首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
为了研究不同施氮措施配合硝化抑制剂双氰胺(DCD)对滴灌棉田土壤NH3挥发和N2O排放的影响。通过田间试验,设置不施氮肥(N0)、农民习惯施肥(TN300)、农民习惯施肥+硝化抑制剂(TN300+DCD)、酸性液体肥+硝化抑制剂(LN300+DCD)和酸性液体肥减氮20%+硝化抑制剂(LN240+DCD)共5个处理。测定土壤NH3挥发、N2O排放以及棉花产量和氮肥利用率。结果表明:施用氮肥显著增加滴灌棉田土壤N2O排放,配施DCD可以降低N2O排放量。TN300+DCD、LN300+DCD和LN240+DCD处理N2O排放积累量较TN300分别降低12.78%、19.21%、31.55%。氮肥配施DCD显著增加NH3挥发,TN300+DCD和 LN300+DCD处理NH3累积挥发量较TN300分别增加24.79%和15.97%,氮肥气态净损失量较TN300处理增加1.12~1.61 kg/hm。与TN300+DCD相比,酸性液体肥配施DCD有利于降低氮肥的气态损失。配施DCD显著提高棉花产量和氮肥利用率, LN300+DCD处理棉花产量和氮肥利用率较TN300+DCD和 TN300分别增加9.28%、22.16%和8.10%、45.20%。综上所述,氮肥配施DCD显著减少N2O排放,提高棉花产量和氮肥利用率。虽然NH3挥发有所增加,但酸性液体肥可降低氮肥气态损失,以酸性液体肥减N 20%配施DCD效果最佳。  相似文献   

2.
为探究秸秆和秸秆生物炭连续添加5 a后对土壤氨(NH3)挥发和氧化亚氮(N2O)排放的影响,并确定合理的秸秆还田措施,以降低碱性棉田氮损失。本研究基于等碳量输入,设置秸秆翻埋、秸秆催腐+覆盖还田、秸秆生物炭翻埋和不还田对照共4个处理,氮磷钾肥统一施用。结果表明:秸秆生物炭翻埋下土壤NH3挥发和N2O排放分别较不还田对照显著降低27.3%和56.7%,主要归因于生物炭显著抑制土壤羟胺还原酶与硝酸还原酶活性,增加棉花氮吸收量,也与生物炭自身的强吸附能力有关。而秸秆翻埋、秸秆催腐+覆盖还田分别较对照增加NH3挥发37.2%和21.2%,但减少N2O排放17.1%和38.3%,这两种秸秆还田方式均显著促进土壤有机氮矿化和羟胺还原酶活性,抑制硝酸还原酶活性。冗余分析(RDA)结果表明羟胺还原酶和棉花氮吸收是土壤NH3挥发和N2O排放的主要影响因子,解释率分别为64.8%和20.1%。研究表明,秸秆生物炭翻埋对NH3和N2O减排的综合效果优于秸秆,是碱性棉田土壤值得推荐的氮减排措施。  相似文献   

3.
为研究清液肥对滴灌棉田氮素气态损失的影响,试验共设5个处理:不施氮肥(N0)、常规化肥施氮300 kg·hm-2(TN300)和240 kg·hm-2(TN240)、清液肥施氮300 kg·hm-2(LN300)和240 kg·hm-2(LN240)。结果表明:施用氮肥会显著增加滴灌棉田土壤NH3挥发和N2O排放,各施氮处理NH3挥发总损失量较N0处理增加1.7~3.8倍,N2O累积排放量较N0处理增加1.8~2.7倍。常规施氮水平下,LN300处理较TN300处理NH3挥发损失降低42.4%,N2O排放减少14.1%;同一减氮水平下,LN240处理NH3挥发损失和N2O排放分别减少29.5%和18.9%。等量氮肥投入下,施用清液肥可显著降低土壤NO3--N和NH4+-N含量,土壤脲酶活性和反硝化酶活性也显著降低。相关性分析表明土壤NH3挥发总量和N2O累积排放量与0~20 cm土壤NH4+-N含量、NO3--N含量、土壤脲酶活性和硝酸还原酶呈显著正相关,与土壤亚硝酸还原酶和羟胺还原酶无显著性相关。与常规化肥施氮相比,TN240、LN300和LN240处理棉花籽棉产量较TN300处理分别增加12.6%、9.1%和24.5%,LN240处理棉花籽棉产量较TN240处理提高10.6%。综上,清液肥施氮240 kg·hm-2可显著减少滴灌棉田氮素气态损失,提高棉花产量,是一种值得推荐的施肥措施。  相似文献   

4.
通过大田试验,设置常规翻耕(CT)、免耕(NT)两种耕作方式和不施氮肥(N0)、无机氮肥(IF)、缓释氮肥(SR)、有机无机氮肥配施(IFOF)4种施肥模式,研究其对稻田NH3挥发、氮肥利用率和水稻产量的影响。研究结果表明:耕作方式显著影响NH3挥发,而对氮肥利用率和水稻产量影响不大。与CT处理相比,NT处理NH3挥发量显著提高了15.5%。氮肥施用显著提高了NH3挥发、氮肥利用率和水稻产量。与N0处理相比,IF、SR与IFOF处理NH3挥发量分别提高了150.2%、75.8%与137.8%。氮肥处理中IFOF处理具有最高的氮肥利用率。与IF处理相比,IFOF处理氮肥吸收利用率(NRE)显著提高了43.2%,氮肥偏生产力(NPFP)提高了16.9%,氮肥农学效率(NAE)提高了20.1%;与SR处理相比,IFOF处理NRE显著提高了38.3%,NPFP提高了22.1%,NAE提高了51.3%。IF、SR与IFOF处理较N0处理水稻产量分别提高了43.6%、30.0%与44.4%。本研究结果表明,翻耕下有机无机氮肥配施能有效地降低NH3挥发,提高氮肥利用率和产量,但未来如何达到稻田NH3与温室气体的同步减排需要进一步研究。  相似文献   

5.
施用生物炭对农田土壤N2O的减排效应   总被引:1,自引:1,他引:0  
生物炭作为一种土壤改良剂,在农田土壤氮素转化和温室气体减排等方面发挥着重要作用。本实验对不同施氮量的农田土壤添加生物炭,研究了其对N2O的减排潜力,为生物炭的固氮减排提供理论依据。于2015年6月18日至9月25日,利用盆栽实验研究了施用生物炭对农田土壤在不同氮肥用量下N2O排放的影响,实验共设4个处理:对照(CK)为不施氮处理、N1(200 kg·hm-2)、N2(400 kg·hm-2)和N3(600 kg·hm-2),各处理均施用土壤质量15%(W/W)的等量生物炭。结果表明,随着施氮量的增加,土壤N2O的累积排放量逐渐增加,N2和N3处理差异不显著,N2O排放系数逐渐降低,N1、N2、N3的排放系数分别为1.33%、1.27%、0.90%。Pearson相关分析表明,土壤孔隙含水量(WFPS)、土壤pH、土壤NO3--N和土壤微生物量氮(MBN)含量是影响N2O排放最主要的因素,其中土壤WFPS、土壤NO3--N和MBN含量与N2O排放通量之间呈极显著的正相关关系,土壤pH与N2O排放通量之间呈极显著负相关关系。生物炭的施用对农田土壤N2O具有巨大的减排潜力,并且生物炭与氮肥配施对土壤氮素有很好的固持作用。  相似文献   

6.
【目的】研究生物炭对氮肥硝化过程中硝态氮、铵态氮含量及N2O、NH3排放的影响,为提高肥料氮的利用率、减少氮损失提供参考。【方法】在陕西关中地区,采集小麦 玉米轮作大田耕层0~20 cm土壤,采用室内培养试验,在供试土娄土中分别添加麦秸和烟秆生物炭,同时施用氮肥尿素,施氮量90 kg/hm2,每种生物炭添加量设3个水平(0(对照)和15,30 Mg/hm2),试验共计6个处理,测定尿素硝化过程中不同处理土壤硝态氮、铵态氮含量以及N2O、NH3排放通量的动态变化。【结果】与对照相比,添加两种生物炭均可以降低土壤铵态氮和硝态氮含量,显著抑制尿素的硝化作用,其中高量麦秸生物炭的抑制作用更明显,烟秆生物炭较麦秸生物炭的抑制作用更强。添加烟秆生物炭和麦秸生物炭均可以增加尿素硝化过程中N2O排放通量以及总排放量,而且高量烟秆生物炭处理的N2O总排放量显著高于低量烟秆生物炭处理。与对照相比,两种生物炭之间NH3总排放量无显著变化,表明土娄土中添加生物炭对尿素硝化过程中氨的挥发无显著影响。【结论】在土娄土中施用生物炭有增加温室气体N2O排放的风险,建议采用改性生物炭或采取相应的其他措施减少N2O的排放。  相似文献   

7.
为探索陕西关中地区冬小麦-夏玉米复种体系氮肥减量增效潜力,构建适宜的作物养分管理体系,于2018-2019年采用田间试验研究了减氮并配施不同肥料对麦玉复种体系作物生长状况、植株氮素积累分配、作物产量以氮素利用效率的影响。试验设置5个处理:常规施氮(225 kg·hm-2,N100);减氮20%(180 kg·hm-2 ,N80);减氮配施生物炭(180 kg·hm-2,生物炭22 500 kg·hm-2,N80+BC);减氮配施缓释肥(180 kg·hm-2,尿素∶缓释肥=1∶1,N80+S);减氮配施微生物菌肥(180 kg·hm-2,微生物菌肥3 600 kg·hm-2 ,N80+BF)。结果表明:减氮及其配施不同肥料对夏玉米大喇叭口期后株高、干物质和氮素积累没有显著影响;而N80+BF促进了夏玉米氮素向籽粒中的分配;N80+BC提高了夏玉米产量和收获指数,且较N80处理分别显著提高8.3%和20.1%;减氮下三种配施处理均能提高夏玉米氮农学利用率和氮肥偏生产力,且以N80+BC处理表现最佳,较N100分别显著提高43.3%和29.0%,较N80分别显著提高45.8%和8.3% ;N80+BC和N80+BF还能显著提高夏玉米氮肥表观表观回收率,二者较N100显著增加18.1%和10.7% ,较N80处理显著增加26.9%和19.0%。与N80相比,N80+BF有效提高了冬小麦扬花期和成熟期分蘖数、茎蘖成穗率以及成熟期干物质和氮素积累量,并能显著提高冬小麦穗数和产量,增幅分别为13.7%和16.2%。减氮下3种配施处理均能提高冬小麦氮农学利用率、氮肥偏生产力和氮素利用率,其中氮农学利用率和氮肥偏生产力在N80+BF处理表现最佳,较N100分别显著提高了31.2%和28.4%,较N80分别显著提高了33.7%和16.2%,氮素利用率在N80+S处理表现最佳。综上所述,减氮及其配施处理中,180 kg·hm-2配施生物炭(22 500 kg·hm-2)和180 kg·hm-2配施微生物菌肥(3 600 kg·hm-2)更有利于作物生长,促进氮素积累与分配,提高作物产量和氮素利用效率,实现关中地区麦玉复种体系氮肥管理的“减量增效”。  相似文献   

8.
为减少双季稻田氨(NH3)挥发损失,以农民常规施肥采取的尿素一次性表施(CF)为对照,在氮肥深施条件下,设置秸秆还田(R1)、秸秆移除(R0)两种水稻秸秆利用方式和常规尿素(CU)、包膜尿素减量(PU)、控释尿素减量(LU) 3种不同施肥模式,研究了在双季稻种植模式下深施、秸秆利用方式及施肥模式对稻田田面水氮浓度、pH值及NH3挥发损失的影响。结果表明:早、晚稻NH3挥发均主要发生在施肥后一周,且晚稻NH3挥发量远大于早稻。不同施肥处理双季稻NH3挥发总量依次为CF>CUR0>CUR1>LUR0>LUR1>PUR0>PUR1;秸秆利用方式显著影响NH3挥发,但对田面水氮素浓度影响较小。与R0处理相比,R1处理NH3挥发显著降低了8.67%;施肥模式显著影响NH3挥发和田面水氮素浓度。与CU处理相比,PU和LU处理NH3挥发分别显著降低了75.68%和39.14%;秸秆利用方式与施肥管理交互作用显著,其中R1与PU结合效果最佳,PUR1处理较PUR0处理可降低15.07%的NH3挥发。研究表明,适当降低施氮水平,采取包膜尿素深施并搭配秸秆还田的施肥管理模式,是具环境友好性的氮肥管理模式。  相似文献   

9.
为研究不同氮肥品种在露天种植中的NH3挥发减排效果,于2019年5月至11月在中国科学院常熟农业生态实验站种植4季叶菜类蔬菜,利用密闭室-通气法研究了不同氮肥品种处理下露地蔬菜NH3挥发排放,并计算了NH3挥发造成的环境损益。试验共设置5个处理,分别为常规尿素(N200,每季蔬菜施氮量为200 kg·hm-2)、硝基复合肥(N200A)、脲酶抑制剂尿素(N200B)、有机肥部分替代(N200C)和不施肥处理(CK)。结果表明: N200处理下NH3挥发平均累积排放量(以N计,下同)为24.75 kg·hm-2,N200A的NH3挥发平均累积排放量为3.75 kg·hm-2,与N200相比降低了84.84%(P<0.05),N200B和N200C处理的NH3挥发平均累积排放量较N200处理分别降低了74.52%(P<0.05)和48.71%(P<0.05);N200和N200C造成的NH3挥发环境损益分别为928.13元·hm-2和476.25元·hm-2。N200A蔬菜产量最高,平均为34.03 t·hm-2,与N200相比增加了25.13%,同时N200A的环境损益最低,为140.63元·hm-2。研究表明,在太湖地区典型蔬菜地采用硝基复合肥、有机肥部分替代和添加脲酶抑制剂均可显著减少露地蔬菜NH3挥发,其中硝基复合肥增产效果最好,NH3挥发环境损益最小。  相似文献   

10.
为明确蝇蛆预处理及辅料添加对鸡粪堆肥过程中NH3挥发及温室气体排放的影响,本研究分别将风化褐煤、厨余垃圾、蘑菇渣与鸡粪混合,在进行蝇蛆预处理后堆肥,研究试验过程中NH3挥发和温室气体的排放规律。试验设置8个处理,分别为对照组(无蝇蛆预处理):纯鸡粪(CK1)、30%风化褐煤+70%鸡粪(CK2)、30%厨余垃圾+70%鸡粪(CK3)、30%蘑菇渣+70%鸡粪(CK4);试验组(蝇蛆预处理):纯鸡粪(T1)、30%风化褐煤+70%鸡粪(T2)、30%厨余垃圾+70%鸡粪(T3)、30%蘑菇渣+70%鸡粪(T4)。结果表明:蝇蛆预处理能够延长堆肥高温期,≥50 ℃天数均达到10 d以上,相比CK1增加5~9 d;在整个试验期间试验组NH3挥发集中在堆肥第2天,试验组NH3累积排放量显著低于对照组,降幅达到42.7%~61.1%,菇渣添加处理的NH3累积排放量在对照组中最低;风化褐煤的添加能够显著降低N2O排放,T2相比于T1降低84.2%,CK2相比于CK1降低51.7%。蝇蛆预处理能够显著降低CO2排放当量,相比CK1降低32.1%~73.2%,其中,T4的CO2排放当量最低。研究表明,蝇蛆预处理能够提高堆肥温度、延长堆肥高温期、显著降低NH3排放和CO2排放当量,若从堆肥温度及CO2排放当量方面考虑蝇蛆预处理和菇渣组合为最优处理。  相似文献   

11.
生物炭对棕壤NH3挥发、N2O排放及氮肥利用效率的影响   总被引:4,自引:2,他引:4  
通过田间试验,采用封闭式酸吸收法和静态箱法,研究秸秆生物炭对棕壤玉米旱田NH_3挥发和N_2O排放以及氮肥利用效率的影响。试验设不施氮肥(对照CK)、单施氮肥(NB0)、施氮基础增施20 t·hm~(-2)生物炭(NB20)、施氮基础增施40 t·hm~(-2)生物炭(NB40)4个处理。结果表明,各施肥处理的NH3挥发量差异显著,表现为NB0NB20NB40,NB20和NB40分别比NB0降低24.07%和37.62%。NB20和NB40可显著降低N_2O排放量,分别比NB0降低21.76%和19.57%,而NB20和NB40之间差异不显著。NB20和NB40显著增加了土壤的p H、全氮和有机碳含量,降低了土壤的容重。相关分析表明,NH_3挥发量与土壤容重和铵态氮含量均呈极显著正相关,与土壤有机碳含量呈显著负相关;N_2O排放量与土壤容重呈显著正相关,与土壤硝态氮含量和有机碳含量呈显著负相关。与NB0相比,NB20提高了氮肥利用效率,玉米产量显著提高6.07%,而NB40降低了氮肥利用效率,玉米产量显著降低了13.88%。  相似文献   

12.
通过大田试验,设置5种不同的施肥比例(基肥:分蘖肥:拔节肥:穗肥-2:2:3:3(R1)、3:2:2:3(R2)、4:2:2:2(R3)、4:3:1:2(R4)与0:0:0:0(CK)),研究氮肥运筹对稻田NH3挥发和氮肥利用率的影响。结果表明,(1)相对于不施肥,施肥显著提高了稻田NH3挥发量。氮肥施用后,NH3挥发损失量占施氮量的6.2%-8.5%,其中,以分蘖期NH3挥发损失量最大,齐穗期次之,苗期和拔节期最小。施肥处理间,处理R1稻田累积NH3挥发量最小,显著低于其它施肥处理,比处理R2、R3和R4分别低9.1%(P<0.05)、10.9%(P<0.05)和17.7%(P<0.05)。(2)相关分析表明,田面水NH4+、pH值和土壤NH4+和pH值均与稻田土壤NH3挥发通量呈显著或者极显著相关;(3)处理R1水稻氮肥利用率相对于处理R2、R3和R4增加了28.4%(P<0.05)、55.4%(P<0.05)和74.9%(P<0.05)。研究表明,氮肥后移能有效降低免耕稻田NH3挥发,提高水稻的氮肥利用率。  相似文献   

13.
有机肥和化肥对盆栽番茄氮素利用以及损失的影响   总被引:5,自引:1,他引:4  
为研究有机肥以及化肥对氮素利用以及损失的影响,针对当前蔬菜生产中面积较大和产量较高的番茄进行盆栽控制性试验,设置等氮条件下3个肥料处理,即有机肥(M)、化肥(U)、有机肥和化肥各半(MU),以及对照CK(不施氮肥、种植作物)和CKN(不施氮肥、不种作物),对番茄产量、氨挥发、N_2O排放等进行监测分析。结果表明,MU、U、M 3个处理产量无显著差异。与U、MU相比,M能够降低氨挥发损失62%和57%,降低N_2O排放量53%和69%。土壤中残留的肥料氮量为M(64.9%)MU(36.7%)U(23.7%),且3个处理间差异显著(P0.05)。结合氮素损失和作物产量,说明施用有机肥能在一定程度上保证番茄高产、降低氮素损失以及保证较高的氮素后茬利用率。考虑到气候条件、作物品种、肥料类型等的复杂性,还需要对有机肥和化肥配施的环境影响进行更多比较研究,从而进一步优化当前集约化蔬菜生产中的肥料管理。  相似文献   

14.
农田氧化亚氮减排的关键是合理施氮   总被引:2,自引:1,他引:2  
农业源氧化亚氮(N2O)排放量占全球人为源总排放量的2/3,是最大的人为排放源,氮肥和有机肥的施用是其主要贡献者。合理施氮是获得较高目标产量、维持土壤氮肥力和降低因施氮引起环境污染风险的关键,在减少农田土壤N2O排放、缓解温室效应中起重要作用。本文基于合理施肥的“4R”(Right amount,Right type,Right time,Right place)理念和技术,论述了施氮量与N2O排放量之间的数量关系,肥料品种、施肥时期和方法对N2O减排的影响。强调了氮素投入超过作物需氮量后,N2O排放量会呈现指数型增长;将施氮量控制在合理范围对N2O减排的重要性。建议在不同土壤-气候-作物体系下,同时开展产量、品质,氨挥发、硝酸盐淋洗、N2O排放和土壤肥力的长期系统研究,不能顾此失彼;形成同类地区能够机械操作的规范化种植模式与合理施肥措施,包括与其他农艺措施的配合,如轮作与耕作、灌溉、有机肥和秸秆还田、磷钾肥和中微量元素管理等,以实现产量、品质、效益与环境效应相协调的可持续集约化作物生产目标。  相似文献   

15.
为了探明生物质炭对华北平原土壤氨挥发的影响,以该区域4种典型土壤(水稻土、砂姜黑土、褐土、潮土)为研究对象进行微区试验,设置了对照(CK)、单施化肥(NPK)、单施生物质炭(BC)、化肥配施生物质炭(BC+NPK)4个处理,于冬小麦生育前期观测土壤氨挥发损失,分析土壤矿质氮含量、土壤pH和温度对土壤氨挥发的影响。结果表明,4种土壤单施化肥处理氨挥发累积损失分别为2.70、3.14、2.90、4.00 kg N·hm-2,占施氮量的比例(氨挥发损失率)为3.3%、3.8%、3.5%、4.9%。与单施化肥相比,化肥配施生物质炭可以降低砂姜黑土(15.3%)和潮土(14.8%)的氨挥发损失,但增加了水稻土(3.0%)和褐土(6.9%)氨挥发。添加生物质炭显著提升土壤pH值和土壤温度,相关性分析表明,土壤pH值是决定生物质炭对土壤氨挥发增减的关键因素。综上所述,在华北平原砂姜黑土和潮土施用生物质炭可以有效降低小麦生育前期土壤氨挥发。  相似文献   

16.
为明确适宜氮肥用量配施硝化抑制剂对柴达木枸杞园土壤NH3挥发和N2O排放的影响,在柴达木地区枸杞园开展研究,共设置9个处理:N667、N534、N400、N267、N133、N0处理分别表示施用纯氮667、534、400、267、133、0 kg·hm-2,N400I2.00、N267I1.33、N133I0.67处理分别表示在N400、N267、N133处理基础上配施2-氯-6(三氯甲基)-吡啶(nitrapyrin)2.00、1.33、0.67 kg·hm-2,采用通气法和静态暗箱法采集NH3和NO2,连续流动分析仪和气相色谱仪测定气体含量。结果表明:NH3挥发速率与累积量均随施氮量的增加而增加,相同施氮量下配施硝化抑制剂对NH3挥发无显著影响。N667处理2019年及2020年的NH3挥发速率峰值分别为0.48 kg·hm-2·d-1和0.57 kg·hm-2·d-1,NH3挥发累积量分别为34.49 kg·hm-2和35.11 kg·hm-2,显著高于其他处理。两年相同施氮量处理下配施与未配施硝化抑制剂处理的NH3挥发累积量均无显著差异;N400I2.00、N267I1.33、N133I0.67处理较农民习惯施氮(N667)处理显著降低了N2O排放。2019年和2020年N667处理的N2O累积排放量较N400处理分别增加了43.10%、16.11%,N400I2.00、N267I1.33、N133I0.67处理的N2O累积排放量较N400、N267、N133处理降低了28.52%~41.37%。2019年和2020年N400I2.00处理的产量较N667处理显著提高了9.26%及6.67%,且净收益提高了9.80%、7.10%。研究表明,与农民习惯施氮量相比,减施氮肥且配施硝化抑制剂可显著降低NH3挥发和N2O排放,同时可提高枸杞产量与经济效益。施氮量为400 kg·hm-2且配施nitrapyrin 2.00 kg·hm-2为柴达木高肥力枸杞园较优的施氮组合。  相似文献   

17.
洱海流域典型农区不同施肥处理下稻田氨挥发变化特征   总被引:6,自引:2,他引:4  
为探寻洱海流域合理的施肥方式,减少氮肥的氨挥发损失,采用"密闭室间歇通气法",研究了不同氮肥类型及施氮量对稻田氨挥发规律、氨挥发累积量及水稻产量的影响,并探究了影响氨挥发排放的因素。研究结果表明:稻田氨挥发主要发生在施肥后2~5 d内,穗肥期氨挥发损失占比最大为19.04%~33.00%,其次分蘖肥期损失为7.18%~15.72%,基肥期损失最少为4.89%~7.76%。不同施肥处理中常规施肥(CF)、化肥减量20%(T1)、单施有机肥(T2)、有机肥与化肥配施(T3)、考虑当季25%矿化率单施有机肥(T4)、考虑当季25%矿化率有机肥与化肥配施(T5)和单施控释肥(T6)的氨挥发累积量分别为42.52、22.73、11.71、15.12、38.24、25.95 kg·hm~(-2)和18.44 kg·hm~(-2)。等量施氮条件下不同肥料类型氨挥发损失占比大小为尿素控释肥有机肥+化肥有机肥。不同施氮量条件下,施氮量越大氨挥发累积量越大,且氨挥发速率与田面水NH4+-N浓度呈正相关性。综合稻田氨挥发累积量及水稻产量,在洱海流域典型农区水稻种植中,有机肥与化肥配施(25%当季矿化率)、化肥减量施用(20%)以及控释肥施用是3种较优的环境友好型施肥方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号