首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root growth conditions in the topsoil as affected by tillage intensity   总被引:1,自引:0,他引:1  
Many studies have reported impeded root growth in topsoil under reduced tillage or direct drilling, but few have quantified the effects on the least limiting water range for root growth. This study explored the effects of tillage intensity on critical soil physical conditions for root growth in the topsoil. Samples were taken from a 7-year tillage experiment on a Danish sandy loam at Foulum, Denmark (56°30′ N, 9°35′ E) in 2008. The main crop was spring barley followed by either dyer's woad (Isatis tinctoria L.) or fodder radish (Raphanus sativus L.) cover crops as subtreatment. The tillage treatments were direct drilling (D), harrowing 8-10 cm (H), and ploughing (P) to 20 cm depth. A chisel coulter drill was used in the H and D treatments and a traditional seed drill in the P treatment. Undisturbed soil cores were collected in November 2008 at soil field moisture capacity from the 4-8 and 12-16 cm depths.We estimated the critical aeration limit from either 10% air-filled porosity (εa) or relative gas diffusivity (D/D0) of 0.005 or 0.02 and found a difference between the two methods. The critical limit of soil aeration was best assessed by measuring gas diffusivity directly. Root growth was limited by a high penetration resistance in the D and H soils (below tillage depth). Poor soil aeration did not appear to be a significant limiting factor for root growth for this sandy loam soil, irrespective of tillage treatment. The soil had a high macroporosity and D/D0 exceeded 0.02 at field capacity. Fodder radish resulted in more macropores, higher gas diffusivity and lower pore tortuosity compared to dyer's woad. This was especially important for the H treatment where compaction was a significant problem at the lower depths of the arable layer (10-20 cm depth). Our results suggest that fodder radish could be a promising tool in the amelioration of soil compaction.  相似文献   

2.
再氧化对土壤的通气性变异的影响   总被引:1,自引:0,他引:1  
The interplay between soil physical parameters during the recovery from anoxic stresses (reoxidation) is largely unrecognized. This study was conducted to characterise the soil aeration status and derive correlations between variable aeration factors during reoxidation. Surface layers (0-30 cm) of three soil types, Haplic Phaeozem, Mollic Gleysol, and Eutric Cambisol (FAO soil group), were selected for analysis. The moisture content was determined for a range of pF values (0, 1.5, 2.2, 2.7, and 3.2), corresponding to the available water for microorganisms and plant roots. The variability of a number of soil aeration parameters, such as water potential (pF), air-filled porosity (Eg), oxygen diffusion rate (ODR), and redox potential (Eh), were investigated. These parameters were found to be interrelated in most cases. There were significant (P < 0.001) negative correlations of pF, Eg, and ODR with Eh. A decrease in water content as a consequence of soil reoxidation was manifested by an increase in the values of aeration factors in the soil environment. These results contributed to understanding of soil redox processes during recovery from flooding and might be useful for development of agricultural techniques aiming at soil reoxidation and soil fertility optimisation.  相似文献   

3.
《Applied soil ecology》2007,35(1):35-45
Enzyme activities play key roles in the biochemical functioning of soils, including soil organic matter formation and degradation, nutrient cycling, and decomposition of xenobiotics. Knowledge of enzyme activities can be used to describe changes in soil quality due to land use management and for understanding soil ecosystem functioning. In this study, we report the activities of the glycosidases (β-glucosidase, α-galactosidase, and β-glucosaminidase), acid phosphatase, and arylsulfatase, involved in C (C and N for β-glucosaminidase), P, and S cycling, respectively, as affected by soil order and land use within a watershed in north-central Puerto Rico (Caribbean). Representative surface soil (0–15 cm) samples were taken from 84.6% of the total land area (45,067 ha) of the watershed using a completely randomized design. The activity of α-galactosidase was greater in soils classified as Oxisols than in soils classified as Ultisols and Inceptisols, and it was not affected by land use. The activity of β-glucosidase was greater in Oxisols compared to the Inceptisols and Ultisols, and it showed this response according to land use: pasture > forest > agriculture. The activity of β-glucosaminidase was higher in Oxisols than the other soil orders, and it was higher under pasture compared to forest and agriculture. Acid phosphatase and arylsulfatase activities were greater in Oxisols and Ultisols than in Inceptisols, and they decreased in this order due to land use: forest = pasture > agriculture. As a group, β-glucosaminidase, β-glucosidase, and acid phosphatase activities separated the sites under forest and pasture from those under agriculture in a three-dimensional plot. Thus, enzyme activities in Inceptisols under agriculture could be increased to levels comparable to other soil orders with conservative practices similar to those under pasture and secondary forest growth. Our findings demonstrate that within this watershed, acid and low fertility soils such as Oxisols and Ultisols have in general higher enzyme activities than less weathered tropical soils of the order Inceptisols, probably due to their higher organic matter content and finer texture; and that the activities of these enzymes respond to management with agricultural practices decreasing key soil biochemical reactions of soil functioning.  相似文献   

4.
Physical properties of field soil vary both spatially and temporally. Because so little information is available concerning the changes in magnitude of soil physical properties as functions of soil depth, distance normal to a crop row, and time, they have largely been ignored in model development. The purpose of this study was to evaluate quantitatively the spatial and temporal variability imposed by several tillage operations on several soil physical properties. Three tillage treatments, replicated 4 times in a randomized complete block design, were (1) conventionally-disked 3 times before planting, (2) full width strip chisel plowed to a 27-cm depth, and (3) in-row-subsoiled plus bedding. Soil physical properties measured were cone index (CI), weight percentage water (Pw), bulk density (Db), soil water characteristic curve, saturated hydraulic conductivity (Ksat) and soil settling. These properties were measured 3 times: immediately after planting soybeans (Glycine max (L.) Merr.) on 16 May; on 3 June; on 8 July 1977. Soil properties were measured at the 0–14, 14–28, and 28–41-cm soil depths at 3 positions relative to the row i.e., in the row, in the trafficked interrow, and in the non-trafficked interrow. Significant differences due to tillage treatment were found for Db, CI, and the soil water characteristic. The greatest spatial variation occurred in the 0–14-cm depth and decreased with depth. Significant differences for most variables were also found for the tillage by depth and tillage by position interactions. All properties exhibited significant temporal variation.  相似文献   

5.
The effects of pearling on the content of phenolics and antioxidant capacity of two Canadian wheat classes, namely, Canada Western Amber Durum; Triticum turgidum L. var. durum; CWAD) and Canada Western Red Spring; Triticum aestivum L.; CWRS) were examined. The antioxidant activity of wheat phenolics was evaluated using oxygen radical absorbance capacity (ORAC), inhibition of photochemiluminescence (PCL), Rancimat method, inhibition of oxidation of low-density lipoprotein, and DNA. The phenolic composition of wheat extracts was determined using high-performance liquid chromatography. The antioxidant capacity of both pearled grains and byproducts significantly decreased as the degree of pearling increased. Among grains, the unprocessed whole grains demonstrated the highest antioxidant capacity. The byproducts always demonstrated higher antioxidant capacity compared to the pearled grains, regardless of the wheat class. The resultant byproducts from 10-20% pearling possessed the highest antioxidant capacity. Processing of cereals may thus exert a significant effect on their antioxidant activity. The concentration of grain antioxidants is drastically reduced during the refining process. As phenolic compounds are concentrated in the outermost layers, the bran fractions resulting from pearling may be used as a natural source of antioxidants and as value-added products in the preparation of functional food ingredients or for enrichment of certain products.  相似文献   

6.
Due to the existence of gravelly soils and the lack of sufficient research on such soils, this study was carried out on a gravelly calcareous soil. Selected physico–chemical and hydraulic soil attributes were determined at 69 points on a nested-sampling design. Hydraulic characteristics including unsaturated hydraulic conductivity (K ψ) and sorptivity coefficient (S) at six applied tensions of 0 to 0.2 m, and sorptive number (α) and macroscopic capillary length (λ) at five applied tensions of 0.03 to 0.2 m were determined using a tension disc infiltrometer. Hydraulic and chemical soil attributes were the highest and the lowest variants, respectively. The maximum and minimum values for the coefficient of variation (CV) in all the measured physico-chemical and hydraulic soil attributes were obtained for α0.2 and soil pH, respectively. Minimum, maximum, mean and variance values of K ψ, S and α decreased as applied tension increased. Although the pattern was reversed for λ. The majority of soil attributes showed the spatial structure with dominant spherical and exponential models for physico-chemical and hydraulic attributes, respectively. Range values of semi-variograms were obtained between 4.6 m (for α0.03) and 211 m (for clay, gravel content and soluble Mg). In general, range values were 99.60, 82.05 and 40.2 m for physical, chemical and hydraulic soil attributes, respectively, indicating that the physical soil attributes influenced neighboring values over greater distances than the other soil attributes. This enables soil scientists to use measured soil physical data over greater distances to estimate attributes in the unsampled locations.  相似文献   

7.
Spatial variability of greenhouse gas (GHG) emissions from agricultural lands is not well known although it has a great impact on the accuracy of GHG budget.The objectives of this study were to assess the spatial variability of CO2 emission fluxes (CO2-flux) and correlate these emissions with soil physico-chemical properties at two spatial scales and at different depths using a new geostatistical approach (coregionalization analysis with a drift, CRAD) that performs multiscale spatial analysis.Two agricultural sites with sandy and loamy soils were instrumented at 108 geo-referred sampling points and at two depths during spring 2007 where soil surface CO2-flux and soil physico-chemical parameters were measured. The CO2-flux presented spatial patterns characterized by different scales (i.e., non-spatial, small spatial and large spatial scale components), each describing a different fraction of its variability. About a quarter of CO2-flux variability at the first site and one fifth at the other site was attributed to the non-spatial component. Strongest correlations were obtained between CO2-flux and soil temperature, water saturation (Sw), elevation, electrical conductivity, soil bulk density, and the C/N ratio, but with differences between sites. Correlations were much stronger at large scale. Analyzing correlations between CO2-flux and soil properties without discriminating for scales can miss important scale-dependent processes controlling soil gas emissions. Scales at which these processes vary should therefore be taken into account.  相似文献   

8.
9.
10.
In an attempt to investigate variations in availability of native and applied phosphorus (P) with time, twenty five calcareous soil samples were treated with 0, 50 and 500 mg P kg?1 soil and incubated at 80–90% of field capacity moisture content in an open door glasshouse for a period of one year. Soil samples were taken out at certain intervals for P extraction with Olsen extractant under moist condition. Results indicated that following wetting the mean value of native Olsen-P decreased initially and then increased gradually with time of incubation. Generally, the short term (24 h) recoveries were not correlated with long term ones. The recovery of added P with time was described properly by the following new proposed model: R = 100/(1 + ktb), where R is percent recovery at time t, and k and b are empirical parameters. The values of k constant at 50 and 500 mg P kg?1 were in the ranges of 0.40 to 1.22 (0.84 ± 0.25, on average) and 0.04 to 0.52 (0.23 ± 0.14, on average), respectively. The corresponding respective values of b constant also ranged from 0.05 to 0.32 (0.15 ± 0.06, on average) and 0.12 to 0.92 (0.46 ± 0.23, on average).  相似文献   

11.
Abstract

The effect of soil clay size phyllosilicates, particle size, and iron oxides on the activities of α‐ and β‐glucosidases, phosphomonoesterases, and urease were examined. The two clay fractions (0.2–2 and <0.2 μm) of selected soils had similar mineralogy and were illitic, kaolinitic, and smectitic in composition. In general, enzyme activities were reduced in the presence of clay size phyllosilicates. The montmorillonitic samples were the most effective inhibitors. Activities were generally lower in the presence of the finer clay fractions. The effect of iron oxides on enzyme activities varied. Acid phosphatase activity was significantly influenced by phyllosilicate type, iron oxides, and particle size. The inhibitory effect of phyllosilicates on acid phosphatase activity increased when iron oxides were removed from the clay fraction. Removal of iron oxides, on the other hand, enhanced the activity of alkaline phosphatase. Unlike β‐glucosidase, α‐glucosidase was deactivated in the presence of montmorillonitic and illitic samples regardless of clay particle size. The activity of urease was significantly reduced in the presence of iron oxides.  相似文献   

12.
Abstract

Little is known about the effects of long-term fertilization on pesticide persistence. A long-term field experiment was thus conducted to study the influence of fertilization on soil physicochemical properties, microbial biomass carbon, microbial quotient, enzyme activities, and cypermethrin dissipation. Five fertilization treatments were arranged: organic manure (OM), NPK fertilizer, PK fertilizer, NK fertilizer, and no fertilizer (control). Soil organic C, N, P contents and enzymatic activities were higher in soils with balanced fertilization as opposed to those with unbalanced fertilization, especially fertilization with organic manure. The longest half-life of cypermethrin was in the NK treatment (15.1 d), the least in the PK treatment (9.6 d). Pesticide dissipation in non-sterilized and sterilized soils showed that changes of cypermethrin persistence were caused by biodegradation. Soil N/P ratio (ratio of soil-available N to available P) and available N content positively correlated with half-life (p<0.05), and could limit cypermethrin dissipation greatly. These results indicate that in agricultural practice, oversupplying N should not be advocated. P application may be an efficient way to decrease N/P ratio and enhance cypermethrin dissipation in soil with high available N content. Based on a comprehensive consideration of soil fertility, crop yield, and environment, a mixed application of organic manure and inorganic fertilizers is recommended in the region, although balanced fertilization results in slower cypermethrin dissipation than does N-deficiency treatment.  相似文献   

13.
Abstract

The Olsen solution is usually considered the best extractant for estimating P availability in calcareous soils, but predictability of the response to P fertilizers is often low under field conditions. In this study, soil characteristics influencing P sorption and extractability were evaluated. Forty‐one soils varying in CaCO3, pH, and clay content were selected from pastures to minimize the effect of recent P additions. A P sorption index (PSI) determined from a single addition of 150 mg P/100 g soil was related to soil Ca and CaCO3, but the correlation coefficients were rather low (r = 0.46 and 0.38, respectively). A P availability index (PAI), determined from the increase in extractable soil P after adding 50 mg P/kg to a suspension and allowing it to dry, was correlated quite well with cation exchange capacity and clay content (r = ‐0.61 for each) in soils with pH < 8.8. The PAI also had a positive relationship with the density of the processed soil sample (r = 0.60). The relationship between PAI and soil Ca (r = ‐0.51) was also better than that between PSI and soil Ca. Inclusion of initial soil P and organic carbon along with CEC increased the predictability of PAI from 37% to 59%. In soils with pH > 8.8, soil pH was the dominant factor controlling the PAI (r = 0.92).  相似文献   

14.
A forest ecosystem study was conducted along a deposition gradient of air pollutants in old Scots pine stands located near the industrial belt around the city of Bitterfeld in northeast Germany from 1999 to 2000. In order to estimate the impact of different atmospheric deposition loads on microbial biomass and enzyme activities, samples were taken from the forest floor (L, F, and H horizon) and the mineral topsoil (0–10 cm). The emission-induced increases in ferromagnetic susceptibility, soil pH, concentrations of mobile (NH 4NO 3 extractable) Cr and Ni, effective cation exchange capacity, and base saturation in the humus layer along the 25-km long transect reflected that great portions of the past depositions were characterized by alkaline fly ash. Alkaline depositions significantly ( P <0.05) decreased the microbial biomass C and N contents, microbial biomass C-to-organic C ratios, and microbial respiration rates, but increased the metabolic quotient (qCO 2) of the mineral topsoil and forest floor. Variations in microbial biomass and activity can mainly be predicted ( r 2 =0.60) by the concentrations of Ca, Zn and Cd in these forest soils. The specific activities (activity kg -1 organic C) of l-asparaginase, l-glutaminase, arylsulfatase, and in part, acid phosphatase were significantly ( P <0.05) higher at forest sites receiving higher fly ash loads than those of the other sites, and thus followed the trend of the qCO 2. In contrast, the specific activity of ß-glucosidase was significantly ( P <0.05) decreased at heavily affected sites compared to moderate and less affected sites, suggesting an inhibition of C mineralization in the forest floor of pine stands affected by predominantly alkaline emissions. A great portion ( r 2=0.91) of the variation in the specific enzyme activity data in forest soils in emission areas can be predicted from a linear combination of the variables total organic C and NH 4Cl-extractable Ca, pH and effective cation exchange capacity.  相似文献   

15.
Dynamics of soil hydraulic properties during fallow as affected by tillage   总被引:2,自引:0,他引:2  
There is limited information on the effects of tillage practices on soil hydraulic properties, especially changes with time. The objective of this study was to evaluate on a long-term field experiment the influence of conventional tillage (CT), reduced tillage (RT) and no-tillage (NT) on the dynamics of soil hydraulic properties over 3 consecutive 16–18 month fallow periods. Surface measurements of soil dry bulk density (ρb), soil hydraulic conductivity (K(ψ)) at −14, −4, −1 and 0 cm pressure heads using a tension disc infiltrometer, and derived hydraulic parameters (pore size, number of pores per unit of area and water-transmission porosity) calculated using the Poiseuille's Law were taken on four different dates over the fallow period, namely, before and immediately after primary tillage, after post-tillage rains and at the end of fallow. Under consolidated structured soil conditions, NT plots presented the most compacted topsoil layer when compared with CT and RT. Soil hydraulic conductivity under NT was, for the entire range of pressure head applied, significantly lower (P < 0.05) than that measured for CT and RT. However, NT showed the largest mean macropore size (0.99, 0.95 and 2.08 mm for CT, RT and NT, respectively; P < 0.05) but the significantly lowest number of water-conducting pores per unit area (74.1, 118.5 and 1.4 macropores per m2 for CT, RT and NT, respectively; P < 0.05). Overall, water flow was mainly regulated by macropores even though they represented a small fraction of total soil porosity. No significant differences in hydraulic properties were found between CT and RT. In the short term, tillage operations significantly increased K (P < 0.05) for the entire range of pressure head applied, which was likely a result of an increase in water-conducting mesopores despite a decrease in estimated mesopore diameter. Soil reconsolidation following post-tillage rains reduced K at a rate that increased with the intensity of the rainfall events.  相似文献   

16.

Purpose

The interaction of mercury with organic matter was studied on three soils with distinct physical-chemical compositions (Fluvisol, Luvisol, and Chernozem) and three vermicomposts based on various bio-waste materials (digestate, kitchen waste with woodchips, and garden bio-waste).

Materials and methods

Laboratory batch experiments, in which organic matter composition was modeled by adding graded doses of vermicompost to individual soils, were carried out. The composition of organic matter in these vermicomposts was assessed via fractionation of humic acids, fulvic acids, hydrophilic compounds, and possible hydrophobic neutral organic matter. Furthermore, the samples were artificially contaminated with inorganic and organic mercury. Prepared samples were stored under constant temperature of 25 °C. The incubation experiments lasted for 56 days, in which the samples were taken ten times. During the experiments, the changes in mercury mobile phase amount were observed, and the influence of the source of contamination was evaluated.

Results and discussion

The amount of mobile mercury increased and then decreased during the time. In most of the soils and vermicompost combinations, the content of mercury bound to the soil was stable after 21 days. The effects of the mercury source on the exchangeable portion of Hg in the soils were most obvious in samples without added vermicompost. Nevertheless, differences between mobile inorganic and organic forms of Hg were lower in the case of Fluvisol compared to other soils. Moreover, in this soil, the content of available mercury was higher than from others.

Conclusions

In general, the smallest differences between mobile inorganic and organic forms of Hg were observed in the case of soil with the highest content of organic matter. Also higher doses of vermicomposts decreased the amount of mercury mobile phase available. Additionally, the largest positive influence of vermicompost dose on Hg mobility was measured in soils combined with vermicompost with the highest portion of humic acids.
  相似文献   

17.
Synthetic polymers are currently being used as water additives to control wildfires and prescribed burns. This laboratory study examines the effects of one of these acrylic-based polymers (Firesorb) on some biochemical properties (microbial biomass C, hydrolysis of FDA, #-glucosidase, urease and N mineralization) of two coarse textured soils (loamy sand and sandy loam) under pinewood located at Galicia (NW Spain). Firesorb was added to unheated and heated soil samples at two levels of application (1 and 3 times the recommended dose) and measurements were made after 6 and 12 weeks of aerobic incubation. The results obtained for both soils at different incubation times were found to be comparable. Except for N mineralization, which was reduced by Firesorb addition, in both unheated and heated soils, the Firesorb-treated samples showed similar or significantly higher values for the biochemical parameters analyzed than those in the untreated control soils. This finding suggests that under these assay conditions the synthetic polymer used as a fire-fighting chemical had no adverse effects on soil microbial communities.  相似文献   

18.
Changes in the viscosity properties of gamma-irradiated rice starches (from 1 to 25% amylose content) from four genotypes (JY293, Jiayu 293; XS, Xiushui; ZF504, Zhefu 504; and ZXN, Zaoxiannuo) during pasting in water (pH 7) or in different pH solutions were studied using a rapid visco analyzer. Peak viscosity (PV) of all native rice starches was little affected at pH 4 and 10, while hot paste viscosity (HPV) and cool paste (final) viscosity (CPV) were generally lower at pH 4 and higher at pH 10 as compared with that at pH 7. The PV, HPV, and CPV of gamma-irradiated starches were higher at pH 4 and lower at pH 10 than pH 7. All viscosity characteristics of native rice starches were reduced in stronger alkali (pH 11.5) or acidic (pH 2.5) solutions. However, the gamma-irradiated starches were substantially higher at pH 2.5 but lower at pH 11.5, indicating that the effect of irradiation was highly pH dependent. The swelling volume of irradiated ZF504 and JY293 starch at all irradiation levels was higher at pH 4 than pH 7, while the values were lowest at pH 2.5. The irradiated ZXN and XS starches had higher swelling volumes at pH 4 and pH 2.5 than pH 7. Differential scanning calorimetry analysis showed that gamma-irradiation caused progressively lower gelatinization peak temperature (T(p)) and higher gelatinization range (T(r)) at pH 7. T(p) was higher and T(r) was lower at a much stronger acidic condition (pH 1) for both native and irradiated starches. The possibility of using viscosity changes in low pH for the detection of irradiated starch was discussed.  相似文献   

19.
Aggregate stability is a fundamental property influencing soil erodibility and hydraulic characteristics. Knowledge of soil components controlling aggregate stability is very important to soil structure conservation. The objective of this study, which was carried out in surface soils from central Greece, was to relate wet aggregate stability to selected soil properties, with emphasis on excessive free carbonate content. The wet‐sieving technique of air‐dried aggregates was used for structural stability evaluation, according to a test that calculates an instability index. The soils studied were developed on Tertiary marly parent material and ranged in calcium carbonate content from 5 to 641 g kg−1. From the texture analysis before and after removal of carbonates, it was concluded that carbonates mainly contributed to total silt and sand fractions, that is to the mechanical fractions which, as a rule, negatively affect aggregate stability. The results of the correlation analysis showed that aggregate stability was positively affected by aluminosilicate clay content, cation exchange capacity (CEC) and Al‐containing sesquioxides. Clay fraction from carbonates and total sand and silt negatively affected aggregate stability. CEC has been proved a very significant determinant of aggregate stability, which in a hyperbolic form relationship with instability index explained 78·9 per cent of aggregate stability variation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The study of spatial variability in the chemical and physical properties of topsoil horizons of southern chernozems and chestnut soils at characteristic distances of less than 150, 150–800, and 800–2000 m proved that the spatial distribution of the studied properties is different for these two soils. In the southern chernozems, the maximum variability at short (<150 m) distances was observed for the organic carbon content and pH values. The contents of clay (<0.001 mm) and physical clay (<0.01 mm) fractions and the content of total nitrogen displayed the maximum variability at distances of 150–800 m. At distances of >800 m, the distribution of all the studied properties was characterized by quasiperiodicity. In the chestnut soils, the maximum variability in the contents of the clay, physical clay, and total nitrogen was observed at short distances, whereas the variability of the organic carbon content and pH values was maximum at distances of 150–800 m. At the distances of 800–2000 m, only the variability in the clay fraction content followed a quasiperiodic pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号