首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A greenhouse experiment was conducted to determine the bioavailability of copper (Cu) in clay loam and sandy clay loam soil. Lettuce (Lactuca sativa) and spinach (Spinacia oleracea) were grown in pots for 45 d. When mature, plants were treated for 15 additional days with 0, 100, 250, 500, or 1000 mg Cu kg?1 as CuSO4·5H2O. After harvest, Cu in soils and plant tissues was determined. In soils, applied Cu raised total and EDTA-extractible Cu. Results also revealed that the amounts of Cu extracted from sandy clay loam soil (80%) were higher than those extracted from clay loam soil (70%). In plants, increasing soil Cu concentration increased plant concentration of the metal. Plant species vary in their capacity for Cu accumulation: Lettuce has a relatively higher potential for Cu uptake and translocation than does spinach. Cu accumulation also differs among plant organs. In lettuce, metal accumulation is higher in roots than in shoots, where 60% to 80% of the total Cu of the plant is located in the roots. However, in spinach, there is no significant difference in Cu content between roots and shoots. The transfer of the metal from soil to plant is higher for plants grown on sandy clay loam soil. For a given rate of applied Cu, metal content in plant tissues is higher on sandy clay loam soil due to its higher transfer coefficient (CT) from soil to plant. Nevertheless, all crops studied showed a positive linear relationship between extractible soil Cu and plant Cu.  相似文献   

2.
Varying amounts of CaCl2 or MgCl2 were first equilibrated with a dilute suspension of H+-kaolin and then with spiked (high activity radioactive 64Cu) water. After filtration, through 0.45 μm Millipore membrane the amount of radioactivity on the filter and the filtrate was measured separately using a Gamma ray well counter. Adsorption of Cu (expressed as distribution coefficient ?K d ) was plotted against Ca or Mg concentration. K d values decreased sharply at Ca or Mg concentration from 0 to 10 mg l?1 and changed only slightly from 10 to 200 mg l?1. Increase in the concentration of Ca or Mg reduces the Cu binding capacity of the clay.  相似文献   

3.
Reactions of elements with the water mineral interface are important and affect their bioavailability and transportation within soil. Effects of metal sorption on X-ray-diffraction (XRD-photographs) of clay minerals have been not studied. Therefore, sorption experiments were done on clay fractions of two calcareous soils using 12 concentrations of 0–2000 mg L?1 Zn(NO3)2 and Cu(NO3)2. Langmuir and Freundlich isotherms’ coefficients were determined. After sorption, XRD-diffraction were prepared and compared with those of initial samples. Langmuir (R2 = 0.996–0.999 and SE = 0.001–0.002) and Freundlich equation were the best-model for Zn and Cu-sorption, respectively. Sorption energy was higher for Zn than Cu, whereas the maximum concentration of sorbed-Cu was higher than that of Zn. Distribution coefficient (Kd) of Cu were more (threefold) than that of Zn. The Kd values representing the slope of Freundlich isotherms decreased according to linear regression equations (R2 = 0.72–0.91) as the equilibrium concentrations of metals increased. No significant differences were observed among XRD-photographs of applied concentrations (some negligible differences were found in position/sharpness of peaks). Dry-XRD-method resulted in omission of intensity peaks at 2θ which may interfere in recognition of clays that show a maximum intensity >1.4 nm in the mentioned 2θ. Zinc can become more leachable especially in Shekarbani-soil-series, whereas, Cu highly adsorb on clay minerals and can show less tendency to transportation.  相似文献   

4.
Natural clay minerals can play an important role in crude remediation of wastewater polluted with the heavy metals (HMs) Cu,Zn and Ni.The presence and timing of addition of natural dissolved organic matter (DOM) have a significant effect on the HM removal by clay mineral sorbents.However,the influence of the presence of DOM on the remediation of the used clay mineral sorbents once saturated with HMs is largely unknown.To resolve this,clay mineral-rich soil column of varying composition,loaded (i) with Cu,Zn and Ni only,(ii) first with DOM followed by Cu,Zn and Ni,or (iii) with DOM,Cu,Zn and Ni simultaneously,was used in a set of desorption experiments.The soil columns were leached with 0.001 mol L-1 CaCl2 dissolved in water as control eluent and 0.001 mol L-1 CaCl2 dissolved in DOM as treatment eluent.During the preceding loading phase of the sorbent,the timing of DOM addition (sequential or concurrent with HMs) was found to have a significant influence on the subsequent removal of the HMs.In particular when the column was loaded with DOM and HMs simultaneously,largely irreversible co-precipitation took place.Our results indicate that the regeneration potential of clay mineral sorbents in wastewater treatment will be significantly reduced when the treated water is rich in DOM.In contrast,in manured agricultural fields (where HMs enter together with DOM),HM mobility will be lower than expected from interaction dynamics of HMs and clay minerals.  相似文献   

5.
This study evaluated the effect of competing copper, zinc, cadmium and nickel ions in 0.01 M Ca(NO3)2 on heavy metal sorption and desorption by soil clay fractions. Initial Cu addition levels varied from 99 mg kg-1 to 900 mg kg-1 and Zn, Cd and Ni levels were 94, 131 and 99 mg kg-1, respectively. Sorption of Cu conformed to a Freundlich equation. The amounts of metals not displaced by successive 48 h desorption cycles with 0.01 M Ca(NO3)2 were considered ‘specifically adsorbed’. Total sorption of Zn and Cd generally decreased in the order: Vertisol > Gleyic Acrisol > Planosol clay. More than 70% of the copper was specifically sorbed. Specific sorption of Zn was depressed by competition with Cu in the three clays investigated. At surface coverages higher than 200 mg Cu per kg of soil clay, zinc sorption in the Planosol and Gleyic Acrisol clays took place at low affinity sites. The exchangeable component of sorbed cadmium accounted for >:60% of the sorption in the Vertisol clay, >70% in the Gleyic Acrisol clay and was almost 100% in the Planosol clay. Nickel was not retained by the Planosol and Gleyic Acrisol clays and was ionexchangeably adsorbed by the Vertisol clay. At the conditions studied, Ni and Cd remain a ready source of pollution hazard.  相似文献   

6.
Summary The aim of this study was to provide manageable data to help establish permissible limits for the pollution of soil by heavy metals. Therefore the short-and long-term effects of heavy metal pollution on phosphatase activity was studied in five different soil types. The results are presented graphically as logistic dose-response curves. It was possible to construct a curve for sand and silty loam soil but it was more difficult to establish a curve for sandy loam and clay soil and nearly impossible (except for Cu) for peat. The toxicity of the various metals can be compared on the basis of mmol values. In clay soils, for Cd, Cr, Cu, and Zn, the 50% effective ecological dose (ED50) values were comparable (approximately 45 mmol kg–1), but the ED10 values were very different, at 7.4, 41.4, 15.1, and 0.55, respectively. At the ED50 value, toxicity did not decrease with time and, in sandy soils, was approximately 2.6 mmol kg –1 dry soil for Cd, Cu, and Zn. In four out of five soils, the Cd toxicity was higher 1.5 years after the addition of heavy metal salts than after 6 weeks. Toxicity was least in the sandy loam, silty loam, and clay soil, and varied in general between 12 and 88 mmol kg–1. In setting limits, the criteria selected (no-effect level, ED10 or ED50) determine the concentration and also the toxicity of the sequence. It is suggested that the data presented here could be very useful in helping to set permissible limits for heavy metal soil pollution.  相似文献   

7.
This study characterizes the effects of water–soil flooding volume ratio and flooding time on copper (Cu) desorption and toxicity following multiple floodings of field-collected soils from agricultural sites acquired under the Comprehensive Everglades Restoration Plan (CERP) in south Florida. Soils from four field sites were flooded with three water–soil ratios (2, 4, and 6 [water] to 1 [soil]) and held for 14 days to characterize the effects of volume ratio and flooding duration on Cu desorption (volume ratio and flooding duration study). Desorption of Cu was also characterized by flooding soils four times from seven field sites with a volume ratio of 2 (water) to 1 (soil) (multiple flooding study). Acute toxicity tests were also conducted using overlying waters from the first flooding event to characterize the effects of Cu on the survival of fathead minnows (Pimephales promelas), cladocerans (Daphnia magna), amphipods (Hyalella azteca), midges (Chironomus tentans), duckweed (Lemna minor), and Florida apple snails (Pomacea paludosa). Acute tests were also conducted with D. magna exposed to overlying water from the second and third flooding events. Results indicate that dissolved Cu concentrations in overlying water increased with flooding duration and decreased with volume ratio. In the multiple flooding study, initial Cu concentrations in soils ranged from 5 to 223 mg/kg (dw) and were similar to Cu concentration after four flooding events, indicating retention of Cu in soils. Copper desorption was dependent on soil Cu content and soil characteristics. Total Cu concentration in overlying water (Cuw) was a function of dissolved organic carbon (DOC), alkalinity, and soil Cu concentration (Cus): log(Cuw)?=?1.2909?+?0.0279 (DOC)?+?0.0026 (Cus)???0.0038 (alkalinity). The model was validated and highly predictive. Most of the desorbed Cu in the water column complexed with organic matter in the soils and accounted for 99% of the total dissolved Cu. Although total dissolved Cu concentrations in overlying water did not significantly decrease with number of flooding events, concentrations of free Cu2+ increased with the number of flooding events, due to a decrease in DOC concentrations. The fraction of bioavailable Cu species (Cu2+, CuOH+, CuCO3) was also less than 1% of the total Cu. Overlying water from the first flooding event was only acutely toxic to the Florida apple snail from one site. However, overlying water from the third flooding of six out of seven soils was acutely toxic to D. magna. The decrease in DOC concentrations and increase in bioavailable Cu2+ species may explain the changes in acute toxicity to D. magna. Results of this study reveal potential for high Cu bioavailability (Cu2+) and toxicity to aquatic biota overtime in inundated agricultural lands acquired under the CERP.  相似文献   

8.
In rainfed wheat (Triticum aestivum L.) growing on copper (Cu) deficient soil, the top 15 cm of the soil profile where Cu fertilizer is placed, may dry out during the growth of the crop. It is unknown if this event would decrease the plant's access to the applied Cu. In a glasshouse experiment, wheat was grown in a severely Cu‐deficient Chromustert where the Cu‐fertilized soil was either watered throughout the experiment or not watered after the early stem extension stage of growth. Copper was applied in granules of a thermoplastic polymer matrix impregnated with CuSO4.H2O (Cu‐polymer) or as finely ground CuSO4.5H2O (Cu‐sulfate) at rates of 0 and 30 mg Cu pot‐1 (equivalent to 0 and 37 kg ha‐1). The plants were harvested at grain maturity when measurements of dry matter and grain production, and content of Cu, nitrogen (N) and phosphorus (P) were recorded.

In both water regimes, plants grown in pots without added Cu produced no grain. The addition of Cu‐polymer generally failed to overcome Cu deficiency in both water regimes. However, when the soil containing the Cu‐polymer was watered throughout the experiment, Cu content of the shoots increased and a few deformed grains were formed. Plants receiving Ca‐sulfate produced grain, but only when the Cu‐fertilized soil was watered throughout the experiment. The addition of Cu‐sulfate increased the content of Cu, N, and P, the yield of straw, and the number of tillers in both water regimes.

The results illustrate the interaction between availability of applied Cu, water regime, Cu uptake, and grain formation in wheat, and demonstrate the importance of timeliness of rainfalls which rewet the Cu‐fertilized soil of rainfed wheat crops growing on Cu‐deficient clay soils.  相似文献   

9.
Dispersion is an important issue for clay leaching in soils. In paddy soils of the Red River Delta (RRD), flooding with fresh water and relatively high leaching rates can accelerate dispersion and the translocation of clay. For the clay fraction of the puddled horizon of a typical paddy soil of the RRD, the effect of various cations and anions as well as humic acid (HA) at different pH values on the surface charge (SC) were quantified and the dispersion properties were determined in test tubes and described by the C50 value. In the <2 µm fraction, dominated by illite, the proportion of 2:1 vs. 1:1 clay minerals is 5:1. The organic‐C content of the clay fraction is 2.2%. Surface charge was found to be highly pH‐dependent. At pH 8 values of –32 and at pH 1 of –8 mmolc kg–1 were obtained. Complete dispersion was observed at pH > 4, where SC is > –18 mmolc kg–1. The flocculation efficiency of Ca strongly depends on the pH. At pH 4, the C50 value is 0.33, 0.66 at pH 5, and 0.90 mmol L–1 at pH 6. At pH 6, close to realistic conditions of paddy soils, the effect of divalent cations on the SC and flocculation decreases in the order: Pb > Cu > Cd > FeII > Zn > Ca > MnII > Mg; FeII was found to have a slightly stronger effect on flocculation than Ca. An increase in concentrations of Ca, MnII, and Mg from 0 to 1 mmol L–1 resulted in a change in SC from –25 to approx. –15 mmolc kg–1. In comparison, the divalent heavy‐metal cations Pb, Cu, Cd, and Zn were found to neutralize the SC more effectively. At a Pb concentration of 1 mmol L–1, the SC is –2 mmolc kg–1. From pH 3 to 5, the dispersion of the clay fraction is facilitated rather by SO than by Cl, which can be explained by the higher affinity of SO to the positively charged sites. With an increase of the amount of HA added, the SC continuously shifts to more negative values, and higher concentrations of cations are needed for flocculation. At pH 3, where flocculation is usually observed, the presence of HA at a concentration of 40 mg L–1 resulted in a dispersion of the clay fraction. While high anion concentrations and the presence of HA counteract flocculation by making the SC more negative, FeII and Ca (C50 at pH 6 = 0.8 and 0.9 mmol L–1, respectively) are the main factors for the flocculation of the clay fraction. For FeII and Ca, the most common cations in soil solution, the C50 values were found to be relatively close together at pH 4, 5, and 6, respectively. Depending on the specific mineralogical composition of the clay fraction, SC is a suitable measure for the determination of dispersion properties and for the development of methods to keep clay particles in the soil in the flocculated state.  相似文献   

10.
This paper increases the knowledge on the potential use of Cu‐contaminated agricultural soils with tomato (Solanum lycopersicum L.). The effect of Cu and its interaction with soil properties on plant biomass production and on the accumulation of this metal in plant tissues were evaluated by conducting biomass assays in four representative Mediterranean agricultural soils contaminated by Cu. Copper toxicity on plant biomass production, evaluated through the effective concentrations of Cu added to soil that reduce the biomass production by 50% (EC50) and by 10% (EC10), was higher in soils having less soil organic matter and clay content and even in soils with favourable properties but having salinity. For the cases in which tomato was collected, Cu concentrations in them were similar for all soils and doses and never exceed the maximum Cu concentration allowed by the Codex Alimentarius Commission Regulation (10 mgCu kg−1 in fresh weight basis). According to our results, tomato could be cropped in Cu‐contaminated Mediterranean agricultural soils when concentrations of Cu determined in them rely between their respective EC50 and EC10, because production and quality of fruits, the latter understood as the Cu concentration in them, would not be compromised. For the soils assayed, these values would range between 32·9 and 1696·5 mg kg−1, depending on soil properties. Because the baseline value considered is similar to those established in other parts of the European Mediterranean region, these results can be used as guidance for this region to establish adequate phytoremediation strategies and prevent land degradation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The effect of total electrolyte concentration (TEC) and sodium adsorption ratio (SAR) of water on ESR‐SAR relationships of clay (Typic Haplustert), clay loam (Vertic Haplustept) and silt loam (Lithic Haplorthent) soils was studied in a laboratory experiment. Twenty four solutions, encompassing four TEC levels viz., 5, 10, 20, and 50 mmolc l—1 and six SAR levels viz., 2.5, 5, 10, 15, 20, and 30 mmol1/2l—1/2 were synthesized to equilibrate the soil samples using pure chloride salts of calcium, magnesium, and sodium at Mg:Ca = 1:2. SAR of equilibrium solution decreased as compared to the equilibrating solution and more so in waters of low salt concentration and high SAR. At low electrolyte concentration, high SAR values were not attained in the equilibrium solution because of addition of calcium and magnesium from the mineral dissolution and from the exchange phase. Irrespective of TEC, exchangeable sodium in all the soils increased by about 4.5 to 5‐fold and irrespective of SAR, it increased by about 1.4‐ to 1.8‐fold. A positive interaction of TEC and SAR influenced the ESP build‐up and CEC played a major role in the visual disparity in sodication of these soils. At higher TEC levels, considerable increase in ESP was observed when it was corrected for anion exclusion and more so in silt loam followed by clay loam and clay soils. The values for Gapons' constant were in the range 0.0110—0.0176, 0.0142—0.0246, and 0.0189—0.0344 mmol—1/2l1/2 in clay, clay loam, and silt loam soils, respectively. Increase in TEC from 5 to 50 mmolc l—1 resulted in 5.84, 8.33, and 9.77 % decrease in Gapons' constant of clay, clay loam, and silt loam soils, respectively. The soils exhibited differential affinity for Ca2+, Mg2+ or Na+ under different quality waters. Regression coefficients of ESR‐SAR relationship were lower for low TEC as compared with high TEC waters. The exchange equilibrium was strongly affected by TEC of the solution phase. Variation in soil pH was gradual with respect to TEC and SAR of equilibrating solution and no sharp change was observed. Soluble salt concentration was doubled upon equilibration with low salt waters at all SAR levels in all the soils. However, the salt concentration remained unchanged upon equilibration with high salt waters. Considering pH 8.5 a boundary between soil salinity and sodicity, ESP values attained at TEC 5 mmolc l—1 were 7.34, 8.02, and 14.32 for clay, clay loam, and silt loam soils, respectively.  相似文献   

12.
It is well known that calcium (Ca2+) plays an important role in binding organic matter to clay. However, most previous studies were conducted with either topsoil or pure aluminosilicates. Less is known about the effect of Ca2+ on binding of organic matter to clay-rich subsoils, which have lower organic-matter contents than topsoils, and their clays are more strongly weathered than pure aluminosilicates. Two experiments were conducted with a Vertisol subsoil (69% clay): a laboratory incubation and a batch sorption. The mineral substrate in the incubation experiment was pure sand alone or sand amended with 300 g clay kg?1. Powdered calcium sulfate (CaSO4) at rates of 0, 5, 10, and 15 g Ca kg?1 and mature wheat residue at a rate of 20 g kg?1 were added to this mineral substrate and the water content was adjusted to 70% of water-holding capacity. Carbon dioxide release was measured for 28 days. Cumulative respiration per g soil organic carbon (C) (SOC from clay and residues) was increased by clay addition. Increasing Ca2+ addition rate decreased cumulative respiration in the sand with clay but had no effect on respiration in the pure sand. Clay and Ca2+ addition had no significant effect on microbial biomass carbon (MBC) per g SOC but clay addition reduced the concentration of potassium sulfate (K2SO4)–extractable C per g SOC. For the batch sorption experiment, the subsoil was mixed with 0 to 15 g Ca kg?1 and water-extractable organic C (WEOC) derived from mature wheat straw was added at 0, 1485, 3267, and 5099 mg WEOC kg?1. Increasing Ca2+ addition rate increased sorption of WEOC, particularly at the greatest concentration of WEOC added, and decreased desorption. This study confirmed the importance of Ca2+ in binding organic matter to clay and suggests that Ca2+ addition to clay-rich subsoils could be used to increase their organic C sequestration.  相似文献   

13.
为解决区域土壤质地类型针对性氮肥施用问题,在轻壤土和黏壤土上分别设置不施氮肥,氮肥基追比3∶7,4∶6,5∶5,6∶4和7∶3处理,研究小麦产量、水氮利用效率以及土壤含水量、贮水量、NH_4~+-N、NO_3~--N动态变化规律。结果表明:轻壤质土壤氮肥基追比4∶6的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 265.3 kg/hm~2,27.6 kg/(hm~2·mm),34.4 kg/kg。黏壤质土壤氮肥基追比5∶5的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 363.2 kg/hm~2,28.3 kg/(hm~2·mm),34.8 kg/kg。小麦不同生育期各土层含水量垂直分布变化较大,轻壤质土壤含水量在9.3%~26.2%,而黏壤质为9.7%~27.6%;小麦全生育期内土壤贮水量呈先升高后降低趋势,黏壤质土壤贮水量高于轻壤质。氮素追施量越多土壤表层NH_4~+-N与NO_3~--N含量越高,且随土层加深土壤NH_4~+-N与NO_3~--N含量降低,受降水影响轻壤质土壤NH_4~+-N与NO_3~--N更易于向土层深处淋溶,成熟期黏壤质各土层的NH_4~+-N和NO_3~--N含量均多于轻壤质。说明黏壤质土壤保水保氮肥能力强于轻壤质,氮肥基追比可以适当增加。  相似文献   

14.
Clay addition to light-textured soils is used to ameliorate water repellency and to increase nutrient retention. However, clay addition may also increase the potential to bind organic matter and thus C sequestration. Divalent calcium ions (Ca2+) play an important role in binding of organic matter to clay because they provide the bridge between the clay particles and organic matter which are both negatively charged. In the first experiment, quartz sand was mixed with clay isolated from a Vertosol at rates of 0, 50 and 300 g kg-1, finely ground mature wheat residues (20 g kg-1) and powdered CaSO4 at 0, 5 and 10 g kg-1. Soil respiration was measured over 28 d. Compared to the sand alone, addition of isolated clay at 300 g kg-1 increased cumulative respiration with a stronger increase than that at 50 g kg-1. Addition of CaSO4 increased electrical conductivity, decreased sodium adsorption ratio and reduced cumulative respiration. The latter can be explained by enhanced sorption of organic matter to clay via Ca2+ bridges. In a second experiment, isolated clay or subsoil of the Vertosol without or with powdered CaSO4 at 10 g kg-1 were used for a batch sorption with water-extractable organic C (WEOC) from wheat straw followed by desorption with water. Addition of 10 g kg-1 CaSO4 increased sorption and decreased desorption of WEOC in both subsoil and isolated clay. In the third experiment, subsoil of the Vertosol was used for a batch sorption in which WEOC was added repeatedly. Repeated addition of WEOC increased the concentration of sorbed C but decreased the sorbed proportion of the added WEOC. This indicates that sorption of WEOC may be underestimated if it is added only once in batch sorption experaments.  相似文献   

15.
Many empirical approaches have been developed to analyze changes in hydraulic conductivity due to concentration and composition of equilibrium solution. However, in swelling soils these approaches fail to perform satisfactorily, mainly due to the complex nature of clay minerals and soil–water interactions. The present study describes the changes in hydraulic conductivity of clay (Typic Haplustert) and clay‐loam (Vertic Haplustept) soils with change in electrolyte concentration (TEC) and sodium‐adsorption ratio (SAR) of equilibrium solution and assesses the suitability of a model developed by Russo and Bresler (1977) to describe the effects of mixed Na‐Ca‐Mg solutions on hydraulic conductivity. Four solutions encompassing two TEC levels viz., 5 and 50 mmolc L–1 and two SAR levels viz., 2.5 and 30 mmol1/2 L–1/2 were synthesized to equilibrate the soil samples using pure chloride salts of Ca, Mg, and Na at Ca : Mg = 2:1. Diluting 50 mmolc L–1 solution to 5 mmolc L–1 reduced saturated hydraulic conductivity of both soils by 66%, and increasing SAR from 2.5 to 30 mmol1/2 L–1/2 decreased saturated hydraulic conductivity by 82% and 79% in clay and clay‐loam soils, respectively. Near saturation, the magnitude of the change in unsaturated hydraulic conductivity due to the change in TEC and SAR was of 103‐ and 102‐fold, and at volumetric water content of 0.20 cm3 cm–3, it was of 1014‐ and 106‐fold in clay and clay‐loam soils, respectively. Differences between experimental and predicted values of saturated hydraulic conductivity ranged between 0.6% and 11% in clay and between 0.06% and 2.1% in clay‐loam soils. Difference between experimental and predicted values of unsaturated hydraulic conductivity widened with drying in both soils. Predicted values were in good agreement with the experimental values of hydraulic conductivity in clay and clay‐loam soils with R2 values of 0.98 and 0.94, respectively. The model can be satisfactorily used to describe salt effects on hydraulic conductivity of swelling soils in arid and semiarid areas, where groundwater quality is poor.  相似文献   

16.
In salt-affected soils, soil organic carbon (SOC) levels are usually low as a result of poor plant growth; additionally, decomposition of soil organic matter (SOM) may be negatively affected. Soil organic carbon models, such as the Rothamsted Carbon Model (RothC), that are used to estimate carbon dioxide (CO2) emission and SOC stocks at various spatial scales, do not consider the effect of salinity on CO2 emissions and may therefore over-estimate CO2 release from saline soils. Two laboratory incubation experiments were conducted to assess the effect of soil texture on the response of CO2 release to salinity, and to calculate a rate modifier for salinity to be introduced into the RothC model. The soils used were a sandy loam (18.7% clay) and a sandy clay loam (22.5% clay) in one experiment and a loamy sand (6.3% clay) and a clay (42% clay) in another experiment. The water content was adjusted to 75%, 55%, 50% and 45% water holding capacity (WHC) for the loamy sand, sandy loam, sandy clay loam and the clay, respectively to ensure optimal soil moisture for decomposition. Sodium chloride (NaCl) was used to develop a range of salinities: electrical conductivity of the 1:5 soil: water extract (EC1:5) 1, 2, 3, 4 and 5 dS m−1. The soils were amended with 2% (w/w) wheat residues and CO2 emission was measured over 4 months. Carbon dioxide release was also measured from five salt-affected soils from the field for model evaluation. In all soils, cumulative CO2-C g−1 soil significantly decreased with increasing EC1:5 developed by addition of NaCl, but the relative decrease differed among the soils. In the salt-amended soils, the reduction in normalised cumulative respiration (in percentage for the control) at EC1:5 > 1.0 dS m−1 was most pronounced in the loamy sand. This is due to the differential water content of the soils, at the same EC1:5; the salt concentration in the soil solution is higher in the coarser textured soils than in fine textured soils because in the former soils, the water content for optimal decomposition is lower. When salinity was expressed as osmotic potential, the decrease in normalised cumulative respiration with increasing salinity was less than with EC1:5. The osmotic potential of the soil solution is a more appropriate parameter for estimating the salinity effect on microbial activity than the electrical conductivity (EC) because osmotic potential, unlike EC, takes account into salt concentration in the soil solution as a function of the water content. The decrease in particulate organic carbon (POC) was smaller in soils with low osmotic potential whereas total organic carbon, humus-C and charcoal-C did not change over time, and were not significantly affected by salinity. The modelling of cumulative respiration data using a two compartment model showed that the decomposition of labile carbon (C) pool is more sensitive to salinity than that of the slow C pool. The evaluation of RothC, modified to include the decomposition rate modifier for salinity developed from the salt-amended soils, against saline soils from the field, suggested that salinity had a greater effect on cumulative respiration in the salt-amended soils. The results of this study show (i) salinity needs to be taken into account when modelling CO2 release and SOC turnover in salt-affected soils, and (ii) a decomposition rate modifier developed from salt-amended soils may overestimate the effect of salinity on CO2 release.  相似文献   

17.
This study has been taken up to generate information on potassium status in maize rhizosphere soils differing in their clay content at different levels of added potassium. Soils with larger amounts of clay showed greater amounts of water soluble and ammonium acetate extractable K (NH4OAc K) in both the rhizosphere as well as non-rhizosphere. In the absence of added K (control), non-rhizosphere samples showed higher water soluble and NH4OAc K ranging from 8.0 to 28.9 mg kg?1 and from 132.5 to 294.0 mg kg?1, respectively compared to rhizosphere samples where water soluble K varied between 6.0 and 26.5 mg kg?1 and NH4OAc K from 125.0 to 262.5 mg kg?1. The difference in K content between rhizosphere and non-rhizosphere which could have been resulted from plant K uptake was significantly related with clay content (r = 0.98**) in control whereas at 150 mg kg?1 K addition this relationship was found to be non significant (r = 0.64NS). Electro ultra filtration (EUF) fractions also showed similar differences in K contents in soil between rhizosphere and non-rhizosphere.  相似文献   

18.
Varying amounts of humic acid (Na-salt; 0 to 10 ppm) were first equilibrated with a dilute suspension of H+ -Kaolin and then with spiked (high activity radioactive 64Cu) water. After filtration, through a 0.45 µm Millipore membrane, the amount of radioactivity on the filter and the filtrate was measured separately using a Gamma ray well counter. Adsorption of Cu (expressed as distribution coefficient — K d ) was plotted against humic acid concentration. K d values decreased sharply upto 1 ppm humic acid concentration and thereafter remained constant up to 10 ppm.  相似文献   

19.
Knowledge of clay dispersion behaviour [which is highly influenced by ion concentration in the aqueous phase and by related surface charge (SC) of colloids] is important for rating soil erosion risk (by water). It can also be useful for improving soil management systems. Clay fractions separated from samples of the A‐horizon of a Vertisol, Ultisol and Oxisol were collected, representing typical soils of North Cameroon. These soils were very different in physicochemical and mineral parameters. The effect of pH and the multivalent ions Ca2+, SO42− and PO43− on SC and dispersion characteristics were determined. The water dispersible clay was found to be higher in the Vertisol and Ultisol than in the Oxisol, indicating that the <2 µm fractions from the Vertisol and Ultisol are more dispersible than that from the Oxisol. The clay dispersion ratio together with the dispersion ratio were found to be in good agreement with water dispersible clay and are negatively correlated with the amount of organic matter and dithionite citrate bicarbonate soluble Fe and Al. Generally, SC of the <2 µm fraction was found to be negative when the pH was in the region of 3 to 9; thus the absolute value is highly pH‐dependent. At pH 6 and 8, CaCl2, Na2SO4 and Na2HPO4 additions had antagonistic effects on SC: Ca2+ increased SC, whereas SO42− and PO43−decreased SC indicating the adsorption of positively as well as negatively charged multivalent ions by soil colloids. Along with the increase of SC, there was a fall in repulsive forces and formation of Ca‐bridges, the addition of Ca2+ induced flocculation more rapidly than SO42− and PO43− amendments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

An investigation was conducted in a watershed formed by the tributaries of the Little River in South Georgia to study the nature of the humic and inorganic fractions of black water, and their influence on stream water quality. Large amounts of black colored water were sampled during 1983 to 1984 according to streamflow pattern in December, March, June and September. Measurements of air and water temperature and dissolved oxygen were made at the gaging sites, whereas water analysis for conductivity, Cl, NO3‐N, NH4‐N, P, total N, and other macro‐ and microelements were conducted in the laboratory. Fulvic (FA) and humic acid (HA) were isolated from the water samples, and analyzed by infrared and 13C NMR spectroscopy. Suspended clay from the water samples were collected and determined by x‐ray diffraction analysis. The results showed that black water was characterized by low conductivity and low ion concentrations indicating satisfactory chemical quality. The Na content was half the amount of other rivers in the Southeastern United States, whereas the ? content was similar to the world average. A seasonal fluctuation was noticed for Ca and Mg concentration. The increase of these ions during high streamflow in spring and summer was attributed to agricultural practices in the surrounding lands. Dissolved organic matter (DOM) concentration was highest in December during low streamflow. As DOM content decreased during high streamflow, water pH increased. A large part of the humified DOM was composed of fulvic acid, which was more aromatic in nature than soil‐fulvic acid as determined by 13C NMR. The suspended clay had a composition reflecting the clay mineralogy of Tifton soils in the surrounding uplands. It is believed that the Tifton soil, with its low activity clay and hence low CEC, may not be able to buffer the effect of acid leaching of black water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号