首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
It was demonstrated that neonates of the codling moth,Cydia pomonella (L.), feed on ‘Red Delicious’ apple leaves and successfully molt to the second instar. Next, using a non-choice bioassay, we targeted codling moth neonates feeding on apple leaves, with standard concentrations of a culinary taste enhancer, monosodium glutamate (MSG), and Success®, which contains 22.8% spinosad as its active ingredient. The addition of 25 ppm MSG increased feeding by 20–30%. Stimulatory properties of MSG were preserved in the presence of 12.5 ppm Success, and mortality from a 12.5 ppm Success + 25 ppm MSG combination increased by factors of 3.1–1.6 compared with Success alone. In a field experiment without rain, MSG maintained its stimulatory properties for 24 h, increasing feeding by 37%. Consistently, without rain, MSG increased the toxicity of Success in the field by a factor of × 3.5. However, the stimulatory properties of MSG dropped to 19% with 4.3 mm of rain, and to zero with 9.6 mm of rain. Increased Success toxicity by MSG was reduced to × 1.6 with 4.3 mm of rain, and dropped to zero after 9.6 mm of rain. It is concluded that MSG seems to be a promising feeding stimulant, enhancing the toxic properties of Success which itself is a good candidate for codling moth control. However, field persistence of MSG needs to be improved, either by formulating the Success + MSG combination into some field-stable matrix, or by employing a sparingly water-soluble substance mimicking MSG’s action as a feeding stimulant in codling moth neonates.  相似文献   

2.
Recently we reported that monosodium glutamate stimulates feeding in neonates of the codling mothCydia pomonella (L.). Herein we extend our general knowledge about feeding stimulators in neonates of this species, by presenting the effects of several sugars (sucrose, glucose, fructose, and maltose) and non-nutritive sugar substitutes (Sweet’n Low® and Equal®) on consumption of apple leaf (HoneycrispTM) tissue. Glucose, fructose, maltose and aspartame-based Equal had no effect on leaf consumption. Sucrose at a high concentration significantly reduced leaf consumption and delayed commencement of feeding. Sweet’n Low at high concentrations significantly increased leaf consumption and accelerated the commencement of feeding. Saccharin hemicalcium salt was identified as an active ingredient of Sweet’n Low. At 500 ppm and 1000 ppm, saccharin hemicalcium salt increased leaf consumption and accelerated commencement of feeding. The practical aspects of our findings are discussed.  相似文献   

3.
Tomato (Solanum lycopersicum L.) ARGINASE2 (ARG2) and THREONINE DEAMINASE2 (TD2) are involved in plant defense. These enzymes act in the midgut of herbivores fed on tomato plants to degrade the essential amino acids Arg and Thr, respectively. Although it has been demonstrated that overexpression of the SlARG2 gene in tomato enhanced its resistance against M. sexta larvae, knock-down the expression of SlTD2 reduced the resistance of tomato to lepidopteran herbivores; it remains unclear whether overexpression of SlTD2 could enhance the resistance of the host plants to herbivores, or whether combined overexpression of SlARG2 and SlTD2 could lead to synergistically enhanced resistance to insects. Here, we generated transgenic Arabidopsis plants overexpressing SlARG2 (SlARG2 OE) and SlTD2 (SlTD2 OE) individually as well as in combination (SlARG2-SlTD2 OE). Overexpression of these genes did not affect Arabidopsis development, seed yield, or Arg and Thr content. Insect-feeding bioassay was performed by feeding diamondback moth (Plutella xylostella L.) larvae on detached leaves of wild-type, SlARG2 OE, SlTD2 OE, and SlARG2-SlTD2 OE plants. Larvae fed on SlARG2 OE leaves showed approximately 31% to 35% reduction in weight and 6% to 10% reduction in survival rate compared to those fed on wild-type leaves. Although larvae fed on SlTD2 OE leaves showed no reduction in survival rate, they gained less weight. Whereas larvae fed on SlARG2-SlTD2 OE leaves showed neither reduction in weight nor reduction in survival rate. We further investigated the arginase enzymatic activity of the SlARG2 OE and SlARG2-SlTD2 OE transgenic plants. The SlARG2 OE line most resistant to diamondback moth larvae displayed the highest arginase activity. Our data indicate that overexpression of SlARG2 or SlTD2 in Arabidopsis can enhance its resistance against diamondback moth, whereas combined overexpression of SlARG2 and SlTD2 did not generate synergistically increased resistance to diamondback moth.  相似文献   

4.
The development of insecticidal resistance in diamondback moth (DBM) Plutella xylostella has immediate implications for its management. In this study, we examined the mode of inheritance of Indoxacarb resistance in P. xylostella. The indoxacarb-resistant strain (Px-R) was obtained through continuous laboratory selection with increasing doses of indoxacarb in each generation. At the 14th generation of selection, the resistance ratio of Px-R strains was 238 over the susceptible strain (Px-S). The mode of inheritance to Indoxacarb in P. xylostella was examined performing standard reciprocal crosses between Px-R and Px-S and response of Px-R, Px-S and F1 hybrid progenies to Indoxacarb through leaf dip bioassay. The degree of dominance (D) and heritability (h) of F1 hybrid progeny ranged from ?0.001 to 0.0012 and 0.499 to 0.506, respectively. The Indoxacarb resistance was appeared to be autosomal and inherited as a semi-dominant trait. The Px-R strain of P. xylostella showed little cross resistance to cypermethrin and there was no cross resistance to other pesticides viz., chlorpyrifos, spinosad, karanjin, xentari (Bta-Cry1C) and MVP-II (Cry1Ac). Since the Indoxacarb resistance inherited as a semi-dominant trait in P. xylostella, the sub lethal doses and frequent use of indoxacarb should be avoided for the management of P. xylostella. Moreover, Px-R of P. xylostella showed positive cross resistance to synthetic pyrethroids (cypemethrin), therefore indoxacarb and synthetic pyrethroids should not be recommended together for management of P. xylostella.  相似文献   

5.
Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is classified as one of the most harmful pest of tomato crops. Many species of predators and parasitoids including Trichogramma cacoeciae (Marchal) (Hymenoptera: Trichogrammatidae) are noted as potential candidates used for biological control of this pest. Therefore, the use of selective insecticides is critical to conserve and protect natural enemies in the field. This study assessed the side effects of insecticides on different development stages of T. cacoeciae under laboratory conditions. For this, eleven pesticides such as: Indoxacarb, spiromesifen, cyromazin, chlorfenapyr, cypermethrin, diafenthiuron, chlorantraniliprole, spinosad, azadirachtin, Bacillus thuringiensis (Bt) and virus HaNPV were tested. This study shows that indoxacarb, spiromesifen, chlorfenapyr, cypermethrin, diafenthiuron and spinosad had a negative effect on immature stages of Trichogramma. All insecticides residues on tomato leaves were found to be toxic to Trichogramma adults except azadirachtin, Bt and virus HaNPV. Therefore, the use of the tested natural products (azadirachtin, Bt and HaNPV) at the recommended doses is viable, having no negative impact on T. cacoeciae in tomato crops.  相似文献   

6.
The role of the self-sown shrubsDittrichia viscosa (L.) W. Greuter andRubus ulmifolius Schott as reservoirs of aphid parasitoids was investigated. In the field studies conducted,D. viscosa grew adjacent to crops of durum wheat and barley andR. ulmifolius grew adjacent to cotton. The relative abundance of the parasitoids of(a) Capitophorus inulae (Passerini) onD. viscosa, (b) Rhopalosiphum padi (Linnaeus) on durum wheat and barley,(c) Aphis ruborum (Börner) onR. ulmifolius, and(d) Aphis gossypii Glover on cotton in various parts of Greece, was assessed during the years 1996–2000. In 2000, the fluctuation of parasitization of the above four aphid species was recorded and the action of the aphidophagous predators of the family Coccinellidae was studied. It was observed thatAphidius matricariae Haliday predominated onC. inulae andR. padi in all sampling cases. In contrast,Lysiphlebus fabarum (Marshall) was the dominant species parasitizingA. ruborum onR. ulmifolius andA. gossypii on cotton in Thessaly (central Greece) and Macedonia (northern Greece), whereasLysiphlebus confusus Tremblay et Eady andBinodoxys acalephae (Marshall) were the dominant parasitoid species in Thrace (northern Greece).Coccinella septempunctata Linnaeus was the most abundant coccinellid species on durum wheat, whereasAdonia variegata (Goeze) predominated on cotton. However, coccinellid individuals were scarce on bothD. viscosa andR. ulmifolius. The present study indicated that these two shrubs can be regarded as useful reservoirs of aphid parasitoids.  相似文献   

7.
The speed of toxic action of an insecticide is an indicator for control efficacy and has considerable practical importance. For agricultural pest control, fast-acting is an important feature for an insecticide to consistently reduce the amount of feeding damage. Butene-fipronil is a novel compound obtained via the structural modification of fipronil. However, information about the toxicity and speed of toxic action is still limited. In the present paper, we compared the toxic feature of butene-fipronil with seven other insecticides, of which imidacloprid and abamectin are slow-acting insecticides, and acephate, endosulfan, methomyl, α-cypermethrin and spinosad are fast-acting insecticides. We found that the contact and stomach toxicities of butene-fipronil were among the highest ever estimated to Leptinotarsa decemlineata and Drosophila melanogaster. The speed of toxic action of butene-fipronil was determined using median lethal time (LT50) at a dose (concentration) equivalent to LD80 values. For L. decemlineata, the values for butene-fipronil, imidacloprid, abamectin, acephate, endosulfan, methomyl, cypermethrin and spinosad were calculated to be 39.9, 36.5, 37.5, 20.2, 22.4, 23.8, 16.4 and 23.1 h, respectively. Those for D. melanogaster were 29.8, 31.5, 29.4, 14.0, 20.3, 18.1, 13.5, and 20.1 h, respectively. ANOVA analysis showed that butene-fipronil, imidacloprid, abamectin had similar LT50 values, whereas acephate, endosulfan, methomyl, spinosad and cypermethrin had comparable LT50 values. Thus, butene-fipronil belongs to slow-acting insecticides. Our results provide more empirical information for butene-fipronil potential application.  相似文献   

8.
Coleomegilla maculata DeGeer is an omnivorous lady beetle that feeds on natural or alternative prey and artificial foods, which allows its laboratory rearing for use on augmentative biocontrol. In addition, C. maculata may supplement its diet with pollen and nectar, which helps in its conservation in agroecosystems. This study aimed to evaluate if Apiaceous flowers (Anethum graveolens L. and Coriadrum sativum L.), with and without alternative prey [eggs of Ephestia kuehniella (Zeller) or larvae of Drosophila melanogaster Meigen] or an artificial food (aqueous solution of honey), may guarantee the survival and complete development of the immature and adult stages of C. maculata in the laboratory. The immature stages developed only when Apiaceous flowers were offered with E. kuehniella eggs. The food with only one of the alternative prey (moth eggs or fly larvae) or moth eggs + honey solution resulted in fertile adults; however, the number of eggs/cluster was greater for the foods with E. kuehniella eggs + honey solution, A. graveolens flowers, or only D. melanogaster. Foods comprising only the two Apiaceous species, only the honey solution, or only water resulted in larval development up to a specific instar. Adults of C. maculata also survived on these foods, but there was no oviposition. The foods of the two Apiaceous species produced heavier adults only when associated with E. kuehniella eggs. The results indicate that the zoophytophagous habit of C. maculata should be considered in conservation biocontrol programs aimed at using this lady beetle to control crop pests.  相似文献   

9.
10.
Four Bt cotton hybrids, each with one of four different events, viz., MRC 6301 Bt (cry1Ac gene), JKCH 1947 Bt (modified cry1Ac gene), NCEH 6R Bt (fusion cry1Ac/cry1Ab gene) and MRC 7017 Bollgard II (cry1Ac and cry2Ab genes) were compared for survival and development of Earias vittella (Fabricius) along with their isogenic non-Bt genotypes. None of the neonates were able to complete the larval period and reach pupal stage on squares of 90, 120 and 150 days old crop of all Bt hybrids. Likewise, on bolls also, zero per cent larval survival was observed in all Bt hybrids except JKCH 1947 Bt where 0.67 per cent larvae could manage to reach pre-pupal stage at 120 and 150 days old crop but failed to form cocoon and enter pupal stage. The surviving larva took more development time (3.7 to 5.4 days) as compared to larvae fed on bolls of JKCH 1947 non-Bt. The average survival period (ASP) of larvae was in order of 150 > 120 > 90 days old crop among the crop ages; JKCH 1947 Bt > MRC 6301 Bt > NCEH 6 R Bt > MRC 7017 Bollgard II among Bt hybrids; and bolls > squares between fruiting bodies. However, reverse was true for speed index of toxic effect. The concentration of Cry toxin varied significantly in squares and bolls and also among the crop ages. The amount of Cry toxin in squares and bolls had significant negative correlation with ASP of the E. vittella larvae.  相似文献   

11.
The cotton ecosystem comprises various arthropod pest and natural enemies with simultaneous occurrence irrespective of growing region. The use of insecticides with reduced impact on natural enemies is a major goal to conserve them and, therefore, to reduce populations of arthropod pests. The survival of twelve key natural enemies for cotton pest management exposed to dried residues using the highest and lowest recommended rates representing old and new insecticides recommended to control cotton pests (chlorantraniliprole, chlofernapyr, spinosad, lambda-cyhalotrin, methidathion, pymetrozine, and thiamethoxam) was determined. The study included parasitoids [Aphelinus gossypii Timberlake, Bracon vulgaris Ashmead, Lysiphlebus testaceipes (Cresson), Telenomus podisi (Ashmead), Trichogramma pretiosum (Riley)] and predators [Hippodamia convergens Guérin-Méneville, Euborellia annulipes (Lucas), Podisus nigrispinus (Dallas), Solenopsis invicta Buren), Orius insidiosus (Say), Chrysoperla externa Hagen and Eriopis connexa (Germar)], with two different cohorts for these last two species. All natural enemies exposed to methidathion exhibited 100% mortality. Thiamethoxam, lambda-cyhalothrin and chlorfenapyr also caused high mortality of P. nigrispinus, S. invicta, H. convergens, O. insidiosus and all tested parasitoids. Among the natural enemies, E. annulipes exhibited high survival when exposed to all tested insecticides, except methidathion. Chlorantraniliprole and pymetrozine caused overall lower impact on the natural enemies tested followed by spinosad; hence, they are options for cotton pest management. Furthermore, the outcomes highlight the implication of knowing the background susceptibility of the species tested when addressing the impact of insecticides on natural enemies.  相似文献   

12.
The crucifer flea beetle, Phyllotreta cruciferae (Goeze), is an economically important and dominant pest of canola (Brassica napus L) in the Northern Great Plains of the USA. The current flea beetle management strategy is based on using synthetic chemical treated seeds and if necessary, foliar spray of chemicals at canola seedlings in early spring for targeting adult population. However, there is an increasing demand for development of alternative management strategies for P. cruciferae pertaining to concerns over the development of resistance to synthetic insecticides and non-target effects on pollinators and other beneficial insects. Replicated field trials were conducted to test the efficacy of several commercially available biopesticides including Entrust® (spinosad), entomopathogenic nematode Steinernema feltiae?+?Barricade® (polymer gel 1%), Aza-Direct® (azadirachtin), Pyganic 1.4® EC (pyrethrin), Grandevo® SC (Chromobacterium subtsugae), Venerate® XC (Heat killed Burkholderia sp. strain A396 as seed treatment and foliar application) and Gaucho® (imidacloprid) (chemical check) for the P. cruciferae management at two locations (Conrad and Sweetgrass) of Montana in 2016. Biopesticide products were evaluated based on canola leaf area injury ratings and seed yield levels. Although, there was no clear trend of canola yield increase, selected biopesticide treatments were effective in maintaining low leaf area injury ratings as compared to untreated control. Entrust was able to maintain low leaf area injury ratings (8.5–14.5%) when compared to untreated control (16.0–21.4%) at both the locations. Entomopathogenic nematodes, Steinernema feltiae?+?Barricade® and Venerate® applied as foliar treatments maintained significantly lower feeding injury pressure at Sweetgrass (11.8%) and Conrad (13.4%) locations respectively, when compared to the untreated control. Our study results suggest that these biopesticide treatment results were comparable in efficacy to the chemical seed treatment Gaucho®. Other two biopesticide products- Aza-Direct® and Pyganic 1.4® EC treatments did not provide effective control of P. cruciferae at both the locations.  相似文献   

13.
To evaluate the effect of conidial density of Monilinia spp. on the fruit surface on the incidence of latent infection and brown rot in peaches, eleven field surveys were performed in commercial orchards located in Cataluña, Spain over four growing seasons from 2002 to 2005, and nine surveys were conducted to determine the sources of overwintered Monilinia spp. inoculum. There was a significant positive relationship (r?=?0.69) between the numbers of conidia of Monilinia spp. on the fruit surface and the incidence of latent infections, but not with brown rot at harvest. Although mummified fruit, twigs and pits have been identified as being able to carry the pathogen from year to year in peaches grown in Spanish orchards, no relationships between any of these sources and the numbers of conidia on the fruit surface, or incidence of latent infection or brown rot were found. The effect of temperature (T), solar radiation (SR), rainfall (R) and wind speed (WS) on the area under the number of conidia of Monilinia spp. curve (AUncC) on peach surfaces was analysed. Regression analysis revealed that T, SR, R, and WS could account for 99% of the total variation in the area of the AUncC on peach surfaces. Thus, in order to reduce the incidence of latent infection and brown rot it is essential not only to remove the sources of primary inoculum but also to reduce the number of Monilinia spp. conidia on the fruit surface. Furthermore, the sources of airborne conidia of Monilinia spp. should be taken into consideration in disease management programmes in Spain.  相似文献   

14.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

15.
The present study was conducted to determine egg and larval parasitoids of the beet armywormSpodoptera exigua Hübner (Lepidoptera: Noctuidae), which is an important but sporadic pest in Turkey. High beet armyworm population levels were recently observed in fields of first and second crop maize in the southeast Mediterranean region of Turkey. The parasitoid species complex and its impact on the pest were analyzed in a 4-year study in first and second crop maize. The braconid larval parasitoidsMicroplitis rufiventris Kokujev,M. tuberculifer Wesmael,Meteorus ictericus Nees,Chelonus obscuratus (Herrich Schäffer) (an egg-larval parasitoid),Apanteles ruficrus (Haliday); the ichneumonid larval parasitoidsHyposoter didymator (Thunberg) andSinophorus xanthostomus Gravenhorst; and the egg parasitoidTrichogramma evanescens (Westwood) were found to be the natural enemies attacking the pest. Among the parasitoid species the solitary endoparasitoidH. didymator was the most prevalent species, being reared from 40.5% of the parasitized larvae found. Higher parasitism rates were recorded on first crop than on second crop maize in every year. Possible reasons for this difference in larval parasitism between two growing seasons include lower population of the pest and reduced insecticide applications in first crop maize fields which permitted higher parasitism. However, parasitoid activity was insufficient to counterbalance the population growth of the pest on subsequent second crop maize.  相似文献   

16.
Grapevine leafroll disease is associated with several species of phloem-limited grapevine leafroll-associated viruses (GLRaV), some of which are transmitted by mealybugs and scale insects. The grape phylloxera, Daktulosphaira vitifoliae (Fitch) Biotype A (Hemiptera: Phylloxeridae), is a common vineyard pest that feeds on the phloem of vine roots. There is concern that these insects may transmit one or more GLRaV species, particularly GLRaV-2, a species in the genus Closterovirus. A field survey was performed in vineyards with a high incidence of grapevine leafroll disease and D. vitifoliae was assessed for acquisition of GLRaV. In greenhouse experiments, the ability of D. vitifoliae to transmit GLRaV from infected root sections or vines to co-planted virus-free recipient vines was tested. There were no GLRaV-positive D. vitifoliae in the field survey, nor did D. vitifoliae transmit GLRaV-1, ?2, ?3, or -4LV in greenhouse transmission experiments. Some insects tested positive for GLRaV after feeding on infected source vines in the greenhouse, however there was no evidence of virus transmission to healthy plants. These findings, in combination with the sedentary behaviour of the soil biotype of D. vitifoliae, make it unlikely that D. vitifoliae is a vector of any GLRaV.  相似文献   

17.
Locomotory behaviour of insecticide-resistant and susceptible populations of diamondback moth, Plutella xylostella (Linnaeus), a challenging insect-pest of cruciferous vegetable crops round the globe, was studied with the help of Ethovision. Larvae from the susceptible population of P. xylostella travelled more distance on insecticide-treated or untreated surface and consequently their speed was also more as compared to those taken from the insecticide-resistant population.Whereas, the turn angle of larvae from insecticide-resistant population was significantly higher as compared to those from susceptible population. The resistant larvae travelled significantly less distance (260.68 cm/5 min) on treated-surface (with LC50 value of endosulfan, quinalphos, fenvalerate and spinosad) with more value of turn angle (231.16°) than the susceptible ones which moved faster (517.23 cm/5 min) with less value of turn angle (100.63°). Influence of varying temperatures on locomotory behaviour of larvae from the susceptible and resistant population of P. xylostella was also studied and observed that susceptible P. xylostella larvae travelled significantly greater distance as compared to the larvae from insecticide-resistant population, at different temperatures. Locomotory behaviour of larvae of P. xylostella also changes with food conditions. Resistant larvae starved for 24 h travelled significantly lesser distance (147.29 cm) as compared to unstarved ones (332.50 cm). Similar trend in behaviour was also recorded with respect to speed of larvae of P. xylostella. Larvae turn more frequently when kept without food (starved) than those fed normally; the turn angle was significantly higher (290.07°) for resistant larvae and for susceptible larvae it was lesser i.e. 151.55°, when kept at starved conditions. Hence, certain pronounced behavioural differences were registered in locomotion of insecticide-resistant P. xylostella as compared to the susceptible one and this knowledge would help to find effective management solutions to P. xylostella.  相似文献   

18.
Bacterial pathogens of onion (Allium cepa) plants and their undetected presence in seed can cause substantial losses to onion producers. In this study, 23 Pseudomonas syringae strains were isolated from five onion plants and 18 onion seeds. The symptoms on leaves and seed stalks were irregular lesions with necrotic centres and water soaked margins. The aim of the study was to characterize these P. syringae strains using Biolog GN III carbon source utilization, multilocus sequence typing (MLST) based on partial sequences of four housekeeping genes (cts, gapA, gyrB and rpoD), and to determine whether or not the strains were pathogenic on onion (cv. Granex 33), chive (Allium schoenoprasum cv. Grasiue), leek (Allium porrum cv. Giant Italian) and spring onion (Allium fistulosum cv. Salotte) plants. Both Biolog analysis and MLST analysis separated onion strains into two clusters, one supporting the existence of a new pathovar of P. syringae, and the other corresponding to P. syringae pv. porri. Pseudomonas syringae strains belonging to the new pathovar we pathogenic only on onion plants of the Allium spp. tested. The results of this study revealed that bacterial blight of onion in South Africa is caused by two pathovars of P. syringae sensu lato, namely, the newly described pathovar, allii, and P. syringae pv. porri. The symptoms caused by these two pathovars in the field were indistinguishable.  相似文献   

19.
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a quarantine pest of cherries (Prunus spp.) in western North America that is managed primarily using insecticides. Different insecticides could vary in efficacy and ability to control flies depending on environmental factors. Here, the objective was to determine if temperature and food availability affect the efficacies of spinosad and malathion against R. indifferens in the laboratory. Fourteen- to 18-day old flies were exposed to sweet cherries with dried residues of spinosad and malathion at 19 or 21 versus 27 °C with or without yeast extract + sucrose food (‘food’). Deaths and oviposition were recorded over four days. In spinosad treatments, fly kill was greater at 27 °C than at lower temperatures when there was no food, but in the malathion treatments, kill did not differ between temperatures and it was greatest when there was no food. In spinosad treatments, lower oviposition occurred at 19 or 21 °C than 27 °C, with differences larger when there was food. However, in malathion treatments, oviposition was not affected by temperature although it was lower when there was no food. Results imply temperature and food availability could be factors affecting R. indifferens control in cherries, but whether temperature is such a factor depends on the insecticide used.  相似文献   

20.
Psytallia concolor (Szépligeti) is a koinobiont endoparasitoid of many Tephritidae larvae, including Bactrocera oleae (Rossi), and has been used in Mediterranean areas for biological control of olive fruit fly by inundative release. The present study evaluates the influence of olive fruit variety (Amfissis, Arbequina, Branquita de Elvas, Carolea, Kalamon, Koroneiki, Leccino, Manzanilla, Mastoidis, Moroccan Picholine and Picholine) on P. concolor parasitism efficiency and performance in the field during two successive years. The results showed that the percentage of parasitism was significantly higher (>30%) in Mastoidis and Koroneiki (light-weight varieties <1.5 g) than Leccino which has a medium fruit weight, followed by Amfissis, Moroccan Picholine, Picholine and Branquita de Elvas. Only Manzanilla among large weight varieties, exhibited high percentage of parasitization (42.72%) during 2013. The mean weight of the pupae (>4.21 mg) as well as the length of the developed adult parasitoids (>3.5 cm) in Mastoidis and Manzanilla were significantly higher than these individuals developed from other varieties such as Koroneiki and Kalamon. Finally, the optimal host fruit for P. concolor development seems to be Mastoidis variety with great biological parameters and percentage of parasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号