首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the Ca dependency of the calpains, oral supplementation of vitamin D3 (VITD) can increase the Ca content of muscle to activate the calpains and improve tenderness. Feedlot steers (n = 142) were arranged in a 4 x 3 factorial arrangement consisting of four levels of VITD (0, 0.5, 1, and 5 million IU/[steer x d]) for eight consecutive days antemortem using three biological types (Bos indicus, Bos taurus-Continental, and Bos taurus-English). Feedlot performance factors of ADG, DMI, and G:F were measured, and carcass quality, yield, and color data were collected. Plasma Ca and P concentrations were measured during d 4 to 6 of supplementation and at exsanguination, and carcass pH and temperature were measured in the LM at 3 and 24 h postmortem. Vitamin D3 treatment at 5 million IU/(steer x d) decreased ADG (P < 0.05) over the supplementation and feed intake for the last 2 d of feeding compared with untreated control steers. Likewise, G:F was decreased (P = 0.03) in steers supplemented with 5 million IU/d compared with controls. Overall, there was a linear decrease (P < 0.01) in ADG and G:F as a result of VITD supplementation. Plasma concentrations of Ca and P were increased (P < 0.05) by VITD concentrations of 1 and 5 million IU/(steer x d). All VITD treatments increased (P < 0.05) LM temperature at 3 h postmortem and pH at 24 h postmortem. Vitamin D3 treatments did not affect (P = 0.07) any other carcass measurements, including USDA yield and quality grade; thus, any improvements in meat tenderness as a result of VITD supplementation can be made without adversely affecting economically important carcass factors. Biological type of cattle did not interact with VITD treatment for any carcass or feedlot performance trait. Although feeding 5 million IU/(steer x d) of VITD for eight consecutive days had negative effects on performance, supplementing VITD at 0.5 million IU/ (steer x d) did not significantly alter feedlot performance.  相似文献   

2.
Vitamin D3 was orally supplemented to determine the supplemental dose that improved beef tenderness in different cattle breed types. Feedlot steers (n = 142) were arranged in a 4 x 3 factorial arrangement consisting of four levels of supplemental vitamin D3 (0, 0.5, 1, and 5 million IU/steer daily) administered for eight consecutive days antemortem using three biological types (Bos indicus, Bos Taurus-Continental, and Bos Taurus-English). Warner-Bratzler shear force (WBSF) was measured at 3, 7, 10, 14, and 21 d postmortem, and trained sensory analysis was conducted at 7 d postmortem on LM, semimembranosus, gluteus medius, and supraspinatus steaks. Concentrations of vitamin D3 and the metabolites 25-hydroxyvitamin D3, and 1,25-dihydroxyvitamin D3 were determined in the LM, liver, kidney, and plasma. Biological type of cattle did not interact (P > 0.10) with vitamin D3 supplementation for sensory or tenderness traits, suggesting that feeding vitamin D3 for 8 d before slaughter affected the different biological types of cattle similarly. Supplementing steers with 0.5, 1, or 5 million IU/(steer(d) decreased (P < 0.05) LM WBSF at 7, 10, 14, and 21 d postmortem compared with controls, and vitamin D3 treatments of 0.5, 1, and 5 million IU decreased (P < 0.05) semimembranosus WBSF at 3, 7, and 14 d postmortem. In general, vitamin D3-induced improvements in WBSF were most consistent and intense in LM steaks. Sensory panel tenderness was improved (P < 0.05) by all vitamin D3 treatments in LM steaks. Sensory traits ofjuiciness, flavor, connective tissue, and off-flavor were not (P > 0.05) affected by vitamin D3 treatments. All vitamin D3 treatments decreased micro-calpain activity and increased muscle Ca concentrations (P < 0.05). Vitamin D3 concentrations were increased (P < 0.05) by supplementation in all tissues tested (liver, kidney, LM, and plasma); however, cooking steaks to 71 degrees C decreased (P < 0.05) treatment residue effects. The vitamin D metabolite 1,25-dihydroxyvitamin D3 was increased (P < 0.05) only in plasma samples as a result of the vitamin D3 treatments. These results indicate that supplementation with vitamin D3 at 0.5 million IU/steer daily for eight consecutive days before slaughter improved tenderness in steaks from different subprimal cuts by affecting muscle Ca concentrations, micro-calpain activities, and muscle proteolysis, with only a small effect on tissue residues of vitamin D3.  相似文献   

3.
The objective of this experiment was to determine the effect of different doses of vitamin D3 (VITD) on beef feedlot performance, plasma and muscle Ca2+, tissue residues, and improvement of Warner-Bratzler shear force (WBS) and panel tenderness. A total of 167 steers were fed one of six levels of VITD. The VITD treatments (28 steers/treatment) were 0, 0.5 x 10(6), 1 x 10(6), 2.5 x 10(6), 5 x 10(6), and 7.5 x 10(6) IU/steer daily of VITD fed nine consecutive days before slaughter. Feedlot performance and plasma Ca2+ were measured during the last 21 days on feed. Warner-Bratzler shear force was measured on strip loin and top round steaks at 7, 10, 14, and 21 d postmortem. The VITD treatments of 5 and 7.5 x 10(6) IU/steer daily decreased (P < 0.05) ADG, and VITD supplementation of 2.5, 5, and 7.5 x 10(6) IU/steer daily decreased average dry matter feed intake (P < 0.05) at the end of the feeding trial. Plasma Ca2+ increased linearly with VITD treatment (P < 0.01). Calpastatin and calpain activity were not influenced by treatment (P > 0.05), but muscle Ca2+ was increased (P < 0.05) by VITD treatments of 1, 2.5, 5, and 7.5 10(6) IU/steer daily. Feeding VITD did not influence (P > 0.05) carcass quality or yield traits. Supplementing VITD at levels of 1, 2.5, 5, and 7.5 10(6) IU/steer daily increased (P < 0.05) VITD concentrations in strip loin and liver samples. Cooking liver decreased VITD concentrations 10 to 28%. Vitamin D3 treatments of 0.5 and 7.5 x 10(6) IU/d reduced strip loin steak WBS at d 7 (P < 0.05), but VITD treatments did not decrease strip loin steak WBS at any other time postmortem. The VITD treatments of 0.5, 1, and 5 x 10(6) IU/steer daily decreased top round steak WBS at 7 d, and all VITD treatments decreased 10-d top round steak WBS (P < 0.05). Supplementing steers with 0.5 x 10(6) IU/steer daily of VITD also decreased (P < 0.05) top round steak WBS at 21 d postmortem compared with controls. Sensory tenderness at 7 d postmortem was increased (P < 0.05) by all VITD treatments in top round steaks, yet strip loin tenderness scores were not affected (P > 0.05) by VITD treatment. Treatment with VITD quadratically decreased (P < 0.05) round WBS. Thus, VITD treatment will effectively improve tenderness when cattle tend to be tough and have no impact on cattle that produce tender beef. Feeding steers 0.5 x 10(6) IU of VITD daily for 9 d improved tenderness in two muscles without negatively affecting feedlot performance or tissue residues.  相似文献   

4.
Vitamin D3 supplementation of beef steers increases longissimus tenderness.   总被引:11,自引:0,他引:11  
The objectives of these experiments were to determine 1) the effectiveness of supplemental vitamin D3 (VITD) on altering plasma and muscle calcium levels, 2) whether VITD supplementation improves Warner-Bratzler shear force (WBS) values of steaks from feedlot beef steers, and 3) the tenderness response curve of longissimus steaks from steers supplemented with VITD. In Exp. 1, 20 crossbred steers were assigned randomly to one of four treatment diets consisting of either 0, 2.5, 5.0, or 7.5 x 106 IU of VITD per day for 10 d. Blood samples were obtained daily during this supplementation period and 5 d thereafter (d 11 to 15). Between d 6 and 13, a linear increase (P < .01) in ionized plasma calcium concentrations was observed in steers supplemented with VITD. Compared to unsupplemented steers, serum calcium concentrations of the steers receiving 7.5 x 106 IU of VITD per day were increased 8 to 48%. In Exp. 2, longissimus samples from crossbred steers (n = 118) that were supplemented with either 0 or 5 x 106 IU of VITD per day for 7 d were obtained and aged for 7, 14, or 21 d. Following the initial 7-d postmortem aging period, VITD supplementation lowered (P < .01) WBS (.58 kg) and increased sensory tenderness rating (.6 units) compared to cuts originating from unsupplemented steers. In Exp. 3, 44 steers were supplemented with either 0 or 7.5 x 106 IU of VITD per day for 10 d immediately prior to slaughter. Results indicated that plasma and longissimus calcium concentration were higher (P < .05) for steers that received supplemental VITD. Compared with unsupplemented cuts, VITD supplementation improved WBS of cuts aged for either 7 or 14 d (P = .02 and P = .07, respectively). Sensory panelists rated samples from VITD supplemented steers as more tender than their unsupplemented counterparts. Activation of calpain proteases could be responsible for the observed tenderization due to the supplementation of VITD.  相似文献   

5.
Ultimate meat tenderness can be influenced by numerous preslaughter and postmortem management techniques. Increased levels of intracellular Ca2+, through postmortem injection, infusion, or marination, have been shown to improve the tenderness of cooked meat products. Oral supplementation with vitamin D3 effectively increases serum Ca2+ and has been hypothesized to increase muscle Ca2+ content, the activity of muscle proteases, and thus the tenderness of cooked beef. Individual Charolais x Hereford heifers (n = 191) were assigned to an unsupplemented control group or groups that were supplemented via oral bolus (for dose regulation purposes) with one of seven levels of vitamin D3 (1, 2, 3, 4, or 5 x 10(6) IU D3/d, 2 x 10(6) IU DS/d plus 75 g CaCO3 or 4 x 106 IU D3/d plus 75 g CaCO3) for 2, 4, 6, or 8 d antemortem. Individual feedlot performance, serum Ca2+ levels, and carcass data were collected, and eight longissimus steaks/carcass were used to obtain Warner-Bratzler shear force values measured at 2, 7, 14, and 21 d postmortem for longissimus steaks cooked to 70 degrees or 85 degrees C. Cattle supplemented with 4 x 10(6) IU D3/d plus 75 g of CaCO3 had lower daily feed intake (as-fed) and reduced (P < 0.05) average daily gains compared with controls during the 8-d supplementation period. Additionally, supplemented cattle had numerically higher dressing percentages, possibly due to less fill at the time of slaughter, because carcass weights and USDA yield grades did not differ (P > 0.05) across treatment groups. Supplementation with 1, 2, 3, 4, or 5 x 10(6) IU D3/d, for 2 or more days, increased (P < 0.05) serum Ca2+ concentrations compared with controls. Whereas cattle that received additional dietary Ca2+ in the form of CaCO3 had the lowest blood serum Ca2+ concentration. Although blood serum Ca2+ was increased, supplementation with any level of vitamin D3 for any length of time up to 8 d did not improve (P > 0.05) Warner-Bratzler shear force at 2, 7, 14, or 21 d of postmortem aging compared with controls when steaks were cooked to final internal temperatures of either 70 (control means 6.27, 4.91, 4.64, and 3.80 kg, respectively) or 85 degrees C (control means 7.31, 5.32, 4.69, and 4.46 kg, respectively). Results indicated that oral supplementation with vitamin D3 (at high or low doses) for 2 to 8 d before slaughter increased serum Ca2+ concentration but does not improve cooked longissimus tenderness.  相似文献   

6.
Research was conducted to determine the effects of supplemental dietary vitamin D3 on DMI, carcass traits, Warner Bratzler shear (WBS) force, calpastatin activity, plasma minerals, pH (0, 3, 12, and 24 h after slaughter), water-holding capacity (WHC), and sensory characteristics of three muscles. Pre-slaughter vitamin D3 treatments included no supplemental vitamin D3, 6 x 106 IU (MIU) of vitamin D3 for 4 d, or 6 MIU of vitamin D3 for 6 d. Cattle were slaughtered and carcasses were chilled for 48 h before removal of steaks from the longissimus, gluteus medius, and biceps femoris muscles. Steaks were aged at 2 degrees C for 7, 14, or 21 d before cooking to a final internal temperature of 70 degrees C for WBS and sensory panel analysis. Dry matter intake was lower for steers supplemented with vitamin D3 for 4 or 6 d. Live and carcass weights were lower (P < 0.05) in steers supplemented with vitamin D3. Supplementing 6 MIU/6 d of vitamin D3 decreased (P < 0.05) WBS values of gluteus steaks (pooled over aging times). Longissimus steaks from steers supplemented with vitamin D3 for 6 d had lower (P < 0.05) WBS force values than these steaks from control steers or steers fed vitamin D3 for 4 d at 7 d postmortem. Biceps femoris steaks from steers receiving vitamin D3 for 4 d had higher WBS values than steaks from control steers at 14 and 21 d postmortem. Feeding vitamin D3 at 6 MIU for 6 d decreased (P < 0.05) the percentage of steaks that had WBS values > or = 3.86 kg for all steaks. Feeding vitamin D3 had no effect on palatability traits evaluated by trained panelists. Blood Ca concentrations were greater (P < 0.05) when vitamin D3 was fed and with increased vitamin D3 feeding time. Feeding vitamin D3 for 6 d (vs 4 d) delayed pH decline for all muscle types after 0, 3, and 12 h postmortem. Water-holding capacity was increased (P > 0.02) after 0 h, 24 h, and 21 d postmortem when vitamin D3 was fed and was greater at 0 and 24 h if vitamin D3 was fed for 6 d rather than 4 d. These data suggest that supplementing 6 MIU of vitamin D3 will decrease DMI and improve beef tenderness through increased blood plasma Ca concentrations and WHC.  相似文献   

7.
Two experiments evaluated effects of ractopamine hydrochloride (RAC) on performance, intake patterns, and acid-base balance of feedlot cattle. In Exp. 1, 360 crossbred steers (Brangus, British, and British x Continental breeding; initial BW = 545 kg) were used in a study with a 3 x 3 factorial design to study the effects of dose [0, 100, or 200 mg/(steer x d) of RAC] and duration (28, 35, or 42 d) of feeding of RAC in a randomized complete block design (9 treatments, 8 pens/treatment). No dose x duration interactions were detected (P > 0.10). As RAC dose increased, final BW (FBW; P = 0.01), ADG (P < 0.01), and G:F (P < 0.01) increased linearly. As duration of feeding increased, ADG increased quadratically (P = 0.04), with tendencies for quadratic effects for FBW (P = 0.06), DMI (P = 0.07), and G:F (P = 0.09). Hot carcass weight increased linearly (P = 0.02) as dose of RAC increased. Thus, increasing the dose of RAC from 0 to 200 mg/(steer x d) and the duration of feeding from 28 to 42 d improved feedlot performance, although quadratic responses for duration of feeding indicated little improvement as the duration was extended from 35 to 42 d. In Exp. 2, 12 crossbred beef steers (BW = 593 kg) were used in a completely random design to evaluate the effects of RAC [0 or 200 mg/(steer x d) for 30 d; 6 steers/treatment] on rate of intake, daily variation in intake patterns, and acid-base balance. To assess intake patterns, absolute values of daily deviations in feed delivered to each steer relative to the total quantity of feed delivered were analyzed as repeated measures. There were no differences (P > 0.10) in feedlot performance, urine pH, blood gas measurements, or variation in intake patterns between RAC and control cattle, but steers fed RAC had increased (P = 0.04) LM area, decreased (P = 0.03) yield grade, and increased (P < 0.10) time to consume 50 and 75% of daily intake relative to control steers. Our results suggest that feeding RAC for 35 d at 200 mg/(steer x d) provided optimal performance, and no effects on acid-base balance or variation in intake patterns of finishing steers were noted with RAC fed at 200 mg/(steer x d) over a 30-d period.  相似文献   

8.
The use of vitamin D3 to improve beef tenderness   总被引:7,自引:0,他引:7  
An experiment was designed to test the hypothesis that short-term oral administration of dietary vitamin D3 to beef cattle before slaughter would increase beef tenderness through greater calcium-activated calpain activity in postmortem aged skeletal muscle. Thirty continental crossbred steers were allotted randomly to three treatment groups housed in one pen. One group served as a control; two other groups were administered boluses with either 5 x 10(6) or 7.5 x 10(6) IU of vitamin D3 daily for 9 d. Cattle were slaughtered 1 d later. The longissimus lumborum was excised from each carcass 72 h postmortem and steaks removed at 3, 7, 14, and 21 d postmortem. The semimembranosus muscle (top round) was excised from each carcass 72 h postmortem and steaks removed at 7, 14, and 21 d postmortem. Blood plasma calcium concentration of cattle treated with 5 or 7.5 x 10(6) IU of vitamin D3 was higher (P < .05) than that of controls. Strip loin and top loin steaks from cattle fed supplemental doses of vitamin D3 had lower (P < .05) Warner-Bratzler (W-B) shear values at 14 d postmortem but were not significantly different from controls at 3, 7, or 21 d (strip loins) or 7 or 21 d (top rounds). No significant difference in strip loin steak tenderness was observed by sensory panel at 14 d postmortem (P < .17) between steaks from control and vitamin D3-treated steers. At 14 d postmortem, strip loin and top round steaks from cattle fed 5 x 10(6) IU of vitamin D3, but not from those given 7.5 x 10(6) IU, showed more proteolysis (P < .05) than did steaks from control cattle, based on Western blotting analysis. Therefore, the use of supplemental dietary vitamin D3 given daily for 9 d before slaughter did improve tenderness (lower W-B shear values) of 14-d postmortem aged beef. Increased proteolysis seems to be the mechanism of tenderization.  相似文献   

9.
Feedlot producers often exceed NRC recommendations for vitamin A and D supplementation; however, increased concentrations of these vitamins have been shown to limit adipocyte differentiation in vitro. A feedlot trial was conducted using 168 Angus crossbred steers (BW = 284 ± 0.4 kg) allotted to 24 pens. The experiment had a 2 × 2 factorial arrangement of treatments: no supplemental vitamin A or D (NAND), 3,750 IU vitamin A/kg dietary DM with no supplemental vitamin D (SAND), no supplemental vitamin A and 1,860 IU vitamin D/kg dietary DM (NASD), and 3,750 IU and 1,860 IU vitamin A and D/ kg dietary DM (SASD), respectively. Serum, liver, and intramuscular and subcutaneous adipose tissue retinol concentrations were decreased in (P < 0.001) in cattle fed the no supplemental vitamin A diets (NAND and NASD combined) compared with those consuming supplemental vitamin A (SAND and SASD combined) diets. In addition, intramuscular retinol concentration was 38% less than in the subcutaneous depot. Serum 25(OH)D(3) concentrations were reduced (P < 0.001) during the first 70 d when cattle were fed no supplemental vitamin D diets (NAND and SAND combined); however, liver 25(OH)D(3) concentrations remained unchanged (P > 0.10) through d 184. Serum and liver 25(OH)D(3) concentrations increased (P < 0.001) with vitamin D supplementation (NASD and SASD combined). The DMI, ADG, G:F, and morbidity were not affected (P > 0.10) by dietary concentration of vitamin A or D. There were vitamin A and D interactions (P < 0.03) for backfat thickness and USDA Yield grade. Cattle fed the NAND diet had greater (P < 0.03) Yield grades than other treatments because of greater (P < 0.005) 12th rib backfat thickness in NAND steers than the NASD and SAND steers. Vitamin D concentrations were attenuated and minimal carcass adiposity responses to vitamin D supplementation were observed. Feeding a diet without supplemental vitamin A increased (P < 0.05) Quality grades and marbling scores and tended (P = 0.06) to increase ether extractable lipid of the LM. As retinol and 25(OH)D(3) concentrations in feedlot cattle declined as a result of a lack of dietary supplementation, adipose accretion increased, resulting in elevated Quality and Yield grades. Withdrawal of supplemental vitamin A, D, or both from the finishing diet of feedlot beef cattle had minimal impact carcass composition.  相似文献   

10.
The objective of this study was to determine whether feeding high doses of vitamin D3 7 d before slaughter would increase muscle Ca++ levels and result in more tender loin chops. Market lambs (n = 4 callipyge and 4 normal in Exp. 1, and n = 16 calipyge and 16 normal in Exp. 2) were randomly and equally assigned to feeding groups based on callipyge genotype and experimental diet, (vitamin D3 or control). Serum Ca++, muscle Ca++, Warner-Bratzler shear force, and troponin-T degradation data were analyzed. In Exp. 1, vitamin D3 was supplemented at 1 or 2 x 10(6) IU/d. The 2 x 10(6) IU dose resulted in the greatest serum Ca++ reponse and was chosen for Exp. 2. In Exp. 2, serum Ca++ concentration was higher (P < 0.05) for normal and callipyge lambs fed the vitamin D3 diet than for the control diet fed lambs. Muscle Ca++ concentrations, however, were not higher (P = 0.28) for the vitamin D3-fed lambs. Warner-Bratzler shear values were higher (P < 0.05) for callipyge than for normal lambs, but no differences were observed with vitamin D3 supplementation. These data were supported by results from Western blot analysis of troponin-T degradation, in which no differences were observed for vitamin D3 vs control diet lambs at 14 d postmortem. This experiment showed that feeding 2 x 10(6) IU/d of vitamin D3 to market lambs, callipyge or normal, raised serum Ca++ concentration, but did not increase muscle Ca++ concentration. This lack of response in muscle Ca++ was likely the reason that no differences were observed for Warner-Bratzler shear force values or troponin-T degradation data between the vitamin D3 and control loin chops. A higher dose of vitamin D3 may be required to improve tenderness.  相似文献   

11.
Previous studies have shown that supplementation of vitamin D3 to cow diets for 4 to 10 d before slaughter lowers Warner-Bratzler shear force (WBSF) values and increases sensory tenderness scores in beef cuts. The present study was conducted to evaluate the effects of vitamin D3 supplementation on muscle calcium concentration, WBSF values, and sensory tenderness ratings of LM and semitendinosus (ST) muscles from cull, predominately Angus, cows (eight cows per treatment). Treatments included 0 (control), 5 million IU, or 7.5 million IU of vitamin D3 supplemented daily for 7 d preslaughter. Twenty-four hours after slaughter, 2.54-cm-thick LM and ST muscle steaks were cut; aged for either 0, 7, 14, or 21 d (ST steaks aged for 7 d only); and frozen at -20 degrees C for WBFS and sensory analysis. Mean values for LM calcium concentration tended to increase (P = 0.14) with vitamin D3 supplementation (154, 176, and 183 microig/g, fresh basis, for 0, 5, and 7.5 million IU/d, respectively). After 7 d of aging, LM steaks from cows fed 7.5 million IU had lower (P < 0.05) WBSF values than 7-d steaks from controls and cows fed 5.0 million IU/d aged 7 d; however, vitamin D3 supplementation had no (P > 0.05) effect on WBSF values of ST steaks aged 7 d. Vitamin D3 supplementation did not (P > 0.05) affect sensory tenderness ratings for either LM or ST steaks at any aging period. Aging, however, had a linear (P < 0.001) effect on tenderness, with an increase in tenderness as aging time increased from 0 to 21 d. Thus, results from the present study indicate that vitamin D3 supplementation, at these levels and duration before slaughter, provided little benefit to muscle tenderness of beef from cull cows.  相似文献   

12.
The use of vitamin D3 and its metabolites to improve beef tenderness   总被引:6,自引:0,他引:6  
Three experiments were conducted to determine whether feeding 25-hydroxyvitamin D3 (25-OH D3) or 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3) improves the tenderness of longissimus dorsi (LD), semimembranosus (SM), and infraspinatus (IF) muscles similar to supplemental vitamin D3 without leaving residual vitamin D3 and its metabolites in muscle. In the first two experiments, 24 crossbred steers were used to determine the effects of different oral amounts of 1,25-(OH)2 D3 (Exp. 1; n = 12) and 25-OH D3 (Exp. 2; n = 12) on plasma Ca2+ concentrations. In the third experiment, crossbred steers were allotted randomly to one of four treatments: 1) control placebo (n = 7); 2) 5 x 10(6) IU of vitamin D3/d (n = 9) for 9 d and harvested 2 d after last treatment; 3) single, 125-mg dose of 25-OH D3 (n = 8) 4 d before harvest; or 4) single, 500-microg dose of 1,25-(OH)2 D3 (n = 9) 3 d before harvest. The LD and SM steaks from each animal were aged for 8, 14, or 21 d, whereas steaks from the IF were aged for 14 or 21 d. All steaks were analyzed for tenderness by Warner-Bratzler shear force and for troponin-T degradation by Western blot analysis. Supplementing steers with vitamin D3 increased (P < 0.01) the concentration of vitamin D3 and 25-OH D3 in all muscles sampled. Feeding steers 25-OH D3 increased (P < 0.05) the concentration of 25-OH D3 in meat, but to an amount less than half that of cattle treated with vitamin D3. Supplemental 1,25-(OH)2 D3 did not affect (P < 0.10) shear force values; however, there was a trend (P < 0.10) for supplemental vitamin D3 and 25-OH D3 to produce LD steaks with lower shear values after 8 and 14 d of aging, and lower (P < 0.10) shear force values for the SM aged for 21 d. Analysis of Western blots indicated that LD steaks from cattle supplemented with vitamin D3 and 25-OH D3 had greater (P < 0.05) troponin-T degradation. Antemortem supplementation of 25-OH D3 seems to increase postmortem proteolysis and tenderness in the LD and SM without depositing large concentrations of residual vitamin D3 and its metabolite 25-OH D3.  相似文献   

13.
Influence of early postmortem protein oxidation on beef quality   总被引:8,自引:0,他引:8  
The objective of this study was to examine the effect of early postmortem protein oxidation on the color and tenderness of beef steaks. To obtain a range of oxidation levels, the longissimus lumborum muscles (LM) from both strip loins of 20 steers fed either a finishing diet with vitamin E (1,000 IU per steer daily, minimum of 126 d [VITE]; n = 10 steers) or fed the same finishing diet without vitamin E (CON; n = 10 steers) were used. Within 24 h after slaughter, the LM muscle from each carcass was cut into 2.54-cm-thick steaks and individually vacuum packaged. Steaks from each steer were assigned to a nonirradiated group or an irradiated group. Steaks were irradiated within 26 h postmortem, and were aged at 4 degrees C for 0, 1, 3, 7, and 14 d after irradiation. Steaks from each diet/irradiation/aging time treatment were used to determine color, shear force, and degree of protein oxidation (carbonyl content). Steaks from steers fed the VITE diet had higher (P < 0.01) alpha-tocopherol contents than steaks from steers fed the CON diet. Immediately following irradiation, steaks that had been irradiated had lower (P < 0.05) L* values regardless of diet. Irradiated steaks, regardless of diet, had lower a* (P < 0.05) and b* (P < 0.01) values than nonirradiated steaks at all aging times. Carbonyl concentration was higher (P < 0.05) in proteins from irradiated steaks compared to nonirradiated steaks at 0, 1, 3, and 7 d postirradiation. Immunoblot analysis showed that vitamin E supplementation decreased the number and extent of oxidized sarcoplasmic proteins. Protein carbonyl content was positively correlated with Warner-Bratzler shear force values. These results indicate that increased oxidation of muscle proteins early postmortem could have negative effects on fresh meat color and tenderness.  相似文献   

14.
Feedlot steers (n = 36) from three biological types (Bos indicus, Bos taurus-Continental, and Bos taurus-English) were used to determine the Ca, P, and vitamin D3 status of feedlot cattle. The USDA yield and quality grade traits were measured at slaughter, and the concentrations of vitamin D3 (VITD) and the metabolites 25-hydroxyvitamin D3 (25-OH D) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D) were determined in LM, liver, kidney, and plasma. Plasma and muscle Ca and P concentrations also were determined. Biological type of cattle affected a number of carcass traits. Carcasses from Bos taurus-English cattle had more marbling, resulting in higher quality grades (P < 0.05). Carcasses from Bos taurus-Continental cattle had lower calculated yield grades (P < 0.05) than did carcasses from cattle in the other biological types. In general, differences in carcass traits resulting from biological type were consistent with other reports. Plasma and LM Ca and P concentrations were not affected (P = 0.06) by biological type of cattle, indicating that Ca and P homeostasis is a conserved trait across the different types of cattle. Plasma VITD and 25-OH D concentrations were not affected (P = 0.41) by biological type, whereas plasma 1,25-(OH)2 D concentration was lower (P < 0.05) in Bos taurus-English cattle than in Bos taurus-Continental and Bos indicus cattle. Liver VITD and 25-OH D were not affected by biological type (P = 0.76), but liver 1,25-(OH)2 D concentration was greater (P < 0.05) in Bos indicus cattle than in Bos taurus-Continental cattle. Kidney vitamin D metabolite concentrations were not affected by biological type of cattle (P = 0.21). Muscle VITD concentration was greater (P < 0.05) in Bos taurus-English cattle than in the other two biological types, and muscle 25-OH D concentrations were greater (P < 0.05) in Bos taurus-English cattle than in Bos indicus cattle. Muscle 1,25-(OH)2 D concentration was less (P < 0.05) in the Bos taurus-Continental cattle than in the other two biological types. Cooking eliminated vitamin D metabolite differences among the biological types. Our results suggest that Bos indicus cattle had greater 1,25-(OH)2 D (the biologically active form) in tissues, and greater 1,25-(OH)2 D plasma concentrations than Bos taurus cattle. Thus, the need for VITD supplementation and optimal levels of Ca and P in feedlot diets might differ between Bos indicus and Bos taurus cattle.  相似文献   

15.
Three experiments were conducted to examine the effects of vitamin E supplementation on feedlot cattle. Vitamin E supplementation did not affect feedlot performance or carcass characteristics of cattle fed a high-concentrate diet (P greater than .1). The major finding was the effectiveness of vitamin E in extending the color stability of displayed beef (P less than .01). Color stability during display of longissimus lumborum steaks from cattle supplemented with 300 IU/d for 266 d, 1,140 IU/d for 67 d, or 1,200 IU/d for 38 d was extended by 2.5 to 4.8 d. Gluteus medius steaks had an extended color display life of 1.6 to 3.8 d. The accumulation of lipid oxidation products, but not aerobic microbes, associated with displayed longissimus lumborum was suppressed for muscle from vitamin E-supplemented steers. Taste panelists detected no difference among longissimus lumborum steaks from control and vitamin E-supplemented steers but found (P less than .01) steaks aged for 21 d to be more tender than steaks aged for 7 d. Supplementing cattle with vitamin E should reduce economic losses associated with discolored beef during retail display.  相似文献   

16.
Five trials with steers new to the feedlot environment were conducted to determine the effects of one or two i.m. injections of selenium (Se) and(or) vitamin E (Vit E) on performance, health status and serum antibody response to Pasteurella haemolytica vaccination. In all trials, performance and average number of days sick per steer were not affected (P greater than .05) by single injection of Se and(or) Vit E. In Trial 1, 26 steers (avg initial wt 267 kg) were treated with 1) no Se or Vit E or 2) 25 mg Se (as Na2SeO3) plus 340 IU Vit E (as [d]-alpha-tocopheryl acetate). P. haemolytica serum immunoglobulin G (IgG) titers on d 7 and 14 were greater (P less than .05) for steers receiving 25 mg Se plus 340 IU Vit E. In Trial 2, 141 steers (avg initial wt 204 kg) were treated with 1) no Se or Vit E, 2) 25 mg Se, 3) 340 IU Vit E or 4) 25 mg Se plus 340 IU Vit E. Serum IgG titers were greater (P less than .05) only for Treatment 4 on d 6. Trial 3 was conducted using 107 steers and the same treatments as in Trial 2. By d 14, titers for treatment 4 were greater (P less than .05) than those for Treatments 1 or 3, but not greater than those for Treatment 2. In Trial 4, serum IgG titers were unaffected (P greater than .05) when 48 steers (avg initial wt 248 kg) were treated with 1) no Se or Vit E, 2) 25 mg Se plus 340 IU Vit E 14 d prior to shipping or 3) 25 mg Se plus 340 IU Vit E 14 d prior to shipping, plus repeat injection on day of arrival at the feedlot. In Trial 5, 107 steers were treated with 1) no Se or Vit E, 2) 25 mg Se plus 340 IU Vit E or 3) 50 mg Se plus 680 IU Vit E. Serum IgG titers increased linearly (P less than .01) due to treatment on d 7, 13 and 20 and a quadratic response (P less than .05) was observed on d 27. In these trials, serum antibody response to P. haemolytica vaccination was enhanced with the combination of Se and Vit E; however, performance and health status were not affected.  相似文献   

17.
The objective of this trial was to determine whether a single bolus of 25-hydroxyvitamin D(3) (25-OH D(3)), vitamin E, or a combination of the 2 would improve the tenderness of steaks from the LM of beef heifers. Forty-eight Angus crossbred heifers were allotted randomly to 8 pens. Six heifers were in each pen, and there were 2 pens per treatment. The 4 treatments included control (no 25-OH D(3) or vitamin E); 25-OH D(3) (500 mg of 25-OH D(3) administered as a one-time oral bolus 7 d before slaughter); vitamin E (1,000 IU of vitamin E administered daily as a top-dress for 104 d before slaughter); or combination (500 mg of 25-OH D(3) administered as a one-time oral bolus 7 d before slaughter and 1,000 IU of vitamin E administered daily as a top-dress for 104 d before slaughter). Blood samples were obtained on the day that heifers were allotted to treatments, on the day 25-OH D(3) was administered, and on the day before slaughter. Plasma calcium concentration was increased when 25-OH D(3) was administered with or without vitamin E (P < 0.007). In LM, calcium concentration tended to increase (P = 0.10) when 25-OH D(3) was administered alone but not when 25-OH D(3) was administered with vitamin E. Concentrations of 25-OH D(3) and 1,25-dihydroxyvitamin D(3) in plasma were increased when 25-OH D(3) was administered with or without vitamin E (P < 0.001). Steaks from heifers treated with 25-OH D(3) or vitamin E, but not both, tended to have lower Warner-Bratzler shear force than steaks in the control group at 14 d postmortem (P = 0.08). Postmortem protein degradation as measured by Western blot of the 30-kDa degradation product of troponin-T was increased with all treatments after 3 d postmortem (P 相似文献   

18.
Sixty-three Angus x Simmental calves were allotted to a bull or a steer group based on sire, birth date, and birth weight to determine effects of castration status on performance, carcass characteristics, and circulating insulin-like growth factor I (IGF-I) concentrations in early-weaned cattle. At 75 d of age, calves in the steer group were castrated. Calves were not creep-fed prior to weaning. All calves were weaned and weighed at an average age of 115 d and transported by truck to the OARDC feedlot in Wooster, OH. Performance and carcass characteristics were measured in three phases. Phase 1 was from 115 to 200 d of age, phase 2 was from 201 to 277 d of age, and phase 3 was from 278 d of age to slaughter. Before implantation, four bulls and four steers were selected for serial slaughter and carcass evaluation. Steers were implanted with Synovex-C at 130 d of age and with Revalor-S at 200 and 277 d of age. Serum samples were collected from all calves on the day of implantation, 28 and 42 d after implantation, and at slaughter and analyzed for circulating IGF-I concentration. Bulls gained 9.7% faster (1.75 vs 1.60 kg/d; P < 0.01), consumed 25 kg more DM (521 vs 496 kg; P = 0.11), and were 3.3% more efficient (282 vs 273 g/kg, P < 0.10) than steers in phase 1. However, steers gained 10.5% faster (1.62 vs 1.46 kg/d; P < 0.02), consumed similar amounts of DM, and were 6.5% more efficient than bulls (214 vs 201 g/kg; P < 0.06) in phase 2. Overall gains and efficiency were similar between bulls and steers; however, bulls consumed 140 kg more DM (P < 0.05), were 27 kg heavier (P < 0.05), and had to stay in the feedlot 18 more days (P < 0.05) than steers to achieve a similar amount of fat thickness. Implanted steers had greater concentrations of circulating IGF-I than bulls (P < 0.01), and the pattern of IGF-I concentration over time was affected by castration status (castration status x time interaction; P < 0.01). Synovex-C had a lower impact on circulating IGF-I concentration (implant effect, P < 0.01) than either Revalor-S implant. Eighty-five percent of both bulls and steers had marbling scores sufficient to grade low Choice or better. Bulls achieved their target fat thickness later, increased muscle growth, and deposited fat more favorably than steers, possibly due to a gradual increase in IGF-I concentration as the testicles grew rather than the large fluctuations in IGF-I concentration observed in steers following implantation.  相似文献   

19.
A feedlot trial was conducted to determine the effect of dietary vitamin A concentration and roasted soybean (SB) inclusion on carcass characteristics, adipose tissue cellularity, and muscle fatty acid composition. Angus-crossbred steers (n = 168; 295 +/- 1.8 kg) were allotted to 24 pens (7 steers each). Four treatments, in a 2 x 2 factorial arrangement, were investigated: no supplemental vitamin A, no roasted soybeans (NANS); no vitamin A, roasted SB (20% of the diet on a DM basis; NASB); with supplemental (2,700 IU/kg) vitamin A, no roasted SB (WANS); and with supplemental vitamin A, roasted SB (WASB). Diets included high moisture corn, 5% corn silage, 10 to 20% supplement, and 20% roasted SB in the SB treatments on a DM basis. The calculated vitamin A concentration in the basal diet was < 1,300 IU/kg of DM. Blood samples (2 steers/pen) were collected for serum vitamin A determination. Steers were slaughtered after 168 d on feed. Carcass characteristics and LM composition were determined. Fatty acid composition of LM was analyzed, and adipose cellularity in the i.m. and s.c. depots was determined. No vitamin A x SB interactions were detected (P > 0.10) for cattle performance, carcass composition, or muscle fatty acid composition. Low vitamin A diets (NA) did not affect (P > 0.05) ADG, DMI, or G:F. Quality grade tended (P = 0.07) to be greater in NA steers. Marbling scores and the percentage of carcasses grading > or = Choice(-) were 10% greater for NA steers, although these trends were not significant (P = 0.11 and 0.13, respectively). Backfat thickness and yield grade were not affected (P > 0.26) by vitamin A supplementation. Composition of the LM was not affected (P > 0.15) by vitamin A or SB supplementation. Serum retinol at slaughter was 44% lower (P < 0.01) for steers fed NA than for steers supplemented with vitamin A (23.0 vs. 41.1 microg/dL). A vitamin A x SB interaction occurred (P < 0.05) for adipose cellularity in the i.m. depot; when no SB was fed, vitamin A supplementation decreased cell density and increased cell size. However, when SB was fed, vitamin A supplementation did not affect adipose cellularity. Adipose cellularity at the s.c. depot was not affected (P > 0.18) by vitamin A or SB treatments. Fatty acid profile of the LM was not affected by vitamin A (P > 0.05), but SB increased (P < 0.05) PUFA (7.88 vs. 4.30 g/100 g). It was concluded that feeding NA tended to increase marbling without affecting back-fat and yield grade. It appeared that NA induced hyperplasia in the i.m. but not in the s.c. fat depot.  相似文献   

20.
Effects of ractopamine hydrochloride (RAC) supplementation and postmortem aging on palatability of beef from steers differing in biological type were evaluated using LM samples from British, Continental crossbred, and Brahman crossbred calf-fed steers (n = 98/type). Equal numbers of steers within each type were assigned to treatments of 0 or 200 mg.steer(-1).d(-1) of RAC fed during the final 28 d of the finishing period. Warner-Bratzler shear force (WBSF) was measured at 3, 7, 14, and 21 d postmortem, and trained sensory panel (TP) evaluation was conducted using LM samples aged for 14 d postmortem. A RAC x type interaction (P = 0.006) was detected for WBSF. Within each type, steers fed RAC produced steaks with greater (P < 0.05) WBSF values than steaks from control steers; however, the magnitude of the effect of RAC on WBSF was more pronounced among Brahman cross-breds (5.53 vs. 4.96 +/- 0.10 kg) than among Continental crossbred (4.16 vs. 3.96 +/- 0.10 kg) and British steers (4.10 vs. 3.75 +/- 0.10 kg). The effect of RAC on WBSF, though diminished slightly by aging (mean WBSF difference: 3 d = 0.49 kg; 21 d = 0.24 kg), was not completely mitigated by 21 d of postmortem storage (P(RAC x AGE) = 0.16). Steers fed RAC produced steaks that received lower (P < 0.05) TP ratings for tenderness (8.09 vs. 8.95 +/- 0.18) and juiciness (7.41 vs. 8.07 +/- 0.16 kg), along with slightly lower (P = 0.06) ratings for beef flavor (6.67 vs. 6.93 +/- 0.10 kg), compared with steaks from unsupplemented steers, regardless of biological type. Among the 3 biological types, Brahman crossbred cattle produced steaks with the greatest (P < 0.05) WBSF values at each aging period; WBSF values for steaks from British and Continental type steers did not differ (P > 0.05) at any aging time. Sensory panel ratings of tenderness, juiciness, and beef flavor were greatest (P < 0.05) for steaks from British steers, and least (P < 0.05) for steaks produced by Brahman-type steers. Results from this study suggest that RAC supplementation slightly decreases LM tenderness (WBSF and TP) of British, Continental crossbred, and Brahman cross-bred steers, and that the effect of RAC on WBSF may be more pronounced in steaks from Brahman crossbred cattle than among stenks from Continental type or British steers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号