首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
多年来.抗菌素药物研制成功和开发应用为人类治疗细菌性传染病作出了巨大贡献。1929年青霉素发明以来.人们对细菌性传染病的治疗发生了历史性的转变,使得许多疾病得到了有效的控制和彻底的治疗。但是,随着抗生素在全球的广泛使用.导致了日益严重的细菌耐药性问题.特别是多重耐药  相似文献   

2.
马苏 《中国兽药杂志》2012,46(2):50-52,56
通过阐述动物源细菌耐药性的产生及演变趋势,分析抗生素在兽医领域中的应用情况,探讨动物细菌传染性疾病的防治策略,旨在了解细菌耐药性对动物细菌传染性疾病治疗的影响,为兽用药品特别是兽用细菌疫苗的发展提供参考,促进动物卫生安全和公共卫生安全。  相似文献   

3.
家禽的细菌性疾病是由以禽副嗜血杆菌、产气荚膜梭菌、埃希氏大肠杆菌、出血性败血症巴氏杆菌、沙门氏菌、金黄色葡萄球菌等为代表的一系列细菌引起的疾病。  相似文献   

4.
近年来,由于抗菌药物的广泛使用,细菌耐药性不断加强,而且很多细菌已由单药耐药发展到多重耐药。动物机体长期与药物接触,造成耐药菌不断增多,耐药性也不断增强。抗菌药物残留于动物性食品中,同样使人也长期与药物接触,导致人体内耐药菌的增加。如今,不管是在动物体内,还是在人体内,细菌的耐药性已经达到了较严重的程度。为此,加强和控制不合理应用抗生素和滥用抗生素现象,避免或减少细菌耐药性问题。  相似文献   

5.
我国动物源细菌耐药性监测系统简介   总被引:1,自引:0,他引:1  
本文介绍了我国动物源细菌耐药性监测网络的组成和主要内容,详细阐述了其过程控制,包括采样、细菌分离鉴定和耐药性检测、耐药性检测结果汇总分析等,并介绍了我国取得的成就,如建立了动物源细菌耐药性监测技术平台和耐药性细菌资源库、创建了具有自主知识产权的动物源细菌耐药性数据库、摸清了我国动物源细菌的耐药性状况等。针对我国动物源细菌的耐药现状,提出了应对措施,包括规范我国兽用抗菌药物饲料添加剂的使用、加强动物处方药的管理并建立治疗用抗菌药物的分级管理制度、持续开展畜禽细菌耐药性动态监测等。  相似文献   

6.
食品动物源细菌耐药性与公共卫生   总被引:1,自引:0,他引:1  
抗菌药在畜禽养殖上大量应用,对治疗和预防动物疾病、促进生长、提高畜牧业产量起到了积极的作用,但动物使用抗菌药导致大量耐药菌出现,一方面造成动物疾病防治屡屡失败;另一方面大量的动物源耐药菌可通过食物链转移到人体,如是病原菌则直接导致人类疾病治疗的失败,如是非病原性耐药菌则可能在人体肠道中将耐药基因传递给其他病原菌而引发疾病。因此,食品动物源耐药菌对人类健康和公共卫生的潜在威胁引起了广泛关注。  相似文献   

7.
利用调查和数据统计报道我国近年来的兽用抗生素使用、养殖业用药背景、抗菌药物耐药、动物源细菌耐药性监测、动物源细菌耐药监测数据库研究及国家制定的相关政策等现状,并针对我国动物源细菌的耐药和监测现状,提出了我国政府与各地区相关部门应科学评估分析动物源细菌耐药性监测数据及变化趋势;借鉴发达国家的经验和方法,完善我国动物源细菌耐药性监测网络和监测体系;加强教育和宣传等应对措施,为解决全球动物源细菌耐药性问题作出贡献。  相似文献   

8.
为了解北京市宠物源细菌的抗菌药物耐药情况,2022年,笔者对北京市四个城区的四家宠物医院的犬、猫共计50份样本的肛拭子进行了研究。试验对样品中的大肠杆菌和肠球菌首先进行了分离培养和质谱鉴定,然后采用微量肉汤稀释法分析分离菌株的耐药表型。结果共分离出大肠杆菌25株、肠球菌25株(屎肠球菌14株、粪肠球菌11株)。大肠杆菌耐药率最高的2种抗菌药为四环素和氨苄西林,多重耐药菌占44%;肠球菌耐药情况较严重,粪肠球菌耐药率最高的抗菌药物为磺胺异噁唑,屎肠球菌耐药率最高的抗菌药物为磺胺异噁唑、头孢西丁和红霉素,二者多重耐药菌占分离株总数的100%。综上,北京地区宠物源大肠杆菌、肠球菌的耐药情况较为严峻,且多重耐药现象突出,需要加强对宠物抗菌药使用的监督与管理。  相似文献   

9.
细菌生物膜是一种包裹于细胞外多聚物基质中的黏附于非生物或生物表面的微生物菌落。作为一种生存策略,绝大多数细菌在合适的条件下都会产生生物膜,生物膜状态下的细菌相对其游离状态有着更强的耐药性,是导致临床上出现难治性感染的重要原因之一。主要综述了生物膜的形成、耐药机制及抗生物膜的策略,以便寻找有效控制生物膜相关感染的手段,指导临床合理用药和新药开发。  相似文献   

10.
了解细菌对抗菌药的耐药机制和耐药基因元件传播机制的研究进展,有助于指导抗菌药的正确使用,减少抗菌药物的耐药出现,为新型抗菌药的开发及利用奠定基础。  相似文献   

11.
抗菌药在人类感染性疾病防治中起着非常重要的作用,但随之而来的耐药问题也越来越严重.一般临床应用抗菌新药3~12年后开始出现耐药性,有的应用之初即出现耐药菌.  相似文献   

12.
抗生素在畜牧业生产中的不合理使用导致了细菌产生耐药性的现象普遍存在,其中以在畜牧生产中应用较为广泛的四环素类抗生素更甚.针对这一现象,国家农业农村部于2019年发布公告,2020年起全面禁止在饲料中添加使用抗生素,以减少滥用抗生素造成的危害,维护动物源食品安全和公共卫生安全.此外,四环素类药物具有严重的耐药性对养殖业、...  相似文献   

13.
细菌抗生素类药物耐药性的产生是临床治疗感染性疾病的一大难题,已受到人们的广泛关注。细菌主要通过产生灭活酶或钝化酶获得耐药性,除此之外还有细胞壁的渗透障碍、外排泵的泵出作用、靶位改变等多种机制,这些机制相互作用共同决定细菌的耐药水平。随着新型抗生素的临床应用,新的耐药机制随之出现,耐药菌也越来越广泛。细菌耐药机制的研究对耐药菌的控制和新药开发具有指导性意义。文章从耐药性的起源、产生机理、耐药特性及耐药性的检测方法4个方面进行了阐述。  相似文献   

14.
随着我国畜牧业的飞速发展,畜牧业已经成为我国经济的支柱产业,其中养猪业所占比例较大,但目前猪的传染病发生的数量和频率较高,尤其是细菌性疾病对养猪业造成的危害日益明显,由于耐药菌株不断出现而导致抗生素治疗无效给养猪业带来严重的经济损失。如何防治细菌病,成为当今困扰养猪业的一大难题。其中猪大肠杆菌病就是危害养猪业的一种严重的细菌性传染病。猪大肠杆病是由致病性大肠杆病引起的一类传染性疾病的总称。  相似文献   

15.
随着我国畜牧业的飞速发展,畜牧业已经成为我国经济的支柱产业,其中养猪业所占比例较大,但目前猪的传染病发生的数量和频率较高,尤其是细菌性疾病对养猪业造成的危害日益明显,由于耐药菌株不断出现而导致抗生素治疗无效给养猪业带来严重的经济损失。如何防治细菌病,成为当今困扰养猪业的一大难题。其中猪大肠杆菌病就是危害养猪业的一种严重的细菌性传染病。猪大肠杆病是由致病性大肠杆病引起的一类传染性疾病的总称。  相似文献   

16.
一个值得高度关注的问题——动物源细菌耐药性   总被引:1,自引:0,他引:1  
由于动物源细菌耐药性关乎到人类健康,使得畜禽疾病防控和公共卫生安全日益受到全世界的普遍关注。本文就动物源细菌耐药性的危害、我国动物源细菌的耐药性状况、发展趋势及应对策略进行了综述,以期对我国开展动物源细菌耐药性检测和制定预防对策提供参考。  相似文献   

17.
动物源细菌耐药性监测与流行病学研究   总被引:2,自引:1,他引:2  
全面分析了开展动物源细菌耐药性监测与流行病学研究的必要性和紧迫性,介绍了动物源细菌耐药性监测与流行病学研究的国外概况和国内现状,指出当前我国在该领域内存在的问题,提出6点建议以期做好动物源细菌耐药性的防控工作。  相似文献   

18.
畜禽养殖中抗生素滥用造成动物源耐药细菌大量产生与传播,已经成为重点关注的公共安全问题。我国细菌耐药情况较为严重,对于动物源细菌耐药性关注度亟待加强。本文将从浙江省近年动物源大肠埃希菌、弗格森埃希菌、沙门菌、弯曲杆菌、肠球菌及葡萄球菌的分离情况、耐药情况以及所发现的获得性耐药基因方面进行综述,为畜禽养殖行业的科学合理用药提供理论指导,完善动物源细菌耐药监测网,为抗菌药减量化行动提供依据,以期更好地遏制浙江省动物源细菌耐药性问题。  相似文献   

19.
克服细菌耐药性的新药及其临床应用   总被引:1,自引:0,他引:1  
众所周知 ,在我国养殖业中一直存在着抗生素的不规范使用问题 ,并因此造成日趋严重的细菌耐药性难题 ,给畜禽疾病防治带来更大挑战。根据权威机构的研究结果 ,细菌产生耐药性的主要原因有如下三种 :1 细菌产生水解酶 ,破坏抗生素的结构使其灭活。2 改变抗生素作用的靶位蛋白结构和数量 ,使细菌对抗生素不再敏感。3 外膜屏障及外流泵作用使抗生素在菌体内的积累减少 ;使得抗生素活性浓度降低。其中由第一种原因所致的耐药最为常见 ,如耐药细菌产生 β -内酰胺酶 ,打开 β -内酰胺类抗生素中的 β -内酰胺环这一关键部位 ,使其结构破坏 ,丧失…  相似文献   

20.
中药消除细菌耐药性的研究进展   总被引:1,自引:0,他引:1  
细菌耐药性问题一直是全球关注的问题,从天然、毒副作用小的中草药中筛选耐药抑制剂是近几年来人们研究的热点问题。本文从以下几个方面综述了近几年来中药消除耐药性的研究进展:对耐药菌具有消除作用的中药;中药抑制β-内酰胺酶作用;中药抑制耐药茵主动外排作用;中药抗菌增效剥;药对耐药质粒(R质粒)的消除作用等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号