共查询到20条相似文献,搜索用时 49 毫秒
1.
2.
3.
4.
5.
应用计算机视觉技术对梨碰压伤的检测 总被引:6,自引:0,他引:6
应用计算机视觉技术对梨的碰压伤进行了检测,提出通过区域标记技术区别多处碰压伤。为提高碰压伤面积的测量精度,根据梨的外形及碰压伤的特征,建立了碰压伤面积测量的数学模型。实验表明,本方法能够准确地检测梨的多处碰压伤,大部分测量相对误差可控制在10%内。 相似文献
6.
基于计算机视觉的大米裂纹检测研究 总被引:13,自引:0,他引:13
针对人工目测的传统方法在进行米粒裂纹检验时存在主观性及随意性较大、效率较低、可重复性较差等缺点,在分析大米裂纹光学特征的基础上,在Visual C++ 6.0环境下开发了一套大米裂纹计算机识别系统,通过图像二值化、区域标记等方法从原始图像中提取单体米粒图像,并对提取出的单体米粒图像进行灰度拉伸变换处理以突出米粒裂纹特征,然后提取单体米粒的行灰度均值变化曲线,并对曲线进行加权滤波处理,提出了一种基于单体裂纹米粒图像行灰度均值变化特征的大米裂纹检测算法。运用该算法对从金优974、菲优600、冈优182、中优205、89-94等5类大米品种中各选取的6 组特殊类样品和5 组随机样品进行裂纹检测。试验结果表明,该系统对特殊类大米样品和随机大米样品裂纹率的判断准确率分别为98.37%和97.88%,为进一步完善大米品质的计算机视觉检测提供了理论和实践基础。 相似文献
7.
基于机器视觉的旱田多目标直线检测方法 总被引:1,自引:5,他引:1
在实际应用中,由于摄像头安装的高度不同或者车辆在地面高低不平的农田内行驶时产生的晃动,都会产生摄像头内出现多作物行的现象。因此根据农田图像的特点,提出了基于已知线的方法判断农作物列数,避免了传统算法只有先确定农作物列数才能提取导航线的弊端。针对农田图像中多列目标检测问题,采用了基于水平线扫描的归类算法,并利用改进的Hough变化快速检测多条定位线。试验结果表明,处理一幅720×480像素彩色图像平均消耗时间为258 ms,98%的图像中所有目标直线都可以检测出来。该算法能够准确提取各种天气环境下农田图像中的列信息,确定多条定位线的方位。 相似文献
8.
采用改进CenterNet模型检测群养生猪目标 总被引:1,自引:4,他引:1
为实现对群养环境下生猪个体目标快速精准的检测,该研究提出了一种针对群养生猪的改进型目标检测网络MF-CenterNet(MobileNet-FPN-CenterNet)模型,为确保目标检测的精确度,该模型首先以无锚式的CenterNet为基础结构,通过引入轻量级的MobileNet网络作为模型特征提取网络,以降低模型大小和提高检测速度,同时加入特征金字塔结构FPN(Feature Pyramid Networks)以提高模型特征提取能力,在保证模型轻量化、实时性的同时,提高遮挡目标和小目标的检测精度。该研究以某商业猪场群养生猪录制视频作为数据源,采集视频帧1 683张,经图像增强后共得到6 732张图像。试验结果表明,MF-CenterNet模型大小仅为21 MB,满足边缘计算端的部署,同时对生猪目标检测平均精确度达到94.30%,检测速度达到69 帧/s,相较于Faster-RCNN、SSD、YOLOv3、YOLOv4目标检测网络模型,检测精度分别提高了6.39%、4.46%、6.01%、2.74%,检测速度分别提高了54、47、45、43 帧/s,相关结果表明了该研究所提出的改进型的轻量级MF-CenterNet模型,能够在满足目标检测实时性的同时提高了对群养生猪的检测精度,为生产现场端的群养生猪行为实时检测与分析提供了有效方法。 相似文献
9.
10.
11.
针对视觉荔枝采摘机器人的Eye-in-Hand视觉与机器人关联方式的手眼标定问题,该文提出一种基于优化的求解齐次变换矩阵方程的手眼标定方法。该方法通过机器人带动其臂上的双目相机从多个位置观测标定板,使用Sylvester方程变形对手眼标定近似方程线性化,再对简单的初值进行优化计算,最终得到精确的标定结果。该方法的软件用C++/Open CV开发实现,并进行了多个试验。试验结果表明,视觉与机器人关联后,定位误差与机器人运动次数相关,当距目标1 m左右,静态时的视觉系统误差均值为0.55 mm;动态工作时,视觉关联机器人重复定位误差的均值为2.93 mm,标准差为0.45 mm,符合具有容错功能的视觉荔枝采摘机器人的实际使用需求。使用基于Sylvester方程变形的手眼标定方法标定的视觉荔枝采摘机器人,在野外环境下,总体采摘成功率达到76.5%,视觉系统成功识别、定位采摘点的情况下,采摘成功率达92.3%。 相似文献
12.
摘要:视觉系统是菠萝采摘机械的关键部件之一,可为采摘终端提供待采果实的位置导航信息。考虑到菠萝果形较大,易于识别,以及系统应用于农业领域,需尽可能降低成本。该研究选取双目视觉技术,采用低成本的CMOS视觉传感器,辅以三脚架、双目云台,以及计算机、软件系统,搭建低成本双目视觉标定平台;研究了标定模型及流程,并基于C++和OpenCV v1.1环境以及Matlab标定工具箱的软件环境平台,采用张正友标定算法,分别对视觉传感器进行标定试验,选取了适合本平台的标定方法。基于此平台和开发的菠萝果实识别算法,在湛江菠萝田间进行果实深度测量试验发现,果实测试距离小于1 m时,深度误差在6~8 cm范围内,经软件算法校正后,误差控制在2~3 cm范围内,该平台试验结果良好,表明低成本试验平台具有可行性。该研究可为菠萝采摘机器人视觉系统的开发提供参考。 相似文献
13.
14.
基于图像的植物叶面积无损测量方法研究 总被引:3,自引:7,他引:3
为了研究植物的生长规律,应用计算机视觉技术对大豆叶片实现无损测量。该项研究针对大豆叶面积无损测量中校正图像和去除叶片纹理特征等问题上, 提出了基于双线性映射的无损测量法。无损测量有效性不受叶片大小、形状差异和叶片图像中叶片周边白色背景的影响, 试验验证该方法能很好地校正叶片图像,提取叶片的有效面积,并去除植物纹理斑点的影响,应用该方法校正叶片图像,精度可达99%以上。采用计算机视觉技术测量叶面积, 具有简单、准确、方便快捷的特点, 这对数字农业的植物信息快速采集和利用具有重要的意义。 相似文献
15.
16.
为更好地模拟小麦籽粒(麦粒)振动筛分过程,该文在现有离散元接触模型基础上,通过EDEM软件应用程序编程接口,构建了一种麦粒黏弹塑性接触模型。该接触模型法向方向通过将Kuwabara and Kono非线性黏弹性接触模型中的黏性耗散项引入Thornton滞回接触模型进行构建;切向方向采用简化Thornton切向接触模型;滚动摩擦力矩计算同Hertz-Mindlin(no slip)接触模型。法向模型参数标定采用单轴加载-卸载试验、碰撞试验,分别构建了模拟-试验接触力误差平方和与麦粒屈服重叠量、恢复系数与法向阻尼系数的二阶回归方程,得到麦粒屈服重叠量为7.63×10-6 m,麦粒-麦粒/钢板法向阻尼系数分别为190.68和306.65。切向模型参数利用旋转鼓试验进行标定,得到最佳麦粒-麦粒/钢板静摩擦系数组合为0.40和0.44。最后利用振动筛分试验对所标定参数进行验证,模拟与试验所得筛下麦粒质量分数最大误差为8.97%,模拟中筛下物分布规律与试验结果无显著性差异,表明所建立的接触模型及标定的参数能够很好地模拟麦粒振动筛分过程。该文也可为其他农业物料黏弹塑性接触模型构建及其参数标定提供参考。 相似文献
17.
奶牛跛行严重降低奶牛福利及潜在产奶量,影响养殖场经济效益。准确高效识别奶牛跛行,有助于奶牛肢蹄病的及早发现与治疗,促进奶业的健康和可持续发展。人工观察法识别奶牛跛行存在识别效率低、成本高、主观性强等问题。计算机视觉技术可以通过无应激、无接触地采集奶牛行走视频数据,准确高效识别奶牛跛行。该研究从可见光相机、深度相机以及热红外相机3种视频采集手段出发,概述了当前奶牛跛行自动识别的主要研究方法、关键技术以及未来发展方向等,对比分析了各研究方法的优势和不足,指出个体差异性、跛行特征的优选以及早期跛行识别等需要重点关注的技术问题。同时,该研究从数据获取、技术研发和试验验证等方面,分析了奶牛跛行识别技术研究领域存在的主要问题及挑战,展望了未来奶牛跛行识别技术的研究重点和发展方向,为奶牛跛行的精准高效识别提供相关理论依据和技术参考。 相似文献
18.
基于计算机视觉的牛脸轮廓提取算法及实现 总被引:1,自引:1,他引:1
计算机视觉技术已越来越多地应用于检测牛个体行为以给出养殖管理决策,牛脸轮廓的提取及形状分析能够进一步提高牛身份鉴别,咀嚼分析及健康状况评估的自动化程度。为实现基于计算机视觉的无接触、高精度、适用性强的肉牛养殖场环境下的牛脸轮廓提取,提出用自适应级联检测器定位牛脸位置,用统计迭代模型提取牛脸轮廓的方法。该方法采集牛脸正面图像,用级联式检测器定位出牛脸的位置,并分别采用监督式梯度下降算法(supervised descent method,SDM),局部二值算法(local binary features,LBF)和主动外观模型算法(fast active appearance model,FAAM)3种算法被用于提取牛脸轮廓。对20头肉牛共拍摄800幅牛脸正面图,随机选取训练数据720幅和测试数据80幅。结果表明,主动外观模型算法准确率最高,其轮廓提取误差为0.0184像素,适于应用在轮廓提取精度要求较高的场合,而局部二值算法的运行效率最高,在分辨率为744像素(水平)×852像素(垂直)的牛脸图像中轮廓提取时间为0.35 s,更适于应用在实时性要求较高的场合。该方法可实现养殖场中肉牛的无接触精确的面部轮廓提取,具有适用性强、成本低的特点。 相似文献
19.
基于垄线平行特征的视觉导航多垄线识别 总被引:1,自引:10,他引:1
为有效快速地识别农田多条垄线以实现农业机器人视觉导航与定位,提出一种基于机器视觉的田间多垄线识别与定位方法。使用VC++ 6.0开发了农业机器人视觉导航定位图像处理软件。该方法通过图像预处理获得各垄行所在区域,使用垂直投影法提取出导航定位点。根据摄像机标定原理与透视变换原理,计算出各导航定位点世界坐标。然后结合垄线基本平行的特征,使用改进的基于Hough变换的农田多垄线识别算法,实现多垄线的识别与定位。使用多幅农田图像进行试验并在室内进行了模拟试验。处理一幅320×240的农田图像约耗时219.4 ms,室内试验各垄线导航距与导航角的平均误差分别为2.33 mm与0.3°。结果表明,该方法能有效识别与定位农田的多条垄线,同时算法的实时性也能满足 要求。 相似文献
20.
针对传统立体视觉三维重建技术难以准确表征果树多尺度复杂表型细节的问题,该研究提出了一种基于相机位姿恢复技术与神经辐射场理论的果树三维重建方法,设计了一套适用于标准果园环境的果树图像采集设备和采集方案。首先,环绕拍摄果树全景视频并以抽帧的方式获取果树多视角图像;其次,使用运动结构恢复算法进行稀疏重建以计算果树图像位姿;然后,训练果树神经辐射场,将附有位姿的多视角果树图像进行光线投射法分层采样和位置编码后输入多层感知机,通过体积渲染监督训练过程以获取收敛且能反映果树真实形态的辐射场;最后,导出具有高精度与高表型细节的果树三维实景点云模型。试验表明,该研究构建的果树点云能准确表征从植株尺度的枝干、叶冠等宏观结构到器官尺度的果实、枝杈、叶片乃至叶柄、叶斑等微观结构。果树整体精度达到厘米级,其中胸径、果径等参数达到毫米级精度,尺度一致性误差不超过5%。相较于传统的立体视觉三维重建方法,重建时间缩短39.50%,树高、冠幅、胸径和地径4个树形参数的尺度一致性误差分别降低了77.06%、83.61%、45.47%和62.23%。该方法能构建具有高精度、高表型细节的果树点云模型,为数字果树技术的应用奠定基础。 相似文献