首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
猪粪沼液施用对稻麦轮作系统土壤氧化亚氮排放的影响   总被引:9,自引:9,他引:0  
以典型的猪粪尿发酵沼液为对象,探讨了沼液施入量和管理方式对以中国东部稻麦轮作农田系统土壤N2O排放规律和排放量的影响。研究结果表明,与化学氮肥相比,沼液施用未影响稻麦轮作系统土壤N2O排放的季节变化规律,但影响其排放量的大小。稻季100%施用沼液的处理(N100%DPS)其累积排放量为0.71kg·hm-(22008年)和1.38kg·hm-(22009年),显著高于100%施用化肥的处理(N100%Ure)a,即0.68kg·hm-2和1.06kg·hm-2。麦季N100%DPS处理N2O的累积排放量分别为6.56kg·hm-(22008年)和5.05kg·hm-2(2009年),与N100%Urea处理(2008年:5.89kg·hm-2;2009年:3.93kg·hm-2)无显著差异,但均显著高于稻季各处理。随着沼液替代化学肥料用量的降低,稻田N2O排放量呈降低趋势,而沼液一次性施入和分次施入对稻田N2O排放的季节动态和累积排放量均无显著影响;但沼液不同的管理方式对麦季累积N2O排放量更为复杂。稻、麦两季N100%DPS处理中N2O排放系数(f)均最大,分别达到0.3%和1.6%,但沼液分次施入和一次性...  相似文献   

2.
滇池流域集约化西芹地的N2O排放   总被引:2,自引:0,他引:2  
集约化菜田的土壤养分和水热条件适合土壤的硝化反硝化作用,而我国集约化菜田N2O排放的研究少见报道.本文采用密闭式箱法,在滇池流域旱季(95 d)和雨季(99 d)开展了2个生长周期内两芹地N2O排放的监测研究,结果表明,在集约化菜田土壤氮素养分含量较高的情况下,(1)N2O排放的日变化规律受温度的影响较为明显,中午时段N2O排放速率最高,凌晨时段最低;(2)N2O排放的季节性变化规律是在种植后不久,出现1个小的N2O排放高峰外,随后CK处理(裸地)的N2O排放速率维持在一定的水平,而种植作物的不施肥(NF)、推荐施肥(LF)和习惯施肥(HF)处理受西芹的生长及频繁氮肥追施的影响,中后期N,2O排放速率有所升高;(3)在中后期,不施用氮肥的NF处理较CK的N,2O排放速率高;旱季与雨季,CK处理N,2O排放量分别为2.79和2.66kgN2O-N·hm-2;NF处理分别为3.07和3.67 kgN2O-N·hm-2远高于粮田1.0 kgN2O-N·hm-2·a-1的N2O背景排放量;(4)LF处理旱季与雨季为5.25和6.66 kgN2O-N·hm-2其损失率分别为1.17%和1.48%;HF处理旱季和雨季N,2O排放量分别为9.35和12.12 kgN2O-N,其损失率分别为0.78%和1.01%,说明氮肥施用量较高时,土壤-作物系统的N,2O-N损失量也较高,但是N2O-N损失率并不随施氮量的升高而升高.  相似文献   

3.
应用静态明箱-气相色谱法对4个施氮肥水平NO(0 kg N·hm-2),N200(200 kg N·hm-2),N400(400 kg N·hm-2),N600(600 kg N·hm-2)的夏玉米-冬小麦季CH4、N2O排放进行了研究,同时估算了其年季净固碳量及其O2气体调节价值,计算了年综合气体调节价值.结果表明,夏玉米-冬小麦农田生态系统为CH4吸收汇和N2O排放源,随着氮肥施入量的增加,其对CH4吸收能力减弱,其N2O排放量增加.夏玉米季N400和N600的CH4平均排放速率显著高于NO和N200(P<0.05);冬小麦季NO处理CH4平均排放速率显著低于N600处理(P<0.05),冬小麦季N600的N2O平均排放速率显著高于NO处理(P<0.05).夏玉米-冬小麦轮作农田生态系统NO、N200、N400和N600处理CH4排放总量分别为-2.55、-1.99、-0.94和-0.47 kg·hm-2·a-1;其N2O排放总量分别为1.05、1.45、1.67和2.22 kg·hm-2·a-2.随着氮肥施用量的增加,夏玉米季和冬小麦季转化为NPP的碳量和净固碳量均增加;夏玉米-冬小麦轮作农田生态系统NO、N200,N400和N600处理年季净固碳量分别为6 224.29,13 885.05,14 554.35和14 521.10 kg·hm-2·a-1;其中N200,N400和N600分别比NO处理增加了123.08%、133.83%和133.30%.夏玉米-冬小麦轮作农田生态系统NO,N200,N400和N600处理综合气体调节价值分别为10 560.19、23 602.64、24 727.78和24 634.24 yuan·hm-2·a-1;N200、N400和N600分别比NO处理增加了123.51%、134.16%和133.27%,以N400处理年固碳量最高.  相似文献   

4.
以京郊番茄为对象,研究了聚合物包膜控释肥不同用量与有机肥配合施用对设施生产体系产量和品质、硝态氮淋洗和N2O排放的影响。试验设对照(CK)、有机肥(N 134kg·hm-2,OM)、控释肥低量(控释N300kg·hm-2+有机肥N134kg·hm-2,N1)、控释肥中量(控释N 450 kg·hm-2+有机肥N 134kg·hm-2,N2)、控释肥高量(控释N600kg·hm-2+有机肥N134kg·hm-2,N3)、习惯施肥(速效N600 kg·hm-2+有机肥N 134 kg·hm-2,N4)共6个处理,用土壤溶液提取器测定淋洗液硝态氮浓度,静态箱法测定N2O排放。结果表明,与习惯处理(N4)相比,3个控释肥处理(N1、N2、N3)氮素淋洗损失明显减少,60 cm和100 cm土层的提取液硝态氮平均浓度降幅分别为15.4%~24.0%和17.8%~30.0%,拉秧后0~100cm土壤剖面硝态氮残留降低21.0%~59.8%。各处理N2O平均排放通量为60~144μg N·m-2·h-1,实际排放量为2.47~5.33kg·hm-2,施肥造成的N2O排放损失率为0.08%~0.39%;与习惯处理相比,控释肥处理平均减排38.1%~47.0%。番茄产量介于113~132 t·hm-2,N2处理产量最高,但处理间未见显著差异;N4处理的番茄硝酸盐含量最高,与对照差异显著。与习惯处理的多次施肥相比,控释肥与有机肥混配一次性基施显著降低了硝态氮淋洗量和N2O排放损失,控释肥高氮水平下氮素损失风险有增加趋势。试验结果显示施用中低量控释肥为协调番茄高产、高效与环保的较好选择。  相似文献   

5.
研究不同氮钾用量下土壤氨(NH3)挥发和氧化亚氮(N2O)排放,为确定氮钾肥合理施用和大气环境保护提供理论依据。盆栽实验共9个处理:N0K0、(NO^-3-N)50K35、(NO^-3-N)50K80、(NO^-3-N)100K35、(NO^-3-N)100K80、(NH^+4-N)50K35、(NH^+4-N)50K80、(NH^+4-N)100K35、(NH^+4-N)100K80。分别采用静态箱法和通气法采集N2O和NH3。氮肥显著增大了N2O的排放通量和累积排放量以及NH3的挥发速率和累积排放量。N2O的平均排放通量和累积排放量从不施肥处理的15.8μg·m^-2·h-1和0.17 mg·kg^-1增加到氮肥用量100 mg·kg^-1时的45.6μg·m^-2·h-1和0.57 mg·kg^-1。NH3挥发速率和累积排放量在氮肥用量为100 mg·kg^-1时达到最大,分别为1.5 kg·hm^-2·d^-1和4.18 mg·kg^-1。铵态氮为氮源的各处理N2O排放通量和累积排放量以及NH3挥发速率和累积排放量均高于以硝态氮为氮源的各处理。钾肥显著增大了NH3挥发速率和累积排放量,但在低氮水平下,钾肥显著降低N2O排放通量和累积排放量。化学氮肥施用量的增加是NH3挥发和N2O排放增加的主要因素,与硝态氮肥相比,铵态氮肥更易于NH3和N2O的排放。增施钾肥显著增大土壤NH3挥发速率和排放量,但降低了土壤N2O的排放通量,显著减少了整个生长季节N2O的累积排放量。  相似文献   

6.
不同氮磷肥施用对春玉米农田N2O排放的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
农田过量施肥会增加N2O排放,使农田土壤成为重要的温室气体排放源。为减少农田N2O排放,利用自动观测系统研究了春玉米农田中不同肥料对N2O排放的影响,并结合作物产量及N2O的排放量探索减少温室气体排放的施肥措施。采用田间试验方法设定了不施肥(CK)、尿素(U)、尿素加磷肥(NP)和硝酸磷肥(NOP)4个处理进行研究。结果表明,各处理下N2O排放总量分别为:CK0.21kgN·hm-2、U1.19kgN·hm-2、NP0.93kgN·hm-2、NOP0.69kgN·hm-2;N2O排放主要受施肥、灌溉,降雨和土壤温度的影响;在作物生长后期土壤含氮量小于7mgN·kg-1的情况下,观测到土壤吸收N2O的情况;各处理下排放因子均小于政府间气候变化委员会(IPCC)的缺省值1%,表明IPCC推荐的排放因子不适用于估算中国北方的春玉米农田N2O排放。施加磷肥有助于减少农田N2O排放并提高产量,硝态磷肥较尿素可以显著减少N2O排放。综合考虑产量和N2O排放,相对于施用尿素和尿素加磷肥处理,硝酸磷肥处理不仅可节约15%和30%的肥料投入,而且分别减少42%和26%的N2O排放,具有减排不减产的良好效果。  相似文献   

7.
研究施加2种不同浓度的硝化抑制剂双氰胺(dicyandiamide,简称DCD)、2-氯-6-(三氯甲基)吡啶(nitrapyrin,简称NP)对设施菜田土壤一氧化二氮(N_2O)、二氧化碳(CO_2)排放及N_2O氮素转化的影响。以河北省永清县设施菜田土壤为研究对象,采用室内静态培养系统,设定温度、土壤含水量分别为(25±1)℃、70%WFPS(即土壤含水孔隙率,water filled pore space),监测土壤N_2O、CO_2排放量及土壤无机氮含量,研究DCD、NP对土壤氮素硝化作用的抑制效果。结果表明,土壤只添加尿素后,N_2O排放峰达到2 430. 03μg/(kg·d),添加含氮量的0. 1%NP、0. 8%NP、5%DCD的土壤N_2O排放峰值分别为311. 63、336. 46、1 435. 07μg/(kg·d),添加0. 1%NP对于N_2O减排效果最好;添加0. 8%NP的土壤CO_2累积排放量为757. 87 mg/(kg·d),明显高于其余各处理; NP和DCD 2种硝化抑制剂提高了土壤铵态氮的含量,而且添加0. 8%NP对硝态氮的抑制效果更为明显。  相似文献   

8.
1980-2010年中国和印度农田化肥氮源氧化亚氮排放的比较   总被引:1,自引:1,他引:0  
采用排放因子方法估算了1980—2010年中国和印度小麦、玉米和水稻农田化肥氮源 N2O 直接排放量,并进一步分析了两国农田 N2O 排放的时间变化和空间差异。结果表明:中国1980—2010年小麦、玉米、水稻田的单位面积 N2O 直接排放量平均值分别为1.75、1.60、0.42 kg N2O-N·hm-2·a-1,分别为印度的1.3、2.4、2.0倍。中国小麦、玉米农田单位面积 N2O 排放量较高的地区主要集中在东南和南部,西部和北部排放较低,而印度小麦、玉米农田单位面积排放量高的区域则集中在东部及西南沿海。三十年间,中印两国三种作物 N2O 直接排放量平均值分别为98.6、47.8 Gg N2O-N。中国小麦和玉米田 N2O 排放量占三种作物排放总量的近90%,而印度农田 N2O 排放则主要来自小麦田,约占70%。两国三种作物 N2O 直接排放量随时间呈显著增加趋势,增加速率均表现为小麦田﹥玉米田﹥水稻田。中国三种作物 N2O 排放总量的年均增加速率为3.7%,低于印度的10.4%。虽然中国三种作物单位面积 N2O直接排放量和排放总量高于印度,但排放强度(单位产量的 N2O-N 排放量)及其增加速率均低于印度。  相似文献   

9.
秸秆还田对稻麦两熟高产农田净增温潜势影响的初步研究   总被引:7,自引:3,他引:4  
对长江下游稻麦两熟农田生态系统2009—2010年的CH4和N2O排放以及土壤碳固定进行了分析,初步研究了秸秆还田对稻麦两熟高产农田净增温潜势的影响。结果表明,秸秆还田对稻麦两熟高产农田周年CH4和N2O排放总量、土壤碳固定量以及净增温潜势均有显著或极显著影响:秸秆还田条件下周年CH4、N2O排放总量分别为394 kg CH4.hm-2、2.39 kg N2O.hm-2,土壤碳固定量、净增温潜势分别为1.14 t C·hm-2、6383 kg CO2-equivalents·hm-2;较秸秆不还田增加CH4排放总量152%、减少N2O排放总量14%、增加土壤碳固定量531%、增加净增温潜势57%。以上结果表明,秸秆还田使短期内稻麦两熟高产农田的温室效应明显提高,但其长期效果如何还有待观测。  相似文献   

10.
不同施氮水平对菜地土壤N2O排放的影响   总被引:7,自引:5,他引:2  
通过大田试验研究了不同施氮水平对蔬菜地土壤N2O排放的影响.试验设置5个氮水平[0(NO)、430(N1)、860(N2)、1290(N3)、1640(N4)kgN·hm-2],2 a试验期间种植的蔬菜有辣椒、萝卜、菠菜和小白菜.结果表明,施氮显著影响N2O排放通量,各施氮水平土壤N2O排放通量范围分别为-8~39、0.4~157、12~626、8.5~982、16~1342μg·m-2·h-1;同时,氮肥施用显著提高了N2O排放总量,各施氮处理(NO、N1、N2、N3和N4)试验期间土壤N2O平均排放总量分别为0.48、1.35、4.49、7.83、10.57 kgN·hm-2,土壤N2O排放系数范围是0.33%~1.13%,且施氮水平与土壤N2O排放总量间呈显著的指数函数关系;不同季节蔬菜地土壤N2O排放总量差异很大,其中最大的是辣椒,最小的是菠菜;此外,土壤N2O排放通量季节变化除受施氮水平影响外,还受土壤温度的影响,排放高峰出现在高温的夏季.  相似文献   

11.
通过核算福建省1980-2013年N_2O的排放清单,分析了N_2O的排放特征.结果表明:1980-2013年,福建省N_2O总排放量从19.2 Gg增加到37.6 Gg;在N_2O的排放源中,按照排放贡献比例从大到小排列依次为农用地、畜禽粪便管理、废水处理和能源消费活动;而按照增长速度从大到小排列依次为能源消费活动、废水处理、农用地和畜禽粪便管理.表明减少农田氮肥施用量是减少福建省N_2O排放的关键.  相似文献   

12.
京津冀地区不合理的肥料和粪便管理造成了大量的氨排放,促进了该地区PM2.5的上升。本研究基于排放因子法和高分辨率活动数据建立了京津冀地区2015—2019年的氨排放清单,阐明了该地区农业源氨排放的总量和来源、时间变化、空间格局以及减排潜力。结果表明:2015—2019年京津冀地区年均农业源氨排放量为429.1 Gg·a~(-1),玉米种植、尿素施用和室内圈舍是氨排放的主要来源;农业源氨排放量逐年下降,其中种植业贡献了75%的减少量。京津冀地区农业源氨排放呈现"南高北低"的格局,50%的县(区、市)贡献了80%以上的排放。提高作物氮利用率可以大幅降低种植业的氨排放(57.5%),采用酸性碳酸钙替代饲料中的碳酸钙则可以有效降低畜禽养殖业的氨排放(26%~53%)。  相似文献   

13.
参照IPCC( 2006)以及国家气候变化对策协调小组办公室和国家发改委能源研究所)的方法,估算了我国30个省 (直辖市、自治区 ) 的1997—2011年期间的二氧化碳排放量.数据显示,我国各省 (直辖市、自治区 )的二氧化碳排放量从整体上基本都呈现出上升趋势,地区差异比较显著.总体上来讲,我国的二氧化碳排放量呈现出由东到西依次递减的规律特征,东部地区的二氧化碳排放量最多,中部地区次之,西部地区二氧化碳排放量最少,而且东部地区的二氧化碳排放在绝对量上大大超过中西两大区域.产业结构和经济发展是影响各地区二氧化碳排放量的主要因素,能源消费结构和出口贸易对各地区碳排放量的影响不显著.  相似文献   

14.
农业与中国的低碳发展战略   总被引:6,自引:2,他引:6  
在全球气候变化背景下,碳排放空间将逐渐成为经济发展关键的资源约束。农业的低碳排放、高碳吸收、高碳生产率的特性将使之成为具有独特竞争优势的战略性低碳产业。国家应顺势而行,重新定位农业的战略地位,使其在国家低碳发展战略中发挥应有的作用。在国家层面,应将农业定位于推动国家低碳发展的战略性产业,使农业发展成为可再生能源和碳捕获、利用与封存的重要产业,成为国家低碳发展中的重要支撑。在部门层面,以低碳、生态、精细和科技为基本特征的新型农业,提高资源生产率、农产品产量、质量和产值,改善生态环境,推动人与自然和谐发展的同时加速农村经济发展。  相似文献   

15.
[目的]对我国不同林区典型乔木树种燃烧释放含碳物质排放特性的研究,可为了解含碳气体和颗粒物对大气环境和全球碳循环的影响提供科学依据.[方法]本研究运用自主设计的生物质燃烧系统,模拟东北林区、南方林区和西南林区共19种典型乔木树种枝、叶燃烧,分析不同树种、不同树种类型及不同林区的含碳气体(CO2、CO和CxHy)、颗粒物...  相似文献   

16.
山东省农业源氨排放清单研究   总被引:2,自引:0,他引:2  
为建立山东省农业源氨排放清单,根据《山东统计年鉴2016》数据,采用排放因子法估算了山东省2015年农业源氨排放清单。结果表明,山东省2015年农业源氨排放量为105.831万t,排放强度为6.71 t·km-2。畜禽养殖是最大的排放源,排放量为68.673万t,占总排放量的64.89%,猪和家禽是畜禽养殖排放量的最大贡献源,两者占畜禽养殖排放量的72.88%;其次是氮肥施用,排放量为30.835万t,占总排放量的29.14%;生物质燃烧、人体排放、土壤本底的氨排放量分别为2.173、2.117、1.943万t,分别占总排放量的2.05%、2.00%、1.84%;固氮植物的氨排放量最小,仅为0.09万t,不足总排放量的1%。菏泽、德州、潍坊、临沂、济宁、聊城是山东省农业源氨排放大市,氨排放量为7.910~13.662万t。研究表明,应从规范畜禽养殖规模和合理施肥两方面着手,精准施策,以减少山东省农业源氨排放量。  相似文献   

17.
根据土地利用变更数据及能源消费资料,采用直接碳排放系数法,对铜陵县2000~2013年土地利用碳排放效应进行了估算,并结合TM影像,采用地统计分析,对铜陵县土地利用碳排放风险时空格局进行了分析。结果表明:1碳排放量总体上呈现增加的趋势。从2000年4.08万t增长到2013年的223.09万t,增加了219.01万t。2建设用地是主要的碳源,林地是主要的碳汇,13年间建设用地的碳排放量增长了219.17万t,对碳排放总量的贡献率高达92.26%;林地的碳吸收量维持在1.20万~1.24万t,对碳汇作用的贡献率达到60.52%。3在时空格局分布上,2000~2010年铜陵县土地利用碳排放风险指数在不断变大;碳排放风险指数与土地利用类型的空间分布有极大的相关性,从城镇向外推进的过程中呈现出由高到低的变化趋势。  相似文献   

18.
为了探明发酵床养猪过程碳素流向及二氧化碳与甲烷排放特征,分别选取3种不同原料的发酵床:稻壳+锯木屑(FD)、稻壳+菌糠(FJ)、稻壳+酒糟(FW)作为研究对象,通过垫料采集和静态箱法收集气体,对一个养殖周期内的碳素变化和二氧化碳、甲烷排放量进行测定。结果表明,一个养殖周期结束后,3种发酵床二氧化碳与甲烷的排放总量占碳素总损失的比例分别为41.21%(FJ)、54.12%(FD)、48.27%(FW),是碳素转化的主要形式。3种垫料的二氧化碳排放特点呈现一定的相似性,均在养殖前期与后期各出现1个排放高峰期,后期排放量大于前期;其二氧化碳排放总量具有显著性差异,FD在整个养殖周期内二氧化碳排放量最大,其次是FJ。FJ与FW的甲烷排放特点与二氧化碳相似,均在养殖前期与后期出现两个排放高峰期且排放量大小相近,而FD的甲烷排放集中在前期,后期仅有微弱回升;3种发酵床的甲烷排放总量同样具有显著性差异,一个饲养周期内FW的甲烷排放总量最大,其次是FJ。通过相关性分析发现,3种发酵床二氧化碳与甲烷的排放呈负相关关系,初步表明发酵床存在甲烷氧化成二氧化碳的生物途径。  相似文献   

19.
基于1991—2011年的数据,采用多项式和趋势移动平均预测模型预测了2012—2020年我国的GDP和CO2排放量,并经过一定修正,预测2020年我国的单位GDP的碳排放量为1.68 t/万元,比2005年减排45%,达到我国提出的到2020年单位GDP的碳排放比2005年减排40%45%的目标.  相似文献   

20.
为获取上海地区露天蔬菜种植的NH3排放规律及时空分布特征,通过通气-氨捕获法对露天蔬菜种植的NH3排放特征进行监测,并对主要气象参数进行同步观测。结果表明,4个季节5种典型露天蔬菜的NH3累积排放量范围为14.44~41.94 kg·hm-2,NH3排放通量最大值出现在施肥后2~5 d,NH3排放持续时间为15~18 d,追肥期的NH3排放通量显著高于基肥期。叶菜类、瓜类、茄果类、豆类和白菜类的NH3排放损失率分别达到了6.02%、18.30%、14.98%、14.57%和11.77%,表现为瓜类>茄果类>豆类>白菜类>叶菜类。相关性分析表明,温度和湿度是影响露天蔬菜种植NH3排放的主要因素,温度对NH3排放有显著的促进作用,湿度则与之呈较好的负相关关系。2017年上海市露天蔬菜种植NH3排放总量达到832 t,空间分布特征表明,上海市露天蔬菜NH3排放总量最高的3个区为崇明区、浦东新区和青浦区,合计占NH3排放总量的67%以上; NH3排放季节变化特征表现为夏季>秋季>春季>冬季,夏季的NH3排放总量达到冬季的3.6倍。研究表明,上海地区露天蔬菜种植的NH3排放变化特征显著,时空分布具有明显的规律性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号