首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to determine the effects of three organosilicone-based and six conventional organic adjuvants on the absorption and translocation of 14C-glyphosate in guineagrass and redroot pigweed. The organosilicone adjuvants produced rapid absorption of the 14C-glyphosate into the redroot pigweed leaves, reaching maximum absorption within 0.5–1.0 h after application. The conventional adjuvants produced slower absorption of the 14C-glyphosate, as the maximum absorption was not achieved until at least 24 h after application in redroot pigweed, remaining similar until 72 h. In guineagrass, the maximum absorption of the glyphosate was earlier than 24 h with the organosilicone-based adjuvants, compared with longer times for the conventional adjuvants. The organosilicone-based adjuvants also increased the glyphosate translocation in redroot pigweed, but not in guineagrass. Organosilicone adjuvants have the potential to provide greater rainfastness to glyphosate on redroot pigweed and, to a lesser extent, on guineagrass.  相似文献   

2.
Li P  He S  Tang T  Qian K  Ni H  Cao Y 《Pest management science》2012,68(2):170-177
BACKGROUND: Glyphosate is a non‐selective, foliar‐applied, systemic herbicide that kills weeds by inhibiting the synthesis of 5‐enolpyruvylshikimate‐3‐phosphate synthase. Urea phosphate (UPP), made by the reaction of urea with phosphoric acid, was applied as an adjuvant for glyphosate in this study. Experiments in the greenhouse and the field were conducted to determine the effects of UPP by comparing the efficacies of glyphosate plus UPP, glyphosate plus 1‐aminomethanamide dihydrogen tetraoxosulfate (AMADS) and Roundup. RESULTS: The optimum concentration of UPP in glyphosate solution was 2.0% when UPP was used as an adjuvant. The ED50 values for glyphosate‐UPP were 291.7 and 462.4 g AI ha?1 in the greenhouse and the field respectively, while the values for Roundup were 448.2 and 519.6 g AI ha?1. The ED50 values at 2 weeks after treatment (WAT) and 3 WAT were lowered when UPP was used as an adjuvant in the greenhouse and field study, and the glyphosate + UPP was absorbed over a 2 week period. UPP may increase the efficacy by causing severe cuticle disruption or accelerating the initial herbicide absorption. The result also showed that UPP could reduce the binding behaviour of Ca2+ to glyphosate. CONCLUSION: The application of UPP as an adjuvant could increase the efficacy of glyphosate and make it possible to achieve effective control of weeds with glyphosate at lower dose. Moreover, UPP showed less causticity to spraying tools and presented less of a health hazard. Therefore, UPP is accepted as being a new, effective and environmentally benign adjuvant for glyphosate. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Growth chamber experiments were conducted in order to study the absorption, translocation and activity of glyphosate when applied to roots with aqueous solution avoiding any glyphosate–substrate interaction. Corn seedlings at the first leaf stage were set up in individual graduated cylinders containing different solutions of 14C-glyphosate (0–30 mg ae kg−1). After 26 h of root exposure, plants were transferred to fresh nutrient solution and grown for the next 5 days. After harvest, plants were separated into seed, root, mesocotyle, coleoptile, cotyledon, first leaf and all new leaves (apex), and quantified 14C radioactivity contained in each part. Glyphosate uptake was only 11% of the theoretical mass flow into the plant. The amount of glyphosate translocated from roots was positively correlated with plant uptake ( P  < 0.01). Total plant fresh weight presented a logistic response to glyphosate amounts, including a growth stimulant effect (hormesis), when plants absorbed less than 0.6 µg. The treated plants presented a normal pattern of glyphosate allocation, with the apex the principal sink, accumulating more than 38% of mobilized glyphosate. When corn plants absorbed more than 0.6 µg they showed a decrease in growth. The relatively high glyphosate quantities allocated in the new leaves showed the relevance of the symplastic pathway in the translocation process for root absorbed glyphosate.  相似文献   

4.
Growth analysis, absorption and translocation studies were conducted to compare a 1-aminomethanamide dihydrogen tetraoxosulfate (GLY-A) formulation of glyphosate with two isopropylamine (GLY-IPA-1, GLY-IPA-2) formulations of glyphosate on velvetleaf. The two isopropylamine formulations differed by the presence of a surfactant in the formulation, GLY-IPA-1 containing surfactant whereas GLY-IPA-2 did not. Four- to six-leaf velvetleaf was treated with GLY-A and GLY-IPA-1 and GLY-IPA-2 (0, 50, 67, 89, 119, 158, 280, 420, 560 and 840 g AE ha(-1)) with and without ammonium sulfate (AMS; 20 g L(-1)). GLY-A and GLY-IPA-2 included a non-ionic surfactant (2.5 mL L(-1)) in the spray solution at all herbicide concentrations. No additional surfactant was added to GLY-IPA-1. The IC50 value for GLY-A was 88 g AE ha(-1) compared with 346 and 376 g AE ha(-1) for GLY-IPA-1 and GLY-IPA-2 respectively in the absence of AMS. When AMS (20 g L(-1)) was added to the spray solution, the estimated IC50 values were 143, 76 and 60 g AE ha(-1) for GLY-IPA-1, GLY-IPA-2 and GLY-A respectively. Absorption of 14C-glyphosate into the third leaf of five- to six-leaf velvetleaf was three- to sixfold greater 72 h after treatment (HAT) when applied as GLY-A compared with GLY-IPA-1 and GLY-IPA-2 respectively in the absence of AMS. AMS (20 g L(-1)) increased absorption of 14C-glyphosate in all glyphosate formulations two- to threefold, but differences among the formulations remained. Approximately three- and sixfold more 14C-glyphosate applied as GLY-A had translocated out of the treated leaf compared with GLY-IPA-1 and GLY-IPA-2 respectively by 72 HAT. Adding AMS (20 g L(-1)) increased translocation of 14C-glyphosate out of the treated leaf approximately 2.5-fold for all three formulations. The increased efficacy of GLY-A versus GLY-IPA-1 and GLY-IPA-2 on velvetleaf is due to the greater rate of absorption and subsequent translocation of glyphosate out of the treated leaf. AMS increased the efficacy of all three formulations by increasing absorption and translocation of glyphosate in the plant.  相似文献   

5.
6.
在人工气候室培养空心莲子草,植株经草甘膦与乙烯利混合处理后,测定对植株的抑制作用和草甘膦的吸收与传导量。结果表明,加入乙烯利(100mg·L~(-1))后草甘膦(300mg·L~(-1))对地下根茎抑制率比对照提高了13.6个百分点。植株经乙烯利喷雾处理后,基芽、地下茎和根系中~(14)C-草甘膦含量分别是对照的3.56、1.75和2.35倍。放射性成像图显示,植株地下茎与根系中~(14)C-草甘膦传导量明显高于对照。  相似文献   

7.
Weed populations with resistance to glyphosate have evolved over the last 7 years, since the discovery of the first glyphosate‐resistant populations of Lolium rigidum in Australia. Four populations of L. rigidum from cropping, horticultural and viticultural areas in New South Wales and South Australia were tested for resistance to glyphosate by dose–response experiments. All populations required considerably more glyphosate to achieve 50% control compared with a known susceptible population, indicating they were resistant to glyphosate. Translocation of glyphosate within these resistant populations was examined by following the movement of radiolabelled glyphosate applied to a mature leaf. All resistant plants translocated significantly more herbicide to the tip of the treated leaf than did susceptible plants. Susceptible plants translocated twice as much herbicide to the stem meristematic portion of the plant compared with resistant plants. These different translocation patterns suggest an association between glyphosate resistance in L. rigidum and the ability of glyphosate to accumulate in the shoot meristem.  相似文献   

8.
The weed species, prickly sida (Sida spinosa L.) and sicklepod (Senna obtusifolia L.), were treated with 14C-glyphosate alone and formulated with different polyethlylane oxide (PEO) surfactants in tallow amine ethoxylate and non-ionic alkoxylate series to determine the amount of 14C-glyphosate absorption and translocation. The surface tension, contact angle, and 14C-glyphosate distribution were significantly affected by both the presence of different waxes on the plants and by the addition of surfactants to the glyphosate. The surface and contact angle values of the surfactants, with and without glyphosate, showed a significant increase as the PEO number increased in both surfactant series. A higher absorption of the 14C-glyphosate was recorded for S. spinosa compared with S. obtusifolia. The absorption and translocation of the 14C-glyphosate increased with the increase in the PEO number of tallow amine ethoxylate. In the case of the non-ionic alkoxylate surfactant series, an increase in the absorption of 14C-glyphosate was recorded when the surface tension and contact angle values decreased. There was no significant difference in the translocation values obtained in the two species after the addition of the surfactants. The amount of 14C-glyphosate absorbed by the treated leaf was significantly higher in the case of S. spinosa compared with S. obtusifolia. A linear relationship was observed with the physical properties, 14C absorption, and the efficacy of glyphosate with the addition of the non-ionic alkoxylate surfactant series. The percentage control was higher with the higher PEO surfactant in the tallow amine ethoxylate surfactant series and with the lower PEO surfactant in the non-ionic alkoxylate surfactant series as the two series are chemically different.  相似文献   

9.
10.
为明确不同杂草对草甘膦的敏感性,以稗 Echinochloa crusgalli 、马唐 Digitaria sanguinalis 、藜 Chenopodium album 为供试材料,采用生物测定法和吸光光度法分别测定了草甘膦对3种杂草的抑制中浓度(GR50),以及不同剂量处理后杂草体内莽草酸积累量的变化。经410 g/hm2(有效成分)的草甘膦处理后,稗体内莽草酸积累量呈上升-下降-上升趋势,而马唐和藜则表现为缓慢上升,根据此剂量处理下莽草酸积累趋势得出,3种杂草对草甘膦的敏感性由高到低依次为稗、藜和马唐,与生测法的结果一致。经820~3 280 g/hm2(有效成分)的草甘膦处理后,3种杂草体内莽草酸积累量从第2 d开始急剧升高,增长速率随着草甘膦处理剂量的增加而加大;处理后稗、马唐和藜体内莽草酸积累量最高值差异显著,分别为1 137.9、4 989.7和2 084.2 μ g/g,为各自对照水平的16.7、23.7和82.9倍。该研究结果可为系统检测杂草对草甘膦的敏感性提供依据。  相似文献   

11.
2015—2016年以先玉335和郑单958为试验材料,设置深松+旋耕(S+R)和旋耕(R)2个处理,研究了深松对春玉米根系分布及氮素积累与利用的影响。结果表明:深松疏松了土壤,有利于根系的生长,促进根系下扎,深松措施下先玉335和郑单958完熟期总根干重较旋耕处理分别提高了7.35%和9.25%,其中20~40 cm土层分别提高了15.52%和24.07%,30 cm以下土层根条数和根幅明显增加。深松改善根系形态特征,增加了根系与氮素的接触机会,促进了春玉米对氮素的吸收和累积,使单位重量根系氮素吸收量明显提高,吐丝前S+R处理的先玉335和郑单958单位重量根系氮素吸收量较R处理分别提高了11.22%和12.03%,处理间差异达到了显著水平。S+R处理的氮素吸收效率先玉335和郑单958较R处理分别提高6.11~6.40 kg·kg-1和7.17~7.51 kg·kg-1,氮肥偏生产力分别提高了3.86~8.00 kg·kg-1和5.40~9.86 kg·kg-1,氮素积累量分别提高了33.73~...  相似文献   

12.
以夏玉米(zea may L. cv.)为试验材料,采用防雨棚下桶栽土培方法,进行调亏灌溉(Regulated deficit irrigation,RDI)对根、冠生长的影响研究,旨在寻求适宜的水分调亏阶段和调节亏水度,为建立节水高产、优质高效作物RDI模式提供技术参数。试验采用二因素随机区组设计,设置4个水分调亏阶段:三叶~拔节(Ⅰ),拔节~抽穗(Ⅱ),抽穗~灌浆(Ⅲ),灌浆~成熟(Ⅳ);每个调亏阶段设置3个水分调亏度:轻度调亏(L)、中度调亏(M)和重度调亏(S),土壤相对含水率分别为60%~65%FC(Field capacity)、50%~55%FC和40%~45%FC;设全生育期保持适宜土壤水分(75%~80%FC)作为对照(CK)。分别在水分调亏期间和复水后测定各处理根系参数和地上干物质质量。结果表明,玉米生长中、后期水分调亏具有促进根系发育和减缓根系衰亡的"双重效应",反映出玉米根系在生育后期比生育前期对水分适应能力强的特性。玉米根冠比(R/S)受水分影响最大的阶段是三叶-拔节期,受水分影响最小的阶段是灌浆期;拔节-抽穗期水分调亏期间能显著增大R/S,复水后分配到冠层与根系的物质比较平衡,维持较为适宜的R/S,表明此阶段为通过RDI调控玉米R/S的适宜阶段。玉米三叶-拔节期水分调亏改善了穗部性状,表明在作物营养生长阶段的适度水分调亏有利于作物生殖生长。RDI可以有效调控根/冠生长关系,提高经济产量。  相似文献   

13.
14.
苍耳Xanthium strumarium和藜Chenopodium album是常见的两种阔叶杂草,其在玉米田发生严重,影响了玉米的生长和产量.本文利用整株生物测定法对我国东北及黄淮海玉米产区采集到的苍耳及藜种群对草甘膦的敏感性进行了测定.种子室内培养至5~6叶期,喷施草甘膦后14 d称量鲜重,计算抑制杂草种群50%...  相似文献   

15.
In Shizuoka Prefecture, Japan, glyphosate‐resistant Lolium multiflorum is a serious problem on the levees of rice paddies and in wheat fields. The mechanism of resistance of this biotype was analyzed. Based on LD50, the resistant population was 2.8–5.0 times more resistant to glyphosate than the susceptible population. The 5‐enolpyruvyl‐shikimate‐3‐phosphate synthase (EPSPS) gene sequence of the resistant biotype did not show a non‐synonymous substitution at Pro106, and amplification of the gene was not observed in the resistant biotype. The metabolism and translocation of glyphosate were examined 4 days after application through the direct detection of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) using liquid chromatograph‐tandem mass spectrometer (LC‐MS/MS). AMPA was not detected in either biotype in glyphosate‐treated leaves or the other plant parts. The respective absorption rates of the susceptible and resistant biotypes were 37.90 ± 3.63% and 41.09 ± 3.36%, respectively, which were not significantly different. The resistant biotype retained more glyphosate in a glyphosate‐treated leaf (91.36 ± 1.56% of absorbed glyphosate) and less in the untreated parts of shoots (5.90 ± 1.17%) and roots (2.76 ± 0.44%) compared with the susceptible biotype, 79.58 ± 3.73%, 15.77 ± 3.06% and 4.65 ± 0.89%, respectively. The results indicate that the resistance mechanism is neither the acquisition of a metabolic system nor limiting the absorption of glyphosate but limited translocation of the herbicide in the resistant biotype of L. multiflorum in Shizuoka Prefecture.  相似文献   

16.
覆膜条件下冬小麦根系生理特性及其空间分布变化   总被引:1,自引:0,他引:1  
覆膜条件下测定了冬小麦的根系活力与吸收面积,研究其空间分布情况。结果表明,在水平方向上,TTC还原量和TTC还原强度均随着离主茎距离的增加而减少;在垂直方向上,TTC还原量随着土层深度的加深而递减,TTC还原强度,返青期由上而下递减,开花期则上下土层无差异。根系总吸收面积和活跃吸收面积,在水平方向和垂直方向的变化与TTC还原量相同。覆膜处理并没有改变以上各指标的空间分布状态。但返青期水平方向的比吸收面积和比活跃吸收面积的变化趋势随覆盖地膜与否而不同,不覆膜处理由近到远递减,覆膜处理则无差异。返青期比吸收面积和比活跃吸收面积的垂直方向变化以及开花期二者的水平和垂直方向变化均无明显差异。根系活力与根系总吸收面积、活跃吸收面积呈极显著正相关。  相似文献   

17.
The uptake by barley roots from nutrient solution and subsequent transport to shoots of two series of amine bases were measured over 6 to 72 h. The compounds were chosen to span systematically ranges of lipophilicity (assessed using 1-octanol/water partition coefficients, Kow) and pKa that would include commercial pesticide amines. In a series of six substituted phenethyl amines, strong bases with pKa∽9·5, all the compounds were strongly taken up by roots from solutions of pH 8·0; uptake declined substantially as the pH was lowered to 5·0, especially for the compounds of intermediate lipophilicity (log Kow 2 to 3). This uptake could be ascribed to three processes: (i) accumulation of the cation inside the root cells due to the negative charge on the plasmalemma, as given by the Nernst equation and important only for the polar compounds which have low permeation rates through membranes; (ii) accumulation into the vacuole by ion-trapping, which was the dominant process at high pH for all compounds and at all pH values for the compounds of intermediate lipophilicity; (iii) partitioning on to the root solids, substantial only for the most lipophilic compounds. Translocation to shoots was proportional to uptake by roots, this ratio being independent of external pH for each compound and being optimal for the compounds of intermediate lipophilicity. Such proportionality was also observed in a series of three weaker bases of intermediate lipophilicity, in which compounds of pKa 7·4 to 8·0 were also well taken up and translocated whereas the very weak base 4-ethylaniline (pKa 5·03) was much less so. Tests with quaternised pyridines confirmed that organic cations move only slowly through membranes. The observed behaviour of the amines could be modelled reasonably well assuming that transport within the plant was dominated by movement across membranes of the non-ionised species, and this appeared to be true even for the most lipophilic phenethylamine (log Kow 4·67) studied, though its long-distance movement would be as the protonated species. © 1998 Society of Chemical Industry  相似文献   

18.
Despite being lipophilic, morpholine fungicides are systemic in plants. Such transport may be explicable by their protonation (pKa∽7·5) at the pH of plant compartments to yield the more polar cation. This behaviour might be a useful attribute to be incorporated into other classes of lipophilic pesticides. To understand quantitatively the behaviour of the morpholine fungicides, the uptake by roots and transport to shoots in barley of two such 14C-labelled compounds, dodemorph and tridemorph, were investigated using bathing solutions of differing pH. At pH 5, uptake and transport were small, but increased by approximately two orders of magnitude at pH 8. Tridemorph, the more lipophilic of the two compounds, was highly accumulated by roots at pH 8 and moderately translocated to shoots. In contrast, dodemorph was translocated to shoots at pH 8 with remarkable efficiency, moving into the xylem across the endodermis at 23 times the efficiency of water, though accumulation in roots was less than that of tridemorph. Behaviour at 24 h was largely similar to that at 48 h for both compounds, indicating that uptake and translocation are equilibrium processes maintained over time. Transport to shoots for each compound was directly proportional to the concentrations accumulated in the roots, except at low pH where partitioning into root solids became proportionately more important with such material not being directly available for transport to the xylem across the endodermis. Uptake and transport of these basic fungicides are explained in terms of their partitioning and of their accumulation in acidic plant compartments by ion trapping as the protonated form; this behaviour is discussed in relation to the pKa and lipophilicity of these compounds. © 1998 Society of Chemical Industry  相似文献   

19.
20.
In this study, the physiological basis for antagonism induced by mixtures of quizalofop‐ethyl and bromoxynil was investigated in maize seedlings. In sequential applications, antagonism was observed when bromoxynil was applied before quizalofop‐ethyl or in a mixture with quizalofop‐ethyl, but was minimal when bromoxynil was applied afterwards. The degree of antagonism differed with application rates of bromoxynil and with the timing of the treatment. When test herbicides were applied locally to the second leaf, the inhibition of photosystem II (PS‐II) in the herbicide‐treated leaf was higher with the mixture than with bromoxynil or quizalofop‐ethyl alone. Subsequent growth of the untreated third leaf inhibited by quizalofop‐ethyl alone then recovered, depending on the dose of bromoxynil. There was no evidence that bromoxynil affected absorption of quizalofop‐ethyl. In local applications at different positions on the second leaf, antagonism was only observed when quizalofop‐ethyl was applied to the distal part of the leaf and bromoxynil applied to the proximal part. The antagonism of bromoxynil + quizalofop‐ethyl did not occur at the level of acetyl CoA carboxylase and Hill reaction, as revealed by in vitro assays. These results suggest that bromoxynil inhibits the phloem transport of quizalofop‐ethyl and thus antagonises its whole‐plant activity in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号