首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Carbon (C) flux is largely controlled by the highly bio-reactive labile C (LC) pool, while long-term C storage is determined by the recalcitrant C (RC) pool. Soil nitrogen (N) availability may considerably affect changes of these pools. The aim of this study was to investigate the effects of N treatments on soil LC and RC pools.

Materials and methods

A field experiment was conducted in a city lawn soil for 600 days with three N treatments, i.e., the control (0 kg N ha?1 year?1), low-N (100 kg N ha?1 year?1), and high-N (200 kg N ha?1 year?1) treatments. As the N source, NH4NO3 solution was added to soil surface monthly. Measurements of LC, RC, and other soil biochemical properties, including pH, soil respiration rates, microbial biomass, and enzymes activities, were taken during the experiment period.

Results and discussion

The low-N and high-N treatments increased 6.3 and 13% of the LC pool, respectively, which was caused by decreased microbial biomass and soil respiration rates under the N treatments. By contrary, the low-N and high-N treatments decreased 5.9 and 12% of the RC pool, respectively. The N addition treatments enhanced phenol oxidase activities. The enhanced oxidase activities decreased new RC input and the increased dissolved organic C stimulated RC pool decomposition. The LC and RC pools were highly influenced by the N treatments, whereas effect of the N treatments on soil organic C was not significant. The N addition treatments also caused soil acidification and reduced bacterial biomass proportion in the soil microbial composition.

Conclusions

The N addition increased the LC pool but decreased the RC pool in the soil. These changes should greatly impact soil long-term C storage.  相似文献   

2.
Plants and microbes have limited stoichiometric flexibility to take up and store nitrogen (N) and phosphorus (P). Variation in the relative availability of N and P to plants and microbes may therefore affect how strongly N and P are held in terrestrial ecosystems with important implications for net primary productivity and carbon sequestration. We hypothesized that an increase in P availability in a P-poor soil would increase N uptake by plants and microbes thereby reducing N loss. We grew mixtures of the C3 grass Phalaris aquatica L. and the legume Medicago sativa L. in mesocosms with soils low in P availability and then used a novel technique by adding a 15N tracer with and without 1 g P m−2 to soil with different moisture and available N conditions, and measured the 15N recovery after 48 h in microbes, plants and soil. In contrast to our hypothesis, we found that P addition reduced 15N in microbes without water stress by 80% and also reduced total15N recovery, particularly without water stress. Water stress in combination with N addition further showed low total 15N recovery, possibly because of reduced plant uptake thereby leaving more 15N in the soil available for nitrification and denitrification. Our results suggest that P addition can result in large gaseous N loss in P-poor soils, most likely by directly stimulating nitrification and denitrification.  相似文献   

3.
《Pedobiologia》2014,57(4-6):263-269
Nitrogen (N) availability is an important factor that determines ecosystem productivity and respiration, especially in N-limited alpine ecosystems. However, the magnitude of this response depends on the timing and amounts of N input. Moreover, we have only a limited understanding of the potential effects of the timing of N fertilization on ecosystem carbon (C) and N processes, and activities of the soil microbes. A nitrogen fertilization experiment was conducted in an alpine meadow on the Tibetan Plateau to determine how plant productivity and ecosystem respiration (RE) respond to the timing and amount of N application. In this study, half of the N was added either in the early spring (ES), before the growing season, or in the late fall (LF), after the growing season. All treatments received the other half of the N in mid-July. Three N levels (10, 20, 40 kg N hm−2 yr−1) were used for each of two N treatments, with no N addition used as a control. Plant aboveground biomass, ecosystem respiration (RE) and soil respiration (RS) were measured for the 2011 and 2012 growing seasons. The LF treatment enhanced ecosystem CO2 efflux compared with the ES treatment at high N addition levels, resulting from an increase of soil dissolved organic C (DOC) and soil microbial activity. The ES treatment resulted in increased plant aboveground biomass when compared with LF during both growing seasons, although this increase accounted for little variation in ecosystem and soil respiration. Overall, the ES treatment is likely to increase the ecosystem C pool, while the LF treatment could accelerate ecosystem C cycling, especially for the high N treatment. Our results suggest that supplying N during the early stage of the growing season benefits both forage production and soil C sequestration in this alpine ecosystem.  相似文献   

4.
Many studies have shown that changes in nitrogen (N) availability affect the diversity and composition of soil microbial community in a variety of terrestrial systems, but less is known about the responses of microbes specific to biological soil crusts (BSCs) to increasing N additions. After seven years of field experiment, the bacterial diversity in lichen-dominated crusts decreased linearly with increasing inorganic N additions (ambient N deposition; low N addition, 3.5 g N m−2 y−1; medium N addition, 7.0 g N m−2 y−1; high N addition, 14.0 g N m−2 y−1), whereas the fungal diversity exhibited a distinctive pattern, with the low N-added crust containing a higher diversity than the other crusts. Pyrosequencing data revealed that the bacterial community shifted to more Cyanobacteria with modest N additions (low N and medium N) and to more Actinobacteria and Proteobacteria and much less Cyanobacteria with excess N addition (high N). Our results suggest that soil pH, together with soil organic carbon (C), structures the bacterial communities with N additions. Among the fungal communities, the relative abundance of Ascomycota increased with modest N but decreased with excess N. However, increasing N additions favored Basidiomycota, which may be ascribed to increases in substrate availability with low lignin and high cellulose contents under elevated N conditions. Bacteria/fungi ratios were higher in the N-added samples than in the control, suggesting that the bacterial biomass tends to dominate over that of fungi in lichen-dominated crusts after N additions, which is especially evident in the excess N condition. Because bacteria and fungi are important components and important decomposers in BSCs, the alterations of the bacterial and fungal communities may have implications in the formation and persistence of BSCs and the cycling and storage of C in desert ecosystems.  相似文献   

5.
Farmyard manure (FYM) and fertilizer applications are important management practices used to improve nutrient status and organic matter in soils and thus to increase crop productivity and carbon (C) sequestration. However, the long-term effects of fertilization on C, nitrogen (N) and sulfur (S) associated with aggregates, especially on S are not fully understood. We investigated the effects of more than 80 years of FYM (medium level of 40 Mg ka−1 and high level of 60 Mg ka−1) and mineral fertilizer (NPKS and NK) on the concentrations and pools of C, N, and S and on their ratios in bulk soil, dry aggregates and water stable aggregates on an Aquic Eutrocryepts soil in South-eastern Norway. A high level of FYM and NPKS application increased the proportion of small dry aggregates (<0.6 mm) by 8%, compared with the control (without fertilizer). However, both medium and high level of FYM application increased the proportion of large water stable aggregates (>2 mm) compared with mineral fertilizer (NPKS and NK). The total C and N pools in bulk soils were also increased in FYM treatments but no such increase was seen with mineral fertilizer treatments. The increased total S pool was only found under high level of FYM application. Water stable macroaggregates (>2 and 1–2 mm) and microaggregates (<0.106 mm) contained higher concentrations of C, N and S than the other aggregate sizes, but due to their abundance, medium size water stable aggregates (0.5–1 mm) contained higher total pools of all three elements. High level of FYM application increased the C concentration in water stable aggregates >2, 0.5–1 and <0.106 mm, and increased the S concentration in most aggregates as compared with unfertilized soils. Higher C/N, C/S and N/S ratios were found both in large dry aggregates (>20 and 6–20 mm) and in the smallest aggregates (<0.6 mm) than in other aggregate sizes. In water stable aggregates, the C/N ratio generally increased with decreasing aggregate size. However, macroaggregates (>2 mm) showed higher N/S ratios than microaggregates (<0.106 mm). We can thus conclude, that long-term application of high amounts of FYM resulted in C, N and S accumulation in bulk soil, and C and S accumulation in most aggregates, but that the accumulation pattern was dependent on aggregate size and the element (C, N and S) considered.  相似文献   

6.
This study determined temporal variability in N pools, both aboveground and belowground, across two contrasting plant communities in high-Arctic Spitsbergen, Svalbard (78°N). We measured N pools in plant material, soil microbial biomass and soil organic matter in moist (Alopecurus borealis dominated) and dry (Dryas octopetala dominated) meadow communities at four times during the growing season. We found that plant, microbial and dissolved inorganic and organic N pools were subject to significant, but surprisingly low, temporal variation that was controlled primarily by changes in temperature and moisture availability over the short growing season. This temporal variability is much less than that experienced in other seasonally cold ecosystems such as alpine tundra where strong seasonal partitioning of N occurs between plant and soil microbial pools. While only a small proportion of the total ecosystem N, the microbial biomass represented the single largest of the dynamic N pools in both moist and dry meadow communities (3.4% and 4.6% of the total ecosystem N pool, respectively). This points to the importance of soil microbial community dynamics for N cycling in high-Arctic ecosystems. Microbial N was strongly and positively related to soil temperature in the dry meadow, but this relationship did not hold true in the wet meadow where other factors such as wetter soil conditions might constrain biological activity. Vascular live belowground plant parts represented the single largest plant N pool in both dry and moist meadow, constituting an average of 1.6% of the total N pool in both systems; this value did not vary across the growing season or between plant communities. Overall, our data illustrate a surprisingly low growing season variability in labile N pools in high-Arctic ecosystems, which we propose is controlled primarily by temperature and moisture.  相似文献   

7.
Cultivated soils in the Everglades are being converted to their historic use as pastures or seasonally flooded prairies as parts of restoration efforts, but long-term cultivation may have altered soil P distribution and availability which may pose eutrophication hazards upon change in land use. The objectives of this study were to determine the distribution of P in soil chemical and physical fractions for contrasting long-term land management practices. The distribution of P in labile, Fe–Al bound, Ca bound, humic–fulvic acid, and residual pools in five aggregate-size fractions were measured for fields under sugarcane (Saccharum sp.) cropping for 50 years and perennial pasture for 100 years. Both land uses were characterized by a high degree of macroaggregation, as aggregates >0.25 mm contained 76 and 83% of the total soil under cultivation and pasture, respectively. Soils under sugarcane sequestered a total of 77 kg ha−1 more P than pasture at 0–15 cm. The distribution of P in chemical fractions significantly varied between land uses as cultivation increased P sequestration in Ca-bound fractions more for sugarcane (244 kg P ha−1) than pasture (65 kg P ha−1). Pasture sequestered more P in organic pools, as storage in humic–fulvic acid and residual fractions were 26 and 25%, respectively, higher than sugarcane. Labile P was 100% higher for pasture than sugarcane, but Fe–Al bound P storage did not differ between land uses. Aggregation increased P sequestration in humic–fulvic acid and residual fractions, and P storage in organic pools increased with increasing aggregate size. In contrast, cultivation decreased aggregation and increased P accumulation in inorganic fractions. Long-term cultivation altered the distribution of soil P from organic to inorganic pools. The P stored in inorganic pools is stable under current land use, but may be unstable and pose eutrophication hazards upon onset of future land use change to the seasonally flooded prairie ecosystem.  相似文献   

8.
Soil microorganisms secrete enzymes used to metabolize carbon (C), nitrogen (N), and phosphorus (P) from the organic materials typically found in soil. Because of the connection with the active microbial biomass, soil enzyme activities can be used to investigate microbial nutrient cycling including the microbial response to environmental changes, transformation rates and to address the location of the most active biomass. In a 9-year field study on global change scenarios related to increasing N inputs (ambient to 15 g N m−2 yr−1) and precipitation (ambient to 180 mm yr−1), we tested the activities of soil β-glucosidase (BG), N-acetyl-glucosaminidase (NAG) and acid phosphomonoesterase (PME) for three soil aggregate classes: large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm) and microaggregates (<250 μm). Results showed higher BG and PME activities in micro-vs. small macroaggregates whereas the highest NAG activity was found in the large macroaggregates. This distribution of enzyme activity suggests a higher contribution of fast-growing microorganisms in the micro-compared with the macroaggregates size fractions. The responses of BG and PME were different from NAG activity under N addition, as BG and PME decreased as much as 47.1% and 36.3%, respectively, while the NAG increased by as much as 80.8%, which could imply better adaption of fungi than bacteria to lower soil pH conditions developed under increased N. Significant increases in BG and PME activities by as much as 103.4 and 75.4%, respectively, were found under water addition. Lower ratio of BG:NAG and higher NAG:PME underlined enhanced microbial N limitation relative to both C and P, suggesting the repression of microbial activity and the accompanied decline in their ability to compete for N with plants and/or the accelerated proliferation of soil fungi under elevated N inputs. We conclude that changes in microbial activities under increased N input and greater water availability in arid- and semi-arid grassland ecosystems where NPP is co-limited by N and water may result in substantial redistribution of microbial activity in different-sized soil particles. This shift will influence the stability of SOM in the soil aggregates and the nutrient limitation of soil biota.  相似文献   

9.
Soil microbial organisms are central to carbon (C) and nitrogen (N) transformations in soils, yet not much is known about the stable isotope composition of these essential regulators of element cycles. We investigated the relationship between C and N availability and stable C and N isotope composition of soil microbial biomass across a three million year old semiarid substrate age gradient in northern Arizona. The δ15N of soil microbial biomass was on average 7.2‰ higher than that of soil total N for all substrate ages and 1.6‰ higher than that of extractable N, but not significantly different for the youngest and oldest sites. Microbial 15N enrichment relative to soil extractable and total N was low at the youngest site, increased to a maximum after 55,000 years, and then decreased slightly with age. The degree of 15N enrichment of microbial biomass correlated negatively with the C:N mass ratio of the soil extractable pool. The δ13C signature of soil microbial biomass was 1.4‰ and 4.6‰ enriched relative to that of soil total and extractable pools respectively and showed significant differences between sites. However, microbial 13C enrichment was unrelated to measures of C and N availability. Our results confirm that 15N, but not 13C enrichment of soil microbial biomass reflects changes in C and N availability and N processing during long-term ecosystem development.  相似文献   

10.
Carbon (C) and nitrogen (N) fluxes are largely controlled by the small but highly bio-reactive, labile pools of these elements in terrestrial soils, while long-term C and N storage is determined by the long-lived recalcitrant fractions. Changes in the size of these pools and redistribution among them in response to global warming may considerably affect the long-term terrestrial C and N storage. However, such changes have not been carefully examined in field warming experiments. This study used sulfuric acid hydrolysis to quantify changes in labile and recalcitrant C and N fractions of soil in a tallgrass prairie ecosystem that had been continuously warmed with or without clipping for about 2.5 years. Warming significantly increased labile C and N fractions in the unclipped plots, resulting in increments of 373 mg C kg−1 dry soil and 15 mg N kg−1 dry soil, over this period whilst clipping significantly decreased such concentrations in the warmed plots. Warming also significantly increased soil microbial biomass C and N in the unclipped plots, and increased ratios of soil microbial/labile C and N, indicating an increase in microbial C- and N-use efficiency. Recalcitrant and total C and N contents were not significantly affected by warming. For all measured pools, only labile and microbial biomass C fractions showed significant interactions between warming and clipping, indicating the dependence of the warming effects on clipping. Our results suggest that increased soil labile and microbial C and N fractions likely resulted indirectly from warming increases in plant biomass input, which may be larger than warming-enhanced decomposition of labile organic compounds.  相似文献   

11.
Understanding the store and storage potential of carbon (C) and nitrogen (N) helps us understand how ecosystems would respond to natural and anthropogenic disturbances under different management strategies. We investigated organic C and N storage in aboveground biomass, litter, roots, and soil organic matter (SOM) in eight sites that were floristically and topographically similar, but which had been subjected to different intensities of disturbance by grazing animals. The primary objective of this study was to ascertain the impact of grazing exclusion (GE) on the store and storage potential of C and N in the Leymus chinensis Tzvel. grasslands of northern China. The results revealed that the total C storage (including that stored in aboveground biomass, litter, roots, and SOM, i.e. top 100-cm soil layer) was significantly different among the eight grasslands and varied from 7.0 kg C m−2 to 15.8 kg C m−2, meanwhile, the total N storage varied from 0.6 kg N m−2 to 1.5 kg N m−2. The soil C storage decreased substantially with grassland degradation due to long-term heavy grazing. 90% C and 95% N stored in grasslands were observed in the SOM, and they were minor in other pools. The limit range of C and N storage observed in these grassland soils suggests that GE may be a valuable mechanism of sequestering C in the top meter of the soil profile.  相似文献   

12.
Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m−2 y−1) significantly increased soil CO2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m−2 y−1) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q10) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.  相似文献   

13.
Previous studies have suggested grazing may alter nitrogen (N) cycling of grasslands by accelerating or decelerating soil net N mineralization. The important mechanisms controlling these fluxes remain controversial, and more importantly, the consequences on carbon storage and site productivity remain uncertain. Here we present results on the seasonal patterns of soil inorganic N pools and net N mineralization and their linkages to ecosystem functioning from a grazing experiment in the Inner Mongolia grassland, which has been maintained for five years with 7 levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep ha−1). Net N mineralization and nitrification rates were determined using an in situ soil core incubation method. Our findings demonstrated that, in the non-growing season, the net N mineralization rate was reduced by 181% in the lightly and moderately grazed plots (1.5-4.5 sheep ha−1) and by 147% in the heavily grazed plots (6.0-9.0 sheep ha−1), and the net N immobilization was observed in all grazed treatments. In the early growing season, however, it was increased by 107% in the lightly and moderately grazed plots and by 128% in the heavily grazed plots. In the peak growing season, grazing diminished the net mineralization rate by 71% in the lightly and moderately grazed plots and 108% in the heavily grazed plots. The seasonally dependent effects of grazing on soil inorganic N pools and net N mineralization were strongly mediated by grazing-induced changes in soil temperature and moisture, with soil moisture being predominant in the peak growing season. Grazing alterations of soil inorganic N and net N mineralization were closely linked to the changes in aboveground primary productivity, biomass N allocation, N use efficiency, and soil total nitrogen. Based upon the five year study, we conclude that grazing at moderate to high intensities is unsustainable in terms of productivity and soil N cycling and storage in these systems.  相似文献   

14.
Freeze-thaw fluctuations in soil temperature may be critical events in the annual pattern of nutrient mobilisation that supplies plant growth requirements in some temperate, and most high latitude and high altitude ecosystems. We investigated the effects of two differing freeze-thaw regimes, each of which is realistic of in situ spatial and temporal variation in field conditions, on C and N dynamics in sub-arctic heath tundra mesocosms. In addition, 15N isotopic label was used to follow the partitioning of a labile N pool between major ecosystem components, both during the freeze-thaw treatments phase, and in a subsequent equilibration phase. A single deep freeze treatment phase enhanced dissolved total and labelled N pools in the soil solution at initial thaw, and resulted in reduced pool sizes at the end of the equilibration phase. By contrast, a multiple freeze-thaw cycling treatment directly enhanced the dissolved labelled N pool, but did not significantly affect dissolved total N. Furthermore, both dissolved labelled N and dissolved total N pools were significantly enhanced in the equilibration period following multiple freeze-thaw, the latter due to a marked increase in soil solution NH4+. Microbial biomass C was not significantly affected by either of the freezing treatments upon final thaw, but was significantly reduced over the combined treatment and equilibration phases of the multiple freeze-thaw regimes. Furthermore, the treatments had no significant effects on total or labelled N within the microbial biomass over either phase. Total mesocosm CO2 efflux rates remained closely correlated with soil temperature throughout the experiment in both regimes, suggesting that respiratory flushes associated with treatment-induced microbial cell lysis were negligible. Together, these results indicate that moderate freeze-thaw fluctuations may have minimal influences on microbial biomass pools, but nevertheless can have strong contrasting effects on the amounts, forms, and timing of N and organic C supply into the soil solution. Ecosystem losses via N2O effluxes were of greatest magnitude immediately upon thawing in both treatments, and were of similar total magnitude to inorganic N leachates in throughflow. Herb leaves, total fine roots, and vascular stems accumulated some 15N label in one or both of the freezing treatments by the end of the experiment. Together, these results indicating very small N losses relative to the magnitudes of internal transfers, suggest tight ecosystem N cycling both during and after freeze-thaw events. Furthermore, our small and subtle effects on microbial and soluble C and N pools relative to previous studies using more severe regimes, suggests that periods of moderate freeze-thaw fluctuations may have only a minor influence on the annual pattern of C and nutrient dynamics in seasonally cold ecosystems.  相似文献   

15.
Dissolved organic nitrogen (DON) is a significant nitrogen (N) pool in most soils and is considered to be important for N cycling. The present study focused on paired sites of native remnant woodland and managed pasture at three locations in south-eastern Australia. Improved understanding of N cycling is important for assessing the impact of agriculture on soil processes and can guide conservation and restoration soil management strategies to maintain remnant native woodland systems, which currently exist as small pockets of woodland within extensive managed pasture landscapes. Organic and inorganic N pools were quantified, as well as the rates of amino acid and peptide mineralisation in the paired native woodland and managed pasture systems. Soil DON dominated the soil N pool in both land uses, and the proportion of DON to other N pools was greatest at the most N-limited site (up to ∼70% of extractable N). In both land uses soil ammonium and free amino acid concentrations were similar (∼20% of extractable N), and soil nitrate formed the smallest N pool (<∼5% of extractable N). Mineralisation of 14C-labelled amino acid and peptide substrates was rapid (<3 h), and more amino acid was respired than peptide in both the native woodland and managed pasture soils. Soil C:N ratio was important in separating site and land use differences, and contrasting relationships between soil physico-chemical properties and organic N uptake rates were identified across sites and land uses.  相似文献   

16.
《Soil & Tillage Research》2007,96(1-2):348-356
Agricultural soils can be a major sink for atmospheric carbon (C) with adoption of recommended management practices (RMPs). Our objectives were to evaluate the effects of nitrogen (N) fertilization and cropping systems on soil organic carbon (SOC) and total N (TN) concentrations and pools. Replicated soil samples were collected in May 2004 to 90 cm depth from a 23-year-old experiment at the Northwestern Illinois Agricultural Research and Demonstration Center, Monmouth, IL. The SOC and TN concentrations and pools, soil bulk density (ρb) and soil C:N ratio were measured for five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha−1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn–soybean (Glycine max (L.) Merr.) rotation (CS)]. Long-term N fertilization and cropping systems significantly influenced SOC concentrations and pools to 30 cm depth. The SOC pool in 0–30 cm depth ranged from 68.4 Mg ha−1 for N0 to 75.8 Mg ha−1 for N4. Across all N treatments, the SOC pool in 0–30 cm depth for CC was 4.7 Mg ha−1 greater than for CS. Similarly, TN concentrations and pools were also significantly affected by N rates. The TN pool for 0–30 cm depth ranged from 5.36 Mg ha−1 for N0 to 6.14 Mg ha−1 for N4. In relation to cropping systems, the TN pool for 0–20 cm depth for CC was 0.4 Mg ha−1 greater than for CS. The increase in SOC and TN pools with higher N rates is attributed to the increased amount of biomass production in CC and CS systems. Increasing N rates significantly decreased ρb for 0–30 cm and decreased the soil C:N ratio for 0–10 cm soil depth. However, none of the measured soil properties were significantly correlated with N rates and cropping systems below 30 cm soil depth. We conclude that in the context of developing productive and environmentally sustainable agricultural systems on a site and soil specific basis, the results from this study is helpful to strengthening the database of management effects on SOC storage in the Mollisols of Midwestern U.S.  相似文献   

17.
Elevated CO2 and defoliation effects on nitrogen (N) cycling in rangeland soils remain poorly understood. Here we tested whether effects of elevated CO2 (720 μl L−1) and defoliation (clipping to 2.5 cm height) on N cycling depended on soil N availability (addition of 1 vs. 11 g N m−2) in intact mesocosms extracted from a semiarid grassland. Mesocosms were kept inside growth chambers for one growing season, and the experiment was repeated the next year. We added 15N (1 g m−2) to all mesocosms at the start of the growing season. We measured total N and 15N in plant, soil inorganic, microbial and soil organic pools at different times of the growing season. We combined the plant, soil inorganic, and microbial N pools into one pool (PIM-N pool) to separate biotic + inorganic from abiotic N residing in soil organic matter (SOM). With the 15N measurements we were then able to calculate transfer rates of N from the active PIM-N pool into SOM (soil N immobilization) and vice versa (soil N mobilization) throughout the growing season. We observed significant interactive effects of elevated CO2 with N addition and defoliation with N addition on soil N mobilization and immobilization. However, no interactive effects were observed for net transfer rates. Net N transfer from the PIM-N pool into SOM increased under elevated CO2, but was unaffected by defoliation. Elevated CO2 and defoliation effects on the net transfer of N into SOM may not depend on soil N availability in semiarid grasslands, but may depend on the balance of root litter production affecting soil N immobilization and root exudation affecting soil N mobilization. We observed no interactive effects of elevated CO2 with defoliation. We conclude that elevated CO2, but not defoliation, may limit plant productivity in the long-term through increased soil N immobilization.  相似文献   

18.
Tillage is known to decrease soil organic nitrogen (N) and carbon (C) pools with negative consequences for soil quality. This decrease is thought partly to be caused by exposure of protected organic matter to microbial degradation by the disturbance of soil structure. Little is known, however, about the short-term effects of tillage on mineralization of N and C, and microbial activity. We studied the short-term effects of two types of tillage (conventional plough- and a non-inverting-tillage) on mineralization and microbial N and C pools in a sandy loam under organic plough-tillage management. The release of active and protected (inactive) N by tillage was further studied in the laboratory by use of 15N labelling of the active pool of soil N followed by simulation of tillage by sieving through a 2 mm sieve. Results showed that the two types of tillage as well as the simulation of tillage had very few effects on mineralization and microbial pools. The simulation of tillage caused, however, a small release of N from a pool which was otherwise protected against microbial degradation. The use of soil crushing for disruption of larger macroaggregates (>425 μm) and chloroform fumigation for perturbation of the microbial biomass increased the release from both active and protected N pools. The relative contribution from the protected N pool was, however, similar in the three treatments (22-27%), thus the pools subjected to mineralization were characterised by similar degree of protection. On the basis of isotopic composition the pools of N mineralised were indistinguishable. This suggests that the released N originated from the same pool, that is the soil microbial biomass. The study points to the microbial pool as the main source of labile N which may be released by tillage, and thus to its importance for sustained soil fertility in agricultural systems.  相似文献   

19.
Jia  Shuxian  Liu  Xiaofei  Lin  Weisheng  Zheng  Yong  Li  Jianwei  Hui  Dafeng  Guo  Jianfen 《Journal of Soils and Sediments》2022,22(3):931-941
Purpose

Glomalin-related soil protein (GRSP) is an essential component of soil organic C for maintaining soil quality and structure and plays a critical role in soil carbon (C) sequestration. However, how GRSP changes under nitrogen (N) deposition remains poorly understood.

Materials and methods

We assessed total GRSP (T-GRSP) and easily extractable GRSP (EE-GRSP) under a control (no N input), low N addition (LN, 40 kg N ha?1 year?1), and high N addition (HN, 80 kg N ha?1 year?1) treatments in 2015 and 2016 in a Chinese fir (Cunninghamia lanceolata) plantation in the subtropical China. We also analyzed soil properties contents and explored the stoichiometric ratios of soil organic C (SOC), total N (TN), and total phosphorus (TP) with GRSPs.

Results

Compared to the control, both T-GRSP and EE-GRSP were significantly reduced under the HN treatment, but had no significant difference under the LN treatment. The ratio of T-GRSP and EE-GRSP was reduced by the N addition. Soil organic C (SOC) and dissolved organic C (DOC) were significantly affected by N addition treatments. The ratios of GRSP-C to SOC and of EEGRSP-C to SOC ranged from 6.29 to 16.07% and 1.34 to 3.52%, respectively. T-GRSP and EE-GRSP were positively correlated with SOC/TN ratio, but negatively correlated with soil TN/TP and SOC/TP ratios.

Conclusion

Our results indicated that the GRSP reductions under N deposition in soil are mediated by soil C, N, and P stoichiometry, and particularly, the reduction of EE-GRSP by DOC. This study improved our mechanistic understanding of dynamics of GRSPs under increasing N enrichment in subtropical plantation ecosystems.

  相似文献   

20.
Newly synthesized amino acids are the principle compounds created after inorganic nitrogen (N) is rapidly immobilized into microbial tissues. However, little is known about the mineralization kinetics of these newly synthesized amino acids compared to the amino acids originally present in the soil, and how substrate availability controls their mineralization. With 15N isotope tracing, the newly synthesized (15N-labeled) amino acids can be differentiated from the amino acids originally present (unlabeled) in soil, making it possible to evaluate the mineralization of the newly synthesized amino acids in tandem with the original amino acids. As amino acids can serve as both N and carbon (C) sources for microorganisms, the mineralization dynamics of amino acids may be manipulated by the availability of extraneous C and N. In this study, an aerobic 30-week intermittent leaching experiment was conducted, using glucose as C source and (14NH4)2SO4 as N source, following separate additions to soil. The newly synthesized amino acids were determined by an isotope-based high performance liquid chromatography/mass spectrometry (HPLC/MS). The newly synthesized soil amino acids mineralized faster than the original ones, which indicated more rapid cycling of N in the newly synthesized soil amino acids pool. Glucose addition significantly decreased the mineralization of both the newly synthesized and the original amino acids. However, when inorganic N was abundant, the newly synthesized amino acids decomposed rapidly, and preferentially as a C source and energy, while N addition inhibited the mineralization of the original amino acids in the soil. We conclude that the presence of readily degradable C (e.g. glucose) and inorganic N controls the mineralization of newly synthesized and original amino acid pools in soil differently, which is a crucial mechanism in adjusting the N supply and sequestration processes in soil ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号