首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
天津表土中多环芳烃含量的空间分布特征与来源   总被引:30,自引:3,他引:30       下载免费PDF全文
采用聚类分析、方差分析和多重比较等统计方法,结合空间分异分析研究了天津表土中多环芳烃(PAHs)含量的多元和空间分布特征。结果表明,可根据样点PAHs含量和空间分布特征将天津地区划分为三个含量有显著差异且连续分布的区域,即南北低值区、市中心近郊次高值区和塘沽汉沽高值区。三区除PAHs含量有显著差别外,16种PAHs化合物的谱分布也有显著不同。根据不同化合物的含量关系及天津地区燃料消耗资料可以判定,南北低值区土壤中PAHs基本来自燃煤排放,而两个高值区污染来源复杂,除燃煤仍是主要来源外,其他重要来源还包括燃油和其他工业活动。  相似文献   

3.
Background, Aim and Scope  Polycyclic aromatic hydrocarbons (PAHs) have gained serious attention in the scientific community due to their persistence and toxic potential in the environment. PAHs may pose a risk to ecosystem health. Along the Mosel River/Germany, a tributary of the river Rhine, PAHs were found at significantly high concentrations (> 20 mg kg−1, German national guideline value Z2, LAGA 1998). These high concentrations were detected during the construction of a storm water retention basin, in which the contaminated soils had to be removed and treated as hazardous waste. This resulted in higher construction costs for implementing flood prevention measures, but did not address the origin of these PAHs and its distribution along Mosel River. Hence, for future flood prevention projects, it is necessary to estimate the extent of PAH contamination along the Mosel River. The aim of the study is to determine the extent of PAH contamination in soils collected along Mosel and Saar River, and to obtain a first insight into the origin of the PAH contamination in this region. Materials and Methods  In total twenty seven sample sites were investigated. Forty two single samples were collected along a 167 km distance of Mosel River and six samples were collected along a 20 km distance of Saar River. Soil samples were collected at a depth of 0 to 2 m with a stainless steel corer (▫ 8 cm). Each 2 m sample was further separated into two sub-samples (0–1 m and 1–2 m). The sixteen EPA PAHs and three additional PAHs (1methylnaphthalene, 2methylnaphthalene and perylene) were analysed with gas chromatography mass spectrometry (GC-MS). For soil characterisation, total organic carbon (TOC), grain size, microscope and X-ray diffraction (XRD) analysis were performed. Results  Grain size for all soil samples was classified as a mixture of sand and silt. XRD analysis showed that all samples were dominated by quartz. Some clay minerals, such as illite and montmorillonite and feldspars, i.e. anorthoclase and orthoclase, were found in minor quantities. TOC ranged from 0.1% to 13%. Microscope analysis showed black coal particles in the majority of the soils collected from the Saar River and part of the Mosel River (downstream of the confluence of Saar and Mosel River). The black particles were not found further upstream along Mosel River. The sum of nineteen PAHs in the soil samples was up to 81 mg kg−1 dry weight (dw). Most soil samples showed a relationship between the presence of coal particles and PAH concentrations. Discussion  Elevated PAH concentrations were found in all soil samples collected from Saar River and downstream Mosel River. Due to former coal mining activities in the Saarland, Germany, there is a strong evidence that the majority of the PAH contamination in the soils downstream Mosel River are linked to these mining activities. Upstream Mosel River coal particles were hardly found although PAH concentrations were high. Therefore another PAH source has to be responsible for these concentrations. PAH distribution patterns indicate a pyrogenic PAH input upstream Mosel River and a mixed input (petrogenic and pyrogenic) downstream Mosel River. Conclusions  Due to PAH distribution patterns, the contamination along the upstream of the Mosel River is probably linked to atmospheric depositions and other sources not linked to coal mining activities. Downstream Mosel River the PAH distribution patterns reflect former coal mining activities. We could corroborate for the first time that coal mining resulted in a serious problem of an extensive PAH contamination at Saar and Mosel River floodplain soils. Recommendations and Perspectives  Coal mining activities have a strong impact on the neighbouring regions (Johnson and Bustin 2006, Short et al. 1999, Stout et al. 2002). It is known that coals exhibit relative high PAH concentrations, especially in the low molecular weight PAHs (Chapman et al. 1996, Radke et al. 1990). However, PAHs in coals are hardly bioavailable (Chapman et al. 1996) and hence may have less adverse effects on exposed biota. They can act as sink for other hydrophobic contaminants. For the assessment of the environmental impact, a detailed study of the sorption and desorption behaviour of PAHs linked to coal particles should be carried out. ESS-Submission Editor: Dr. Ralph Portier (rportie@lsu.edu)  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced by incomplete combustion sources such as home heating, biomass burning, and vehicle emissions. PAH concentrations in soils are influenced by source inputs and environmental factors that control loss processes and soil retention. Many studies have found higher concentrations of these pollutants in soils within cities of temperate climates that have a centralized urban core. Less is known about the factors regulating PAH abundance in warm, arid urban ecosystems with low population densities but high traffic volumes. The relative importance of sources such as motor vehicle traffic load and aridland ecosystem characteristics, including temperature, silt, and soil organic matter (SOM) were explored as factors regulating PAH concentrations in soils near highways across the metropolitan area of Phoenix, AZ (USA). Highway traffic is high compared with other cities, with an average of 155,000 vehicles/day. Soils contained low but variable amounts of SOM (median 2.8?±?1.8% standard deviation). Across the city, median PAH concentrations in soil were low relative to other cities, 523?±?1,886 ??g/kg, ranging from 67 to 10,117 ??g/kg. Diagnostic ratio analyses confirmed that the source of PAHs is predominantly fuel combustion (i.e., vehicle emissions) rather than petrogenic, biogenic, or other combustion sources (coal, wood burning). However, in a multiple regression analysis including traffic characteristics and soil properties, SOM content was the variable most strongly related to PAH concentrations. Our research suggests that dryland soil characteristics play an important role in the retention of PAH compounds in soils of arid cities.  相似文献   

5.
Ma  Junwei  Gao  Chao  Yan  Hongxia  Li  Yuqian  Chen  Jiajun  Zhao  Yan  Xia  Xinghui 《Journal of Soils and Sediments》2019,19(12):3945-3953
Purpose

Without precaution to deal with gas emissions and leachate generation, dumpsites have become a severe environmental problem in many developing countries. The objectives of this study were to investigate the pollution status of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soil in rural areas of China and to verify phytoremediation effectiveness with Sedum alfredii Hance and alfalfa (Medicago sativa L.) under complex pollution conditions in PAH-contaminated soil.

Materials and methods

In this study, we collected soil cores from four dumpsites in rural areas of North China (Hebei Province) for analysis, and correspondingly conducted an in situ phytoremediation experiment using Sedum alfredii Hance and alfalfa (Medicago sativa L.) at one of these sites, monitoring the total PAH concentration in soil.

Results and discussion

Results showed generally moderate pollution by PAHs in soil samples from dumpsites with pockets of heavy pollution. PAH concentrations in dumpsite soil ranged from 827 to 1101 ng/g (dry weight). High-molecular-weight PAHs were present in higher proportions at oldest dumpsite in operation. Certain molecular ratios of PAHs can be used to diagnose the source of PAHs in soil, and it indicated that the main sources were combustion of domestic coal and biomass, as well as the automobile exhaust and kitchen exhaust. A 17-month in situ phytoremediation experiment resulted in the effective removal of PAHs in the Sedum alfredii and alfalfa plots, with total PAH concentrations decreasing by 82.4% and 81.3%, respectively. Furthermore, PAH concentrations in plants correlated to plant growth conditions.

Conclusions

This study indicated that the soils of the dumpsites were generally moderately polluted by PAHs, and some parts of the area were heavily polluted. Both Sedum alfredii and alfalfa absorbed PAHs from soil, and PAH concentrations in these two plants correlated to the growth conditions of the plants. Phytoremediation can effectively be used for PAH removal in open dumpsites.

  相似文献   

6.
Coal mining leads to severe land degradation and creates huge amounts of mine spoil. Coal mine spoil contains toxic polycyclic aromatic hydrocarbons (PAHs) derived from coal, which can be alleviated through revegetation with suitable tree species. The present study was aimed at evaluating the impact of different tree species (Albizia lebbeck , Cassia siamea , Delonix regia , and Dalbergia sissoo ) on the quality of coal mine spoil and changes in PAH concentration. Soil samples were collected from the revegetated coalmine overburden dumps of Jharia coalfield, Dhanbad, India and analysed by GC‐MS for 16 priority PAHs and soil quality parameters were analyzed by standard analytical protocols. Reclamation improved the biological properties of the mine spoil: microbial biomass (+59–176%), dehydrogenase activity (+46–198%), fluorescein diacetate hydrolase activity (+104–127%), phenol oxidase activity (+150–250%), and peroxidase activity (+93–181%). PAH concentration in revegetated mine spoil ranged from 0 · 51 to 1 · 35 mg kg−1, with a significance reduction in total as well as individual PAHs. For individual tree species, total PAH reduction decreased in the order: C. siamea (81 · 6%) > A. lebbeck (55 · 6%) > D. regia (51 · 9%) > D. sissoo (51 · 5%). Correlation analysis showed significant association between the degradation of PAHs and soil biological properties of revegetated site. Microbial biomass carbon and soil enzymes were negatively correlated with PAH content in the mine spoil. But microbial stress indicators like respiration/microbial carbon ratio were not correlated, which revealed no adverse effect of PAH on soil microbes. Principal component analysis revealed that most of the biological parameters were closely associated with the degradation of low molecular weight PAHs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
PAH decrease in soil samples from different polluted industrial sites by activating the autochthonous microflora In pot experiments under field conditions the PAH decrease in ten different soil samples from former industrial sites with differing PAH load were investigated over a period of 74 and 168 weeks. 15 out of 16 PAH according to US EPA (without acenaphthylene) were determined. Easily degradable organic matter, mineral fertilizers, synthetic surfactants and in some experiments also lime were added to the soil samples in varying amounts. Depending on the nature and quantity of the amendments, the biological activity and (co-)metabolic decomposition of PAH by soil microorganisms could considerably be increased. In the different soil samples a decrease of the initial PAH contents between 12 and 90% was achieved within 74 weeks. Even from 74 up to 168 weeks for some soil samples a remarkable further decrease of the PAH contents could be observed. The decrease of the extractable PAH with time is mainly caused by microbial decomposition and formation of nonextractable residues. This behavior can be fitted by two coupled exponential functions, one for an initial phase of rapid decomposition and the other for a subsequent phase of slow decomposition. Therefore, two different processes (I, II) determine the decrease of PAH. In the first week of the experiment the decomposition rates for process I amount to 4.2–88.3 and for process II to 0.06–5.3 mg PAH ? kg?1 soil ? week?1; in the 168th week they are no longer determinable for process I and amount to 0.05–2.3 mg ? kg?1 ? week' for process II. Higher initial PAH contents often led to higher relative PAH decreases, but also to absolute higher contents of residues. The persistence of PAH is mainly determined by their bioavailability. PAH degradation is increased by the soil treatments. The addition of easily degradable organic matter (C/N ratio < 20) in a quantity of 30g ? kg?1 (w/w) combined with the addition of nitrate and a surfactant most effectively increased the degradation of PAH. Raising the pH of a very strongly acidic soil sample revealed a maximum PAH decomposition at a pH of 6.  相似文献   

8.
9.
Using the flux balance of the forest canopy of a beech and a spruce stand annual rates of total deposition — divided into precipitation and interception deposition — were derived for 4 polycyclic aromatic hydrocarbons (PAH). The deposition of PAH is in general higher under spruce because of higher rates of interception deposition as compared to beech. The rate of interception deposition of the various PAH compounds (3.4-Benzopyrene, Indeno (1,2,3-cd)pyrene,1.12 Benzoperylene, Fluoranthene) are significantly different. Substantial amounts of PAH are transferred to the soil by litterfall, which indicates adsorption of PAH on leaf and needle surfaces. The storage of PAH in the soil is equivalent to 34 to 48 yr of the actual deposition for 3.4 Benzopyrene and Indeno (1,2,3-cd)pyrene and is equivalent to 14 to 26yr of actual deposition for the amount of 1.12 Benzoperylene and Fluoranthene in the soil.  相似文献   

10.
The objective of this study was to assess the behavior of PAH in mineral soil horizons of different forest soils (Allersdorf, All: Inceptisol, mull humus type; Geisberg, Geis: Entisol, mull; Hohe Matzen, HoM: Spodosol, mor). At the mor site, the highest PAH loading was observed in the forest floor (HoM L to Oh, ΣX 20 PAH: 829 g ha?1), whereas at the mull sites the humified mineral soil horizons were the main sink for PAH (All aAxh, Σ 20 PAH: 522 g ha?1). In all soils, there was a significant PAH translocation into subsoil horizons (Σ 20 PAH in the subsoil: 76–195 g ha?1). In order to delineate possible transport mechanisms, double-logarithmic relationships were established between the translocation of the distinct PAH from the surface soil to the subsoil and the PAH's Kow values. The data suggested that transport of low-molecular PAH into the subsoil was primarily a function of the water solubility of each compound. In the biologically active All and Geis soils, high-molecular PAH were translocated independently from their Kow value, and particle-bound transport probably by soil burrowing animals was assumed to control translocation of the penta- and hexacyclic PAH. In contrast, at HoM transfer of high-molecular PAH increased with increasing hydrophobicity, suggesting dissolved organic matter (DOM)-mediated transport of PAH. Fractionation of soil into a floatable fraction and into sand- (20–2000 μm), silt- (2–20 μm), coarse clay- (0.2–2 μm), and fine claysized (< 0.2 μm) separates revealed that more than 80% of the PAH loading could be assigned to silt- and coarse clay-sized separates, irrespective of the soil's texture (loamy sand to silty clay loam). Silt generally showed the highest Corg?related PAH concentrations. PAH profiles (relative proportion of each PAH on the sum of 20 PAH) revealed increasing proportions of high-molecular, more refractory PAH from the floatables and the sand-sized separates to the finer particles, corresponding with an increasing degree of SOM alteration in the same direction. At HoM, depth gradients of high-molecular PAH suggested co-transport of penta- and hexacyclic PAH with DOM and subsequent co-sorption selectively to the silt- and coarse-clay sized separates of the Bsh horizon.  相似文献   

11.
Background. Due to spills, discharges and leakage, the gaswork site at Husarviken in Stockholm is today the largest (36 ha) creosote-contaminated site in Sweden. The main pollutants are creosote, lead and mercury. The remediation costs are estimated to be as high as US $125 million. It is thus of great interest to find more cost effective remediation methods. Objectives. The aim of this study was to investigate i) if the addition of NTA, EDTA, nitrate, iron and dry yeast would enhance the bioremediation rate of a complex organic pollutant like PAH and, if so, at what concentrations they would be most efficient, ii) the effect on PAH reduction when larger dimensions of the column is used to diminish the effect of water passing along the sides of the column, iii) long-term effects on the reduction of PAH in field-contaminated soil with high concentrations. Materials and Methods  Creosote-contaminated soil from the Husarviken gaswork site was treated with aerated water in column experiments at room temperature. Three column experiments were performed in 2 and 100 L of homogenised soil samples percolated by recircula ting flushing water. Fluoranthene was analysed as a representative of the overall degradation of PAH in the columns. Results and Discussion  The PAH concentration (total 16 Priority USEPA PAH) was reduced from 129 mg/kg to at most 33 mg/kg in the 2-litre columns. A total of four PAH in the soil were reduced from 1330 mg/kg to about 400 mg/kg in the 100-litre columns. Generally, a 70% reduction of PAH concentration can be achieved by bioremediation technology. The transformation and/or degradation of fluoranthene were fast at the beginning of the experiment and then gradually slowed down. This mirrors the impact of the bioavailable fluoranthene, which is initially large, but reaches zero after 200 days. Conclusions  A simulation model using the fluoranthene data shows that the effectiveness of PAH degradation is, above all, dependent on the bioavailability of PAH. A reduction of 70% of PAH in the soil is applicable to soil containing <200 mg/kg to meet the Swedish recommendations of 60 mg/kg. At Husarviken, soil with <200 mg/kg corresponds to 80% of the polluted area.  相似文献   

12.
To assess PAH contamination pastures, grass and soil samples have been collected from 10 m (d1), 50 m (d2), and 150 m (d3) perpendicular to a French highway (70,000 vehicles per day) and at a control site in a rural area away from nearby contaminating sources. Total PAH concentration ranges from 767 ng/g dry weight to 3989 ng/g dry weight, according to the matrix and the distance from the highway. Distance is not a significant factor for PAH deposition on grass, while in soil it has an effect between d1 and d2 or d3. The total PAH concentration in highway samples is 8 times higher than in control site samples for grass and 7 to 4 times higher for soil. Fluoranthene, pyrene, and phenanthrene are the major PAHs in grass samples at the control site and the highway, but the concentrations are about 5 times higher near the highway. In soil samples collected near the highway, the values of concentrations between all compounds are not statistically different. PAH deposition on grass is linked to the physicochemical properties of the compounds, which lead to a specific distribution of each molecule (according to their volatility and the number of aromatic rings) while no specific behavior is revealed in soil.  相似文献   

13.
Polycyclic Aromatic Hydrocarbons (PAHs) in soils of the Münster (Westfalia) irrigation fields From 1901 to 1975 municipal sewage waters with a daily amount of finally about 40.000 m3 were seeped in the irrigation fields of the city of Münster (Westfalia). Soil samples of former seeped sites and non-seeped neighbour sites have been examined with regard to 6 polycyclic aromatic hydrocarbons (PAHs) of the German “drinking water regulation”. The irrigation caused an enrichment of PAH in the topsoils of the former irrigation basins up to an average concentration of 0,57 mg PAH/kg soil, while the topsoils outside of the irrigation fields show an average concentration of only 0,14 mg PAH/kg soil. Significant correlations between different soil properties, e.g. the organic matter content, and the concentration of PAHs are not evident. After termination the irrigation of sewage water, single irrigation bassins were filled with substratum, which is contaminated with scoriaceous materials. The average PAH concentration of such an area amounts to 7 mg PAH/kg topsoil. The PAH distribution in a soil profile shows a decreasing concentration by depth but a clear enrichment in oxidized gleyic horizons (Go) of different age. Probably the PAHs were leached under recent conditions by chemical bond to dissolved organic carbon (DOC) and finally adsorbed by Fe oxides. Since the end of irrigation Fluoranthene, the most mobile PAH compound, was leached down to 110 cm depth. A contamination of the superficial groundwater at such sites cannot be excluded.  相似文献   

14.
Chemical extractions were tested to estimate the fraction of 15 polycyclic aromatic hydrocarbons (PAHs) in polluted soils degradable through bioremediation. Of 30 soil samples, differing in PAH concentrations, from 10 long‐term polluted sites, four were used in screening tests conducted with 14 different extractants. PAH extractability increased in the order salt solutions < surfactant solutions < organic solvents and organic solvent–water mixtures. Closest correlations (r = 0.73–0.91) and ratios of c. 1:1 of the extracted to the degradable PAH concentrations were found with aqueous solutions of two surfactants (Genapol UDD 88, Synperonic LF/RA 30). The PAH extractability by surfactant solutions increased with surfactant concentration (0–50 mg ml?1) and with decreasing degree of PAH condensation (6–2 rings). Kinetic behaviour of PAH solubilization by surfactants resembled the kinetics of PAH degradation (r = 0.84–0.99). With repeated extractions, a finite fraction of PAHs was extracted, which is thought to be the mobile and mobilizable PAH fraction, the latter being controlled by back‐diffusion from intra‐ and inter‐particle sites. Experiments with all 30 soil samples and a priori testing with an additional 10 soil samples confirmed that single extractions with surfactant solutions (5 mg ml?1; soil:solution ratio 1:20) were suitable for estimating the degradable fraction of PAHs in soil. With separate linear regression equations for PAHs grouped according to their degree of condensation, the extracted concentrations described the degradable concentrations with correlation coefficients (r) ranging from 0.62 to 0.80 (P < 0.001). PAH extractions with the surfactant solutions can be used to assess the prospects of bioremediation of PAH‐polluted sites.  相似文献   

15.
The aim of presented study was to determine the influence of long-term inundation on the changes in the content of polycyclic aromatic hydrocarbons. Two soils (B, MS) with differentiated properties were selected for the presented study. The experiment was carried out in 5-l containers, irrigated with distilled or post-sewage water for seven days. The study samples were collected directly after the water had been drained and then after seven, 14, 28 and 50 days. In the material collected, the content of polycyclic aromatic hydrocarbons was determined by means of the HPLC-UV method. The soils used for the presented experiment were characterised by differentiated PAH content levels. However, in both soils 28 days after water had been drained, a gradual increase of the PAH sum was noted. This increase was in relation to beginning of the experiment significantly higher in soil MS characterised by a lower PAH content (43% and 86%, respectively in the experiment with distilled and post-sewage water). The range of the PAH sum increase in soil B was from 28% to 38%. After the 28th day of the experiment, a decreasing trend was noted. The trend persisted until the last experimental date. Only in soil B, a decrease in the PAH up to a level close to the PAH level on the onset of the experiment was observed. In soil MS, PAH content on the last experimental date was still 25% (distilled water) and 52% (post-sewage water) higher than at the beginning of the experiment. In control soils (non-flooded), PAH content did not undergo any significant changes during the whole experimental period. In the presented studies, significant relationships between the values of some PAH content levels and Ca2+ ions content was noted.  相似文献   

16.

Purpose

A major challenge to phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by application of pig manure vermicompost (PMVC).

Materials and methods

Soil contaminated by Cd (5.53?mg?kg?1 DW) was spiked with phenanthrene, anthracene, and pyrene together (250?mg?kg?1 DW for each PAH). A pot experiment was conducted in a greenhouse with four treatments: (1) soil without plants and PMVC (Control), (2) soil planted with S. alfredii (Plant), (3) soil amended with PMVC at 5?% (w/w) (PMVC), and (4) treatment 2?+?3 (Plant?+?PMVC). After 90?days, shoot and root biomass of plants, Cd concentrations in plant and soil, and PAH concentrations in soil were determined. Abundance of PAH degraders in soil, soil bacterial community structure and diversity, and soil enzyme activities and microbial biomass carbon were measured.

Results and discussion

Application of PMVC to co-contaminated soil increased the shoot and root dry biomass of S. alfredii by 2.27- and 3.93-fold, respectively, and simultaneously increased Cd phytoextraction without inhibiting soil microbial population and enzyme activities. The highest dissipation rate of PAHs was observed in Plant?+?PMVC treatment. However, neither S. alfredii nor PMVC enhanced PAH dissipation when applied separately. Abundance of PAH degraders in soil was not significantly related to PAH dissipation rate. Plant?+?PMVC treatment significantly influenced the bacterial community structure. Enhanced PAH dissipation in the Plant?+?PMVC treatment could be due to the improvement of plant root growth, which may result in increased root exudates, and subsequently change bacterial community structure to be favorable for PAH dissipation.

Conclusions

This study demonstrated that remediation of Cd and PAHs co-contaminated soil by S. alfredii can be enhanced by simultaneous application of PMVC. Long-term evaluation of this strategy in co-contaminated field sites is needed.  相似文献   

17.
Abstract

The objective of the present study was to determine the content of polycyclic aromatic hydrocarbons (PAH) in the rhizospheres of some selected plant species (Cucumis dativus, Daucus carota, Allium cepa, Cueurbita, Petroselinum sativum, Cucurbitaceae, Phaseolus vulgaris, Beta vulgaris, Apium graveolens, Allium porrum, Vicia faba). Various anthropogenic influences on the PAH content in the rhizospheres of the three species selected were also studied. The PAH content was determined using the high performance liquid chromatography (HPLC) method with ultraviolet (UV) detection after a preliminary sample treatment with ultrasonic techniques. On the basis of the PAH content, the organic carbon content and the value of log Koc, a potentially bioavailable PAH fraction present in the rhizospheres of the plants studied, were calculated.

The lowest content of the PAH sum (<1100 µg/kg) was found in the Petroselinum sativum, Cucurbitaceae, and Allium porrum rhizospheres. The content of the compounds studied was more than 67% lower than in the control soil (3307 µg/kg). Moreover, in the rhizosphere of the Allium porrum, the lowest content of all the five‐ and six‐ring PAH samples studied was found. The contribution of the 16 PAHs' sum, determined on the basis of an equilibrium partition in all rhizospheres studied, was higher than in the control soil. The evaluation of the PAH content in the rhizospheres of the three plants as related to the influence of anthropogenic sources showed a higher PAH content in them than in the control soil. The evaluation of the relation between the PAH content and the soil properties studied showed only sporadically statistically significant correlations.  相似文献   

18.
A thin-layer Chromatographic screening-method is presented for the determination of polycyclic aromatic hydrocarbons (PAH) in soil samples. This screening method is intended for a quick overview of the composition of a contaminant. The developed method of separation is well suited for the semi-quantitative determination of PAH in soil samples, and can be used to identify samples that require further analysis by means of GC or HPLC. The separation of 8 PAH groups with a maximum of 2 PAH (discernible by selective excitation of fluorescence) each is possible. The results of the analysis based on PAH group separation can be regarded as semi-quantitative. The extraction of PAH is effected by means of a solvent mixture consisting of n-hexane-acetone (1:1, v/v). The extraction is aided by ultrasonic treatment. The extract is purified by application to an activated silica gel column (solid-phase extraction). The qualitative analysis can be carried out either by visual observation or by fluorimetric scanning (TLC-Scanner). The characteristic fluorescent colours facilitate a reliable visual identification of PAH. The applicability of the method is shown and a comparison to other analytical methods is carried out. Some of the remarkable features of this method are its user-friendly handling, the low consumption of solvents and the applicability without the necessity for extra equipment.  相似文献   

19.
针对某焦化厂内高浓度多环芳烃污染土壤,以烷基苷(APG)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX100)为表面活性剂代表物,采用静态平衡法和高效液相色谱分析,探索采用单一及混合表面活性剂清洗修复多环芳烃污染土壤,并考察生物柴油对多环芳烃去除效果的影响。结果表明,单一表面活性剂对土壤中多环芳烃去除率顺序为SDBS〉APG〉TX100。APG/SDBS混合处理及TX100/SDBS为9:1混合处理提高了土壤中多环芳烃去除率,而APG/TX100混合处理没能提高多环芳烃去除率。生物柴油对TX100及TX100/SDBS去除多环芳烃效果没有明显提高,对APG及APG/TX100去除多环芳烃略有提高。当APG/SDBS为9:1时,生物柴油可以使多环芳烃去除率从(63.3±2.0)%提高到(75.6±2.0)%。单一表面活性剂、混合表面活性剂、及表面活性剂-生物柴油乳液对多环芳烃各组分去除率比较类似,对菲的去除率最高,茚并[1,2,3-d]芘次之,其余相对较低。因此,建议采用APG/SDBS+生物柴油的混合体系对高浓度多环芳烃污染土壤进行修复。  相似文献   

20.
The degradation of spiked anthracene (ANT), pyrene (PYR) and benzo[a]pyrene (B[a]P) in soil (3000 mg ∑ 3 PAHs kg−1 dry soil) was studied in aerobically incubated microcosms for 120 d. The applied treatments aimed at enhancing PAH removal from the heavily contaminated soils are: (i) bioaugmentation by adding aged PAH-contaminated soil (ACS) containing activated indigenous degraders; and (ii) combined bioaugmentation/biostimulation by incorporating sewage sludge compost (SSC) and decaying rice straw (DRS). The adopted treatments produced higher PAH dissipation rates than those observed in unamended PAH-spiked soils, especially for ANT and PYR in the presence of DRS or ACS (>96%). However, B[a]P was the most recalcitrant hydrocarbon to biodegradation. Extracellular enzyme investigation revealed the existence of ligninolytic activities in all soil treatments, including control but no relationship could be found with PAH dissipation. The ecotoxicological assessment indicated that regardless of applied treatment, PAH-spiked soils were chronically lethal to ostracod Heterocypris incongruens and confirmed the sensitivity of the microcrustacean to the concomitant presence of these three hydrocarbons. Lettuce root elongation inhibition was correlated with PAH level but the presence of SSC conferred a strong phytotoxic capacity to PAH-spiked soils. DRS amendment may constitute a cost-effective alternative for hydrocarbon bioremediation as it has impacted positively on soil microbial activity and enhanced PAH removal with no apparent changes in soil physico-chemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号