首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 117 毫秒
1.
宁波土壤中多环芳烃的健康风险评价   总被引:4,自引:2,他引:4       下载免费PDF全文
以宁波地区土壤中多环芳烃的含量调查结果为基础,采用美国能源部风险评估信息系统的暴露量化方法和美国环保局健康风险评估手册的风险表征方法,评估了土壤中16种多环芳烃对户外劳作者的健康风险。结果表明,宁波户外劳作者由于土壤中多环芳烃引起的平均非致癌危害指数为1.09×10-5,平均致癌风险值为3.17×10-7,可判定对人体健康的危害较小。宁波地区致癌多环芳烃含量最高暴露点致癌风险值为1.45×10-6,没有超过致癌风险水平上限(10-4),说明致癌风险尚在可接受范围内。多环芳烃中苯并(a)芘对综合致癌风险贡献最大,贡献率高达65.6%,应注意防范土壤中该污染物引起的健康危害。宁波户外劳作者受到的非致癌危害和致癌风险主要由直接摄入途径和皮肤接触途径贡献,两种途径对非致癌危害和致癌风险贡献率分别达到89%和100%,呼吸摄入引起的非致癌危害和致癌风险则相对较小。  相似文献   

2.
北京地区人群对多环芳烃的暴露及健康风险评价   总被引:11,自引:1,他引:11  
我国北方地区多环芳烃(PAHs)污染严重,为了定量研究PAHs对人群的健康风险,以北京地区人群为研究对象,以美国国家环境保护局(USEPA)的多途径一多介质暴露模型为框架,计算各年龄亚群通过14种暴露途径对PAHs的暴露量.结果表明,儿童、青少年和成人对15种PAH化合物(PAH15)的日均暴露鼍分别为1.83、1.44、1.20μg·μg-1·d-1.暴露途径中食物暴露为主导(占88.7%),其次是呼吸暴露(6.3%)和皮肤暴露(4.9%).终身暴露量的81%来自成人阶段.3环、4环、5环和6环化合物对总暴露谱的贡献依次减少.不确定分析结果表明,至少50%人群对PAH15暴露茸在2~4μg·kg-1·d-1范围内,暴露量极高和极低的人均很少.健康风险评价结果表明,北京人群由于PAHs暴露引起的平均致癌风险为3.110-5a-1,根据动态预期寿命损失方法来估算健康风险,北京地区人群由于PAH15终生暴露所导致的预期寿命损失为193 min.PAHs对北京人群健康的影响不容忽略.  相似文献   

3.
草海水体中多环芳烃污染特征及生态风险评价   总被引:1,自引:1,他引:1  
利用GC-MS测定草海水体15个样品中16种优先控制多环芳烃(PAHs)的含量,分析其组成和来源特征,并进行生态风险评价.结果表明:水体中PAHs总量的变化范围为13.40~694.93 ng·L-1,平均值为334.73 ng·L-1,高于太湖、巢湖、鄱阳湖等国控重点湖泊;草海水体中PAHs组成以2、3环为主,占PAHs总体含量的68.59%;空间分布表现为湖心区浓度最低,受附近居民影响较大的近岸区南侧浓度最高.源解析结果显示草海水体中PAHs的主要来源为煤和木材、柴薪等生物质的燃烧,主要通过生活污水排放进入草海.通过风险商值的方法对PAHs的潜在生态风险进行了评价,结果显示PAHs在12个采样点呈现低风险水平,2个中等风险,1个高风险,其中5、6环PAHs的平均风险商值占总体的64.87%.  相似文献   

4.
为对区域土壤环境质量和人体健康风险评价提供数据支持,采用均匀网格布点法在沈阳市沈北新区采集了不同利用类型的表层(0~20 cm)土壤样品101个,利用超声提取-硅胶柱净化-高效液相色谱检测的方法分析了土壤中美国环保局优先控制的16种多环芳烃(PAHs)的含量,并对土壤中PAHs潜在的生态风险和健康风险进行了评价。结果表明,沈北新区表土中PAHs总量为123.7~932.5μg·kg~(-1),与荷兰土壤质量标准相比,城区绿地部分点位PAHs含量超标严重,最高达10倍以上。内梅罗综合污染指数分析结果显示,研究区有23.8%的样点达到重度污染级别,空间分布呈现由南向北逐渐递减的显著特征;基于毒性当量因子风险评价法的生态风险评价结果显示,PAHs毒性当量范围为1.39~96.41μg·kg~(-1),平均值为(17.96±6.59)μg·kg~(-1),整体潜在生态风险较低。对研究区人群分别进行非致癌和致癌风险分析,结果显示:研究区土壤中PAHs不会对儿童和成人产生明显的非致癌风险;土壤PAHs的致癌风险均低于10-6,经口直接摄入PAHs是致癌风险最高的暴露途径,且致癌风险较高的区域集中于城区绿地。研究区土壤整体生态风险较低,健康风险较高区域主要集中于人类活动频繁的城区绿地等,建议采取相应管理措施避免人体直接接触该区域土壤。  相似文献   

5.
细河流域地下水中多环芳烃污染健康风险评价   总被引:7,自引:0,他引:7       下载免费PDF全文
为了保障细河流域沿岸居民的生活用水安全,采集细河流域9个地下水样品并分析了其中16种多环芳烃(PAHs)的含量,根据毒性当量因子方法和荷兰公共卫生和环境国家研究院提出的土壤地下水污染现场暴露评价模型(CSOIL模型)对多环芳烃的健康风险进行了初步评价.结果表明,细河流域各采样点地下水中∑PAHs含量为159.1~483.7 ng·L-1,低于生活饮用水卫生标准(GB 5749-2006)的浓度限值,表现出规模较大的城镇或乡镇处∑PAHs含量高于其他位置的规律性.作物食入、饮水等经口摄入途径是地下水环境健康风险评价中最主要的暴露途径,各采样点地下水中PAHs在作物食入、饮水、洗澡过程中呼吸吸入和皮肤接触等4种暴露途径产生的总的平均个人年健康风险值为1.19×10-6~3.10×l0-5,其健康风险排序为翟家>前庙>富官>前余>双树>土西>大潘>黄蜡坨>大兀拉.虽然该风险值低于国际辐射防护委员会(ICRP)推荐的最大可接受值,基本属于可接受范围,但其健康危害已不容忽视.  相似文献   

6.
为探究浙江省农田土壤中16种优控多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)含量、来源及生态和健康风险,用网格布点法采集了62个农田土壤样品并进行实验分析。结果表明,∑PAHs浓度范围为34.04~1 990.38 ng·g~(-1),污染物以高环类PAHs为主,研究区域内所有土样苯并[a]芘(BaP)浓度均未超过我国新颁布的《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中的风险筛选值。采用比值法及主成分分析研究其环境来源,结果显示主要来自于交通污染、煤炭和薪柴燃烧。内梅罗综合污染指数法评价结果表明,研究区有87.10%的样点存在生态风险。毒性当量因子风险评价法分析结果显示,PAHs的毒性当量浓度范围为1.53~268.27 ng·g~(-1),7种致癌PAHs为污染主体,平均占比高达99.18%。暴露量估算结果显示,经口摄入是PAHs致癌风险最高的暴露途径。健康风险评价显示,土壤中PAHs暴露暂时不会对人群产生明显的非致癌风险,但儿童的综合致癌风险已超过可接受范围,需引起重视。  相似文献   

7.
浑蒲污灌区表层土壤中多环芳烃的健康风险评价   总被引:6,自引:1,他引:6  
采集了辽宁省浑浦污灌区8个点位的表层土壤样品并分析了样品中16种多环芳烃(PAHs)的含量,根据毒性当量因子(TEF)方法和污染土地暴露评价模型(CLEA模型)对PAHs的健康风险进行了评价.结果表明,污灌区各采样点∑PAHs含量为120~1066ng·g-1DW,旱地的∑PAHs含量高于水田.早地采样点中,离浑河最近的一个点达到严重污染,其余采样点为轻微污染到无污染.各采样点PAHs的致癌风险值为6.5×10-8~9.6×10-6,从人群受体来看,对儿童的致癌风险高于妇女.各采样点的致癌风险排序为Ⅳ-1(旱)>Ⅲ-2(水)>Ⅳ-2(水)>Ⅰ-1(旱)=Ⅲ-1(旱)>Ⅱ-2(水)>Ⅰ-2(水)>Ⅱ-1(旱),均没有超过癌症风险水平上限(10-4),说明癌症风险尚在可接受范围内.  相似文献   

8.
为评价江苏典型斑点叉尾鮰养殖区多环芳烃(PAHs)残留水平和生态风险及健康风险,利用气相色谱-质谱联用仪(GCMS)根据生长阶段跟踪监测了江苏主要养殖区养殖塘斑点叉尾鮰鱼体、池塘水体和底泥中多环芳烃残留;采用Kalf风险商值法,进行池塘水体生态风险评价;利用沉积物质量基准法(SQGs)对池塘底泥开展生态风险评价;并用美国环保局(USEPA)推荐的健康风险评价模型对斑点叉尾鮰食用安全进行健康风险评价。在鱼体、养殖水体、底泥中,16种PAHs总检出率为100%,但致癌性物质苯并[a]芘均未检出,单体Nap、Phe、BaA、Pyr、Chr、Flu、Ace为常见检出物,其中Phe检出率达100%,Nap达到80%以上。结构组成上,鱼体、养殖水体均以2~4环为主要成分,底泥结构较为复杂,以3~4环为优势组分。鱼体中(以湿质量计)总PAHs含量范围在11.75~60.02μg·kg~(-1),对食用斑点叉尾鮰引起的健康风险进行评价,成人的风险范围为2.25×10~(-9)~5.80×10~(-7)a~(-1),致癌风险远小于最大可接受水平,处于致癌风险控制水平。池塘养殖水PAHs含量范围在0.03~0.46μg·L~(-1),总体上生态风险程度为低风险,但单体Nap、Phe及部分池塘中Ace、Pyr及Fla处于中等风险水平,其他单体对生态系统的影响可以忽略。底泥(以干质量计)PAHs含量在24.48~145.04μg·kg~(-1),总体上PAHs对生物毒副作用不显著。  相似文献   

9.
地表水体中多环芳烃污染的研究进展   总被引:2,自引:2,他引:2  
陈宇云  朱利中 《安徽农业科学》2010,38(15):8148-8153
介绍了近年来地面水体中的多环芳烃的研究进展,重点综述了国内外河流、近海海域和湖泊等地表水体中地表水和沉积物中多环芳烃的污染现状。  相似文献   

10.
陈平 《浙江农业科学》2020,61(8):1598-1600
对上海市42个道路绿化带土壤样品的多环芳烃(PAHs)进行检测分析,其浓度范围为227.85~16 461.75 μg·kg-1,平均值为3 918.92 μg·kg-1,主要为中高环PAHs,浓度低于国家对建设用地中第二类用地的要求。基于ILCRs模型的健康风险评价表明:道路绿化带的儿童和成人致癌风险值分别为1.66×10-7~9.34×10-6和1.00×10-7~5.63×10-6,基本在可接受的范围内。儿童PAHs最主要的摄入途径为误食,成人最主要的摄入途径为皮肤接触。  相似文献   

11.
为了解阿哈水库沉积物中多环芳烃(PAHs)的污染情况,采用加速溶剂萃取-高效液相色谱法对阿哈水库表层沉积物中 PAHs 进行检测分析,并运用效应区间低、中值法对其进行生态风险评价。结果表明,在美国环境保护署(EPA)优控的16种 PAHs 中,阿哈水库表层沉积物中共检出15种,总含量介于107·6~142·1 ng/g,平均值为119·9 ng/g,以3环芳烃为主,主要来源于石油类污染。阿哈水库沉积物中 PAHs 对生态环境的影响处于较低风险水平,仅苊含量介于生态风险效应区间低值(ERL)和中值(ERM)之间,存在潜在生态风险。  相似文献   

12.
利用自动固相萃取-气相色谱/质谱技术,研究广州市流溪河流域18个采样点水体中16种优控PAHs的污染水平、组成特征,并进行生态风险评估。结果表明,水体中PAHs总量在107.5~672.0 ng·L-1之间,平均含量为185.9 ng·L-1;就组成特征而言,水体中PAHs以2环(23.4%)、3环(51.8%)和4环(15.2%)为主;与国内外其他河流水体相比,∑PAHs含量水平处于较低水平。通过构建8种常见PAHs对淡水生物的物种敏感性分布曲线,计算出8种PAHs对不同淡水生物的5%危害浓度(HC5)及其预测无效应浓度(PNEC);进而分析了8种PAHs的生态风险,并对比脊椎动物和无脊椎动物对8种PAHs的敏感性差异。通过评估流溪河水体中PAHs的联合生态风险,8种PAHs对所有物种的生态风险大小依次为苯并[a]芘蒽荧蒽菲萘芘芴苊;而且8种PAHs对无脊椎动物的毒性与生态风险明显高于脊椎动物。与其他水体相比,流溪河水体中PAHs确实存在一定的生态风险,但尚较低。  相似文献   

13.
在优化卷烟烟气试样前处理技术的基础上,采用毛细管气相色谱分离一质谱检测一选择离子监测模式方法(GC/MS SIM)建立了一种同时测定卷烟烟气中15种多环芳烃的分析方法.各多环芳烃在20~1000μg/L范围内有线性关系,且苯并[k]荧蒽的最低检测限达到0.32μg/L,远低于文献值.并利用该方法对国产卷烟样品进行了分析.  相似文献   

14.
城市森林植物叶面颗粒物中重金属和多环芳烃的研究进展   总被引:2,自引:0,他引:2  
城市森林是城市的后花园,为城市发展提供显著的生态效益。以国内外叶面颗粒物重金属和多环芳烃(PAHs)相关的研究文献为依据,综合分析了城市化程度、植被覆盖程度、植物种类、气候因素、城市热量来源等因子对城市叶面颗粒物重金属和PAHs含量的影响,全面解析了叶面颗粒物重金属和PAHs的主要来源如化石燃料、煤炭及生物质燃烧、工业排放以及道路降尘等,总体剖析了其生态风险及健康风险的评价方法,并对叶面颗粒物重金属和PAHs的综合防治进行了展望,以期为城市污染防治提供依据。  相似文献   

15.
[目的]为呼和浩特市农田土壤污染预警和农业规划用地提供科学理论依据.[方法]对呼和浩特市农田土壤60个采样点位中15种多环芳烃进行污染特征、 来源解析和生态风险评价.[结果]ΣPAHs含量范围为114~948μg/kg,平均含量为338μg/kg,参照相关研究评价标准判定,呼和浩特市农田土壤中70%以上属于轻微污染,不存在严重污染点位;研究区农田土壤中高分子量多环芳烃污染占总含量的74%,以近郊农田土壤污染最为严重;定量解析来源主要是煤、焦炭和木材的燃烧以及汽车尾气的排放.[结论]采用生态效应区间法评价和苯并(a)芘毒性等效当量法评价均证明呼和浩特市农田土壤存在一定的潜在生态风险,其中苯并[a]芘、二苯并[a,h]蒽等高分子量多环芳烃是主要潜在的污染物.  相似文献   

16.
[目的]探讨淮河流域贝类体中PAHs污染情况,为淮河居民安全食用贝类提供科学依据。[方法]在淮河中下游干流吴小街和浮山集两处采集悬浮物、沉积物物和贝类样品。将1 L水样抽真空过0.45μm玻璃纤维滤膜得悬浮物样品,沉积物阴凉处自然风干;贝类经鉴定均为短褶矛蚌,去壳,阴凉处风干。称取已过100目尼龙筛的沉积物干样10g,加入10g无水硫酸钠,1 g纯铜粉(除硫),混均,用120 ml二氯甲烷在水浴65℃下索氏提取48j。将提取液浓缩至约0.5 ml,经无水硫酸钠脱水,过硅胶/氧化铝柱分离净化,用正己烷/二氯甲烷(1:1,V/V)混合液淋洗得PAHs组分。将淋洗液浓缩至0.1 ml,正己烷定容至1.0 ml,冷冻保存,作GC-MS检测。悬浮物干样的处理类似于沉积物。利用外标法定量计算环境样品中PAHs含量。在样品分析过程中,增加方法空白和加标空白。[结果]淮河中下游两采样点中,1号点吴小街处悬浮物、沉积物中PAHs总量均远大于2号点浮山集中含量,但两处矛蚌体中PAHs总含量则相差不大。1号点位于2号点上游,毗邻蚌埠市,而2号点流域基本上是农村和乡镇,沿岸污染较少,加之水体自净作用,故1号点悬浮物和沉积物中PAHs偏高。矛蚌自身用于代谢的混合氧化系统存在缺陷,体内化合物的释放较慢,富集于矛蚌体中的PAHs代谢较慢,因此两采样点处矛蚌体中PAHs含量存在空间差距,时间差距较小,其含量相差不大。两点环境介质中PAHs含量均呈现出悬浮物〉矛蚌〉沉积物的分布特征。2号采样点处设有采砂场,水体搅动相对频繁,沉积物再悬浮作用显著,因此悬浮物中PAHs含量远高于沉积物中含量。矛蚌因本身的生物特性,易富集PAHs,其含量亦高于沉积物中含量。就多环芳烃单组分特征而言,淮河中下游两采样点悬浮物中均以低环PAHs为主,矛蚌体中均以高环PAHs为主。高环PAHs的沉积物/水分配系数(KOC)值较大,主要吸附于沉积相,难迁移转化,相对而言,低环PAHs易载于悬浮物颗粒上,随水流迁移,因此两点悬浮物中低环PAHs含量较高。PAHs随环数增加,稳定性增加,降解速率降低,因此矛蚌体中5、6环的PAHs含量较高。沉积物中则1号点吴小街以低环PAHs为主,2号点浮山集以高环为主。[结论]通过对环境介质中PAHs进行生态风险评价看出,沉积物中PAHs的潜在生态风险很小,沉积物和矛蚌尚未受到污染(PAHs污染指数均小于0.5),但其周围环境中PAHs含量较高,应对PAHs的潜在危害予以重视。  相似文献   

17.
用实验室模拟的方法研究了在堆制条件下污染物的初始浓度及堆制材料的C/N质量比对污染土壤中难降解的四环到六环的多环芳烃的降解作用。以超声波萃取-高效液相色谱法对堆制材料中多环芳烃的浓度进行了测定。结果表明,堆制法对6种难降解的多环芳烃都有不同程度的降解作用,降解能力随着环数的增加而降低;多数多环芳烃的去除率随污染物浓度的增加而降低;相同的污染浓度下,堆制材料的C/N质量比为25:1时比40:1时去除率高。在堆制的升温期和高温期,多环芳烃的浓度有所提高,在降温期和腐熟期又有不同程度的降低。  相似文献   

18.
张海霞 《北京农业》2011,(15):197-198
多环芳烃(PAHs)是有2个或者2个以上的苯环用不同的方式聚合而成的一类有机污染物,它们在环境中稳定且持久,严重威胁着生态环境以及人类的健康,有致癌、致畸以及致突变的危害。农药和肥料中也含有多环芳烃,使得有机农场生产的蔬菜中也存在了大量的多环芳烃,人们对多环芳烃的监测也日益重视。以西宁市的蔬菜基地为例,采用气相色谱-质谱技术来对蔬菜中多环芳烃的污染特征进行研究,分析了16种多环芳烃化合物的污染特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号