首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
上海市河网密布,城区河道有机污染严重,受沿线雨、污水排水系统影响,中小河道常出现阶段性黑臭,增加了水体污染程度及水媒病原体传播的可能性。为评估雨水排水系统对受纳河道主要微生物指标影响程度,以上海市中心城区受泵站放江影响程度不一的2条景观河段为例,在晴天、旱天放江、雨天放江、雨后4种工况下,调查分析了景观河道微生物污染特征。结果表明,晴天时受纳河道细菌总数在104CFU/m L以上,与同区域公园河道在1个数量级上,属于不清洁水体;大肠菌群数量为103CFU/m L,远高于公园河道;在旱天放江期间,受河道水动力条件影响,仅泵站排放口附近细菌与大肠菌群数量大幅增加;雨天放江期间,受纳河道细菌总数达到106CFU/m L以上,比公园河道高1个数量级;大肠菌群数量为105CFU/m L,大大超过景观娱乐用水的水质需求。公园河段在降雨后水体微生物能较快降低,而受纳河道在降雨放江停止24 h后,其微生物浓度依然较高。地表径流、汇水区雨污混接、用地类型的不透水化及河道水动力条件可能是受纳河道微生物污染程度高的主要原因。作为景观水体,即便不直接接触,也存在潜在健康风险,需要加强对河道微生物污染的治理。  相似文献   

2.
鉴于上海市中心城区地表径流采用强排模式,由泵站排入受纳河道,常引起河道阶段性黑臭。为明确泵站放江污染对受纳河道的影响程度,选取中心城区典型泵站,在连续降雨期间监测评估了泵站放江水质、水量及其对受纳河道的影响程度。结果表明,在水量上,受连续降雨与泵站运行模式影响,降雨4.5 mm时的累积放江水量达61 410 m~3,放江水量达到服务区理论径流量的近7倍。在水质上,五日生化需氧量(BOD_5)、高锰酸盐指数(COD_(Mn))、氨氮(NH_3-N)和悬浮物(SS)事件平均浓度分别为43.2 mg/L、35.3 mg/L、33.4 mg/L和75.0 mg/L,细菌总数(total bacteria, TB)和大肠菌群(total coliforms, TC)事件平均浓度为6.8×10~6CFU/mL和5.7×10~5CFU/mL。对受纳河段而言,放江期间河段流速在3 cm/s左右,泵站放江污染物不能快速有效地扩散迁移,污水团在河道形成表观区域性黑臭,在排污口20 m范围内,主要污染物BOD_5、COD_(Mn)、NH_3-N和SS平均浓度与泵站放江水质接近,分别为35.0 mg/L、28.7 mg/L、28.1 mg/L和100.9 mg/L;TB和TC平均浓度为3.6×10~6CFU/mL和3.4×10~5CFU/mL。受河网流速影响,泵站排放口上下游样点受泵站放江影响小,相比而言,主要污染物变化趋势不显著。为有效降低排水系统雨天放江污染负荷,保障受纳河道水质改善效果,提出了挖掘截流设施潜力、推进雨污混接改造及加大河道生态修复力度等措施。  相似文献   

3.
鉴于当前城市人口密集、公众与景观水体接触日益增多、水体整体环境较差的现状,为正确评价景观河道环境现状,以上海市中心城区3条不同营养状态及功能河道为例,选取2017年汛期5场连续降雨,分析了河道病原微生物的分布特征及其与环境因子的相关关系。结果表明,劣Ⅴ类水质的河道a晴天粪大肠菌群平均浓度为1.72×10~3MPN/mL,雨天为3.34×10~3MPN/mL,水质较好的河道b和河道c晴天与雨天粪大肠菌群平均浓度保持10~2MPN/mL。晴天3条河道大肠菌群平均浓度相差2个数量级,河道a为5.15×10~3CFU/mL,河道b和河道c分别为30 CFU/mL和99 CFU/mL;雨天大肠菌群平均浓度河道a为1.04×10~5CFU/mL,河道b和河道c分别为289 CFU/mL和147 CFU/mL。在变化趋势上,降雨导致粪大肠菌群和大肠菌群浓度增加,但大肠菌群浓度增加的程度明显高于粪大肠菌群。相关分析显示,3条河道内粪大肠菌群和大肠菌群与环境因子相关性存在一定差异,但基本都表现为与TN、TP和NH_3-N显著正相关,控制河道氮磷营养水平能显著抑制病原微生物增殖。  相似文献   

4.
大海马(HippocampuskudaBleeker)育苗池为水泥池,规格为4.0m×6.0m×1.6m,分设正常池与水华发生池,各设3个平行池,每池养殖幼海马约1000尾,测定水体水华发生时水体细菌数量和理化因子变化的规律。结果显示,当水温高于24℃时,育苗池易发生水华,形成水华的优势藻为铜绿微囊藻(Microcysticaeruginosa)。正常育苗池水体中异养细菌总量平均比水华池的高出近1个数量级。正常池和水华池表层异养细菌变动范围分别为2.50×103~7.23×104CFU/mL和4.75×102~6.90×103CFU/mL,水华池比正常池减少了60%~99%;底层异养细菌变动范围则分别为4.75×103~7.53×104CFU/mL和6.25×102~1.50×104CFU/mL,水华池比正常池降低了73%~97%。水华池与正常池底层异养细菌数量的差异极显著(P<0.01)。两组池表层弧菌数量变动范围分别为0.85×102~7.19×103CFU/mL和0.33×102~8.92×102CFU/mL,水华池比正常池减少5%~93%;底层弧菌数量变动范围则分别为8.30×102~1.16×104CFU/mL和0.53×102~2.04×103CFU/mL,水华池比正常池降低2%~97%。水华发生池的底层和表层的细菌数量与正常池的差异均显著(P<0.05)。同时,水华池平均水温比正常池约低1℃,溶解氧(DO)比正常池的降低了22%~33%;而水华池中的氨氮含量则为正常育苗池的1.41~2.34倍。水华发生时,育苗池表层和底层水体中弧菌数量比正常池的分别减少了61%~87%和82%~93%。  相似文献   

5.
2005年3到6月问对厦门市(集美,同安,岛内)3个区养殖的带壳牡蛎及市售牡蛎肉进行微生物检测的结果表明:厦门地区的养殖牡蛎已经受到微生物的污染,开壳牡蛎肉受污染较为严重,其细菌总数和大肠菌群等指标的合格率仅为50%和0%;带壳牡蛎的细菌总数指标虽100%合格,但大肠菌群指标却只有25%合格.牡蛎受微生物污染主要在剥壳后到食用前这一段时间,放置越久污染程度越严重;牡蛎剥壳后泡水会加速其微生物的生长.净化贝类虽然其细菌总数和大肠菌群数全都合格,但作者仍然认为不宜生食.  相似文献   

6.
2001年5~7月,在深圳东海岸水产公司南澳半封闭式斑节对虾Penaeus monodom精养基地,进行了有益微生物的应用对虾塘总异养细菌和弧菌数量影响的调查研究。结果表明,对虾养成过程中,施用有益微生物的实验组虾塘水体中总异养细菌和弧菌数量明显较未施用的对照组虾塘低,但各虾塘水体中总异养细菌和弧菌数量的变化特征基本相同,即在养殖前期,虾塘水体中总异养细菌和弧菌数量均较稳定,并处于相对较低的水平;而在养殖中、后期,总异养细菌和弧菌数量均急剧升高,尤以对照组虾塘的升幅最大,其弧菌数量甚至超过100×102CFU.mL-1的对虾发病之弧菌数量临界值。实验组与对照组虾塘中表层沉积物中,总异养细菌和弧菌数量差异不大,总异养细菌和弧菌数量变化特征也基本相同,但实验组与对照组之间有所差异,其中实验组表现为双峰型的变化特征,峰值出现在养殖前期或中期和养殖将结束时;对照组则呈单峰型变化,峰值均出现在养殖中期。有益微生物的应用对虾塘水体中总异养细菌和弧菌数量的抑制效果较对沉积环境中的效果明显。  相似文献   

7.
军曹鱼肠道及水体异养菌和弧菌的周年变化   总被引:3,自引:0,他引:3  
采用总活异养菌2216E平板计数法和弧菌TCBS平板计数法对广东深圳大鹏养殖军曹鱼(Rachycentron canadum Linnaeus)养殖水体及鱼肠道细菌进行了周年监测。结果显示,育苗初期养殖水体异养菌和弧菌密度分别为0.63×104~6.2×104CFU/mL和0.30×102~1.03×104CFU/mL,鱼肠道异养菌和弧菌密度分别为0.80×106~7.5×107CFU/g和0~1.30×107CFU/g;网箱养殖监测期间,养殖水体异养菌和弧菌密度分别为4.20×103~5.40×105CFU/mL和0.70×102~1.14×105CFU/mL,鱼肠道异养菌和弧菌密度分别为1.50×107~8.78×108CFU/g和1.00×107~3.50×108CFU/g。周年监测结果显示,水体异养菌、弧菌的数量高峰均出现于8-9月份;肠道异养菌及弧菌的数量高峰均出现于6-7月份,分别又在12月份和2月份出现次高峰,弧菌变化趋势始终与异养菌一致。对分离得到的407株菌鉴定到属并进行多样性分析。结果显示,育苗期水体以假单胞菌(Pseudomonas)、黄单胞菌(Xanthomonas)和芽孢杆菌(Bacillus)为优势菌,三者约占水体异养菌总数的70%;养殖后期,弧菌(Vibrio)和发光杆菌(Photobacterium)的数量逐渐上升并占据一定优势,其中假单胞菌、黄单胞菌、弧菌和芽孢杆菌常年出现。鱼肠道异养菌以假单胞菌和芽孢杆菌为优势菌,其次是肠杆菌科(Enterbacteriaceae)细菌,也多次检测到弧菌、发光杆菌、气单胞菌(Aeromonas)和小球菌(Microccus)等。总之,养殖微生态系统的可持续稳定平衡与系统的种群多样性、群落组成及水质因子等因素相关,而整个环境生态系统的平衡直接影响到鱼类肠道的细菌生态系统。  相似文献   

8.
有益微生物在大海马健康养殖中的应用研究   总被引:8,自引:1,他引:8  
实验用复合微生物由芽孢杆菌(Bacillusspp.)、红螺菌(Rhodospirillumspp.)、硝化细菌(Nitrobacterspp.)和硫化细菌(Thiobacillusspp.)组成,菌量比例分别为61.5%、27.3%、5.8%和5.4%。向大海马养殖池每10d使用1次,用量5mL/m3,菌液密度(2.0~2.5)×109/mL。结果表明,应用复合微生物的试验组溶解氧比对照组(不加菌)提高了32.7%,氨氮、亚硝酸盐和硫化物含量则分别降低了76.9%、97.1%和93.3%。对照池的浮游藻类优势种为蓝藻、甲藻和隐藻,分别占浮游植物总量的35.3%、22.3%和19.6%;试验池的浮游藻类优势种为绿藻和硅藻,分别占69.0%和26.8%,其藻类多样性指数比对照组增大了1.2倍。试验池的异养菌增长率为55.3%,而对照池的异养菌增长率达274.6%。试验期间,水温23~26℃,试验组的芽孢杆菌的数量从0.15×103CFU/mL急剧增至55.63×103CFU/mL,但对照组的仍保持在(0.13~0.38)×103CFU/mL的水平。而试验组弧菌数量比对照池的降低了2个数量级。  相似文献   

9.
将蜡样芽胞杆菌(Bacillus cereus)PC465添加到凡纳滨对虾(Litopenaeus vannamei)养殖水体中至终浓度分别为10~4、10~5和10~6 CFU/mL,以无益生菌添加的养殖组为对照组,定期检测实验对虾肠道和养殖水体中的细菌总数、弧菌总数以及水体中氨氮含量和亚硝酸氮含量。实验结果表明,水体中添加益生菌能降低凡纳滨对虾肠道内细菌数量,且与对照组相比差异显著(P0.05);高浓度的益生菌处理组可以明显降低养殖水体内弧菌数量(P0.05),但是益生菌并没有显著影响水体中的氨氮含量和亚硝酸氮含量。养殖4周后进行WSSV投喂感染实验,感染实验表明,实验组H组(益生菌浓度为10~6 CFU/mL)和M组(益生菌浓度为10~5 CFU/mL)凡纳滨对虾的累计死亡率分别为63.9%和74.6%,显著低于对照组100%的累计死亡率(P0.05)。感染实验期间采用荧光定量PCR方法测定了凡纳滨对虾3种免疫相关基因的表达情况,统计数据显示,益生菌处理组的脂多糖-β-1,3-葡聚糖结合蛋白(lipopolysaccharide-β-1,3-glucan-binding protein,LGBP)、β-1,3-葡聚糖结合蛋白-脂蛋白(beta-1,3-glucan-binding protein-lipoprotein,βGBP-HDL)、热激蛋白70(heat shock proteins,Hsp70)mRNA的表达量在WSSV感染后呈显著上调趋势。实验结果提示,水体中添加蜡样芽孢杆菌PC465可以提高凡纳滨对虾抗WSSV感染能力,其作用机制可能是降低对虾肠道和水体中的细菌和弧菌数量,或调节免疫相关基因的表达水平。  相似文献   

10.
通过监测池塘水体藻类群落组成、多项水质指标、底泥总有机碳(TOC)和底泥异养细菌数等指标值,研究了固定化微生物对凡纳滨对虾生产性养殖池塘水质调控和污染底泥的修复能力,微生物固定所用载体为改良沸石和生物活性炭(相应的固定化微生物分别记为ZE-M组和BE-M组)。试验结果显示,处理组(ZE-M组和BE-M组)池塘水体中藻类组成呈多元化,隐藻、蓝藻和绿藻数量比较接近,而对照组则是蓝藻占绝对优势。试验过程中,对照池的氨氮浓度和COD呈直线上升,而处理组氨氮浓度和COD的增长幅度缓慢,ZE-M、BC-M载体微生物的使用是产生差异的直接原因。对照组和处理组的其它水质指标变化规律及差异性不明显,可能是由于池塘水体由诸多不确定因素影响所致。固定化微生物对池塘底泥TOC含量和异养细菌数的影响显著(P<0.05),试验过程中,试验组和对照组池塘底泥TOC含量随着养殖时间均有增加的趋势,但对照组这一趋势更加明显;试验初期,各组表层底泥中的异养细菌数量在3.367×105~8.60×105CFU/g范围内,试验结束时增长到85×105~393.7×105CFU/g。处理组和对照组的异养细菌差异显著(P<0.05),其中ZE-M处理组...  相似文献   

11.
在同一试验条件下对三种总氮总磷联合消解液的基本参数(空白值、检出限、精密度和耗药量)、标准物质的回收率和不同自然水样的分析等方面进行了比较。三种联合消解液的标准物质加标回收率均比较高,总氮,总磷标准物质的回收率范围分别为97.2%~101.3%和95.8%~100.8%;利用三种联合消解液消解测定22个自然水样中总氮、总磷的结果均与国家标准方法相近(P>0.05)。三种联合消解方法可以替代国家标准方法测定水体的总氮、总磷浓度,满足单个水样消解一次完成总氮总磷的连续测定,节省药品、简化操作。但在测定氮、磷含量较高的水体时,消解液一和消解液二分别存在总磷、总氮结果偏低的可能。  相似文献   

12.
6种水生维管束植物对氮和磷的耐受性分析   总被引:13,自引:1,他引:12  
针对6种水生维管束植物在人工培养条件下对不同浓度氮、磷元素培养液的耐受性作了定性、定量的观察与分析。通过测定植株体内过氧化物酶(POD)活性指标的变化,初步找出了几种水生维管束植物对水体中总氮、总磷的耐受性规律。在这些植物中,以凤眼莲(水葫芦)对氮、磷元素的耐受性最高,水体中氮浓度达到1514.26 mg/L时死亡;水体中磷浓度达到200.4 mg/L时死亡;对水体中氮耐受性最差的是浮萍和水鳖,即水体中氮浓度达到551.04 mg/L时死亡;对水体中磷浓度耐受性最差的是水鳖,在水体中磷浓度达到50.1 mg/L时死亡。  相似文献   

13.
水生植物对污染水体氮磷的净化效果研究   总被引:10,自引:0,他引:10  
为了研究水生植物对污染水体的净化效果,以5种水生植物作为研究对象,包括金边石菖蒲(Phnom penh acorus tatarinowii)、香菇草(Hydrocotyle vulgaris)、穗状狐尾藻(Myrtophllum spicatum)、金鱼藻(Ceratophyllum demersum)、眼子菜(Potamogeton distinctus),在人工气候室中,利用水培法,研究了其对污染水体的净化效果。试验结果表明:试验水生植物对污染水体具有很好的净化效果,可以作为净水植物,其中金边石菖蒲和香菇草的去氮效果较好,金鱼藻、穗状狐尾藻和香菇草对磷的去除效果非常好;经过七周的试验后,试验水生植物金边石菖蒲、香菇草、穗状狐尾藻、金鱼藻和眼子菜对总氮的去除率分别为86.22 %、91.13 %、79.69 %、83.17 %和65.51 %,对总磷的去除率分别为87.94 %、92.09 %、92.61 %、95.20 %和85.87 %;水生植物对污染水体磷的去除效果比氮好,速度也比较快。因此,可以把这几种水生植物作为人工湿地的首选植物。为人工湿地植物选择和降低污水水体营养盐水平提供科学依据。  相似文献   

14.
南太湖近岸水域叶绿素a含量与氮磷浓度的关系   总被引:1,自引:0,他引:1  
2007年6月-2008年4月对南太湖近岸水域进行了4次生态环境调查,在此基础上,对叶绿素a含量(Chl.a)与总氮(TN)、总磷(TP)浓度及氮磷比(N/P)的关系进行了统计分析。结果表明:南太湖水体中Chl.a含量与TN浓度的关系存在显著的季节差异,在蓝藻水华大范围爆发的2007年6月和2008年4月2者呈极显著的正相关,而2007年10月和2008年1月2者无显著性关系;Chl.a含量与TP浓度在4次调查中皆无显著相关关系;岭回归分析显示,N/P 10~25是南太湖水体中附着藻类的最佳生长范围,此时总氮、总磷浓度及氮磷比与Chl.a含量呈显著的正相关,4者的多元回归关系为Chl.a=-0.0012+0.0064 TN+0.0215 TP+0.0005N/P(R=0.543,P<0.023)。总体来说,南太湖水体中的总氮、总磷浓度及氮磷比皆在藻类生长的适宜范围内,氮磷浓度处于较高水平,已经不是藻类生长的限制因素,在不同水温、光照等环境因子的作用下,加上本水域复杂的水文和季风共同影响下形成了蓝藻水华爆发的季节性差异。  相似文献   

15.
鱼、虾、蟹养殖池塘清塘排水水质及污染强度   总被引:1,自引:0,他引:1  
为准确估计混养鱼、青虾、河蟹养殖池塘清塘时污染物的排放强度,实验选取三种类型池塘(混养鱼塘、青虾塘、河蟹塘)各5口。混养鱼塘清塘时一边捕捞一边用潜水泵排水;青虾塘在捕捞完成后即用潜水泵排水;河蟹塘在捕捞完成后1个月左右采用自流装置从表层开始排水并滞留30 cm水于塘内。采集三类池塘清塘前塘内水样及清塘过程中排水口水样,分析总氮、总磷、化学耗氧量和悬浮物等污染物浓度。分别以塘内水质和排水口水质的监测值估算了污染物的表观排放强度和实际排放强度。结果表明,随着塘内水位下降,混养鱼塘和青虾塘排水口的污染物浓度显著提高(P0.05)。混养鱼塘的实际污染强度显著高于其表观污染强度(P0.05)。然而河蟹池塘污染物的实际排放强度却显著低于表观排放强度(P0.05)。结果提示以塘内水质来估算池塘养殖污染物排放强度有明显误差;通过改进排水技术可以削减养殖污染排放量。  相似文献   

16.
浮游植物生物量与pH、总碱度、总硬度、含盐量呈抛物线关系。在pH7.75~8-75,总碱度3.5~6mmol/L,总硬度9.5~14.5mmol/L,含盐量2.3~3.7g/L时,浮游植物发生机会最多,生物量最高。  相似文献   

17.
2007年6月-2008年4月对南太湖近岸水域进行了4次生态环境调查,在此基础上,对叶绿素a含量(Chl.a)与总氮(TN)、总磷(TP)浓度及氮磷比(N/P)的关系进行了统计分析。结果表明:南太湖水体中Chl.a含量与TN浓度的关系存在显著的季节差异,在蓝藻水华大范围爆发的2007年6月和2008年4月2者呈极显著的正相关,而2007年10月和2008年1月2者无显著性关系;Chl.a含量与TP浓度在4次调查中皆无显著相关关系;岭回归分析显示,N/P 10~25是南太湖水体中附着藻类的最佳生长范围,此时总氮、总磷浓度及氮磷比与Chl.a含量呈显著的正相关,4者的多元回归关系为Chl.a=-0.0012+0.0064 TN+0.0215 TP+0.0005N/P(R=0.543,P〈0.023)。总体来说,南太湖水体中的总氮、总磷浓度及氮磷比皆在藻类生长的适宜范围内,氮磷浓度处于较高水平,已经不是藻类生长的限制因素,在不同水温、光照等环境因子的作用下,加上本水域复杂的水文和季风共同影响下形成了蓝藻水华爆发的季节性差异。  相似文献   

18.
钟鸿干  李培 《河北渔业》2014,(5):16-18,26
根据2013年1月—12月全年监测结果,对海南省三亚市三亚湾、大东海、亚龙湾沿岸海域水体的总氮、总磷动态进行研究。结果表明,三亚湾、大东海、亚龙湾总氮、总磷含量分别在0.092~0.372mg/L与0.003~0.047mg/L之间,全年均值分别为0.216、0.191、0.167mg/L和0.018、0.011、0.011mg/L。  相似文献   

19.
Effort rights‐based fisheries management (RBM) is less widely used than catch rights, whether for groups or individuals. Because RBM on catch or effort necessarily requires a total allowable catch (TAC) or total allowable effort (TAE), RBM is discussed in conjunction with issues in assessing fish populations and providing TACs or TAEs. Both approaches have advantages and disadvantages, and there are trade‐offs between the two approaches. In a narrow economic sense, catch rights are superior because of the type of incentives created, but once the costs of research to improve stock assessments and the associated risks of determining the TAC and costs of monitoring, control, surveillance and enforcement are taken into consideration, the choice between catch or effort RBM becomes more complex and less clear. The results will be case specific. Hybrid systems based on both catch and effort are increasingly employed to manage marine fisheries to capture the advantages of both approaches. In hybrid systems, catch or effort RBM dominates and controls on the other supplements. RBM using either catch or effort by itself addresses only the target species stock externality and not the remaining externalities associated with by‐catch and the ecosystem.  相似文献   

20.
鲳鱼货架期预测模型的电子鼻评价与研究   总被引:3,自引:0,他引:3  
佟懿  谢晶  肖红  杨胜平 《水产学报》2010,34(3):367-374
利用电子鼻对鲳在不同贮藏温度与贮藏时间下的挥发性气味变化进行了分析,并对电子鼻测定获得的数据进行了主成分分析(PCA)与判别因子分析(DFA)。将电子鼻PCA与DFA分析获得的鲳的气味变化突变点作为气味变化的切分点与理化品质指标值(菌落总数)相结合,建立了鲳在273~283K下的Q10货架期预测模型。结果表明,电子鼻PCA与DFA分析能很好地将贮藏于273、283与293K下的鲳随着贮藏时间变化的气味进行区分。贮藏于不同温度条件下的鲳的TVBN与菌落总数值回归拟合方程均符合一级化学动力学模型(R2>0.95)。基于电子鼻PCA与DFA分析获得的283K与293K下的气味变化切分点与相同温度下理化品质指标变化具有较好的对应关系,采用Arrhenius动力学模型推导公式求得鲳在273~283K与283~293K温度段内菌落总数的Q10值,并结合283K与293K温度下电子鼻PCA与DFA分析获得的气味变化货架期切分点,从而得到鲳在273~283K与283~293K温度段内的Q10货架期预测模型为:SL(275~283K)=3×3.008 (283-T)/(10)与SL(283~293K)=1.5×3.423 (2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号