trend for the mechanical properties could be found.  相似文献   

20.
Characterisation, quality assessment and property prediction are several of the major industrial challenges for widespread acceptance of thermally modified wood (TMW). This study shows the potential of the multivariate analysis of mid-infrared (MIR) spectral data for the prediction of impact strength, five mechanical parameters in bending, moisture content, weight loss, density and chemical composition of small specimens of thermally modified beech, Norway spruce and Scots pine woods. Anti-swelling efficiency was also studied using DRIFT spectroscopy for spruce wood only. Calibrations were successfully accomplished by partial least-squares regression, with R Y 2 and Q CUM2 values >0.96 for 64 out of 67 models. Predictions were also successful, with relative prediction values >0 and RMSEP:SD ratios <1 in most cases. Changes in the MIR spectra of TMW show that bands arising from the lignin environment and new bands appearing due to the degradation of carbohydrates, giving negative loadings, were related to strength loss, while those bands arising from the polysaccharides were associated with property retention. It is concluded that this approach is a powerful tool to characterise a number of properties of TMW with a single after-treatment measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号