首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Introduction: West Nile virus (WNV) first appeared in the United States in 1999, causing illness and death in birds, horses, and humans. While the initial outbreak of this sometimes deadly viral disease was limited to the northeastern United States, the virus had an inexorable migration across the continental United States over the next 3 years, causing huge losses among the affected species. The purpose of this review is to present currently available information regarding the epi‐demiology, diagnosis, treatment, and prevention of WNV infection. Veterinarians, particularly those in an emergency practice, serve as an important source of reliable information regarding this disease for animal owners and the public in general. Data sources: Data sources used for the preparation of this review include computer‐based searches of PubMed and Commonwealth Agricultural Bureaux (CAB) abstracts. A search in PubMed using ‘West Nile’ retrieved 1468 ‘hits’ or references, while a similar search in CAB abstracts produced 815 references. Additional information was obtained from various meeting proceedings, particularly data presented in abstract form, and from the Centers for Disease Control (CDC) website dedicated to WNV. Human data synthesis: Prior to the mid‐1990s, reported large‐scale epidemics of WNV infection in humans predominantly presented as acute, mild, febrile disease, sometimes associated with lymphadenopathy and skin rash. The recent large epidemic in the United States, in contrast, has prominently featured encephalitis, particularly among the elderly. Additionally, polio‐encephalomyelitis‐like complications resulting in long‐term neurologic sequelae have been reported. There are many WNV‐permissive native avian and mosquito hosts in the Unites States and there appear to be few limitations to the spread of the disease in the United States. It is expected that the virus will be identified in all 48 continental states, Mexico, and Canada by the end of 2003. Veterinary data synthesis: The horse is the animal species most affected by the recent WNV epidemic in the United States, and losses to the equine industry have been large and unprecedented. A United States Department of Agriculture (USDA)‐approved vaccine against WNV has been in use in horses since 2001 and appears to be effective in limiting the incidence of disease in well‐vaccinated populations. WNV infection has been documented in other species of mammals, including camelids (alpaca/llamas) and dogs, and veterinarians should include WNV as a differential diagnosis for animals presenting with clinical signs consistent with central nervous system infection. A large concern exists for endangered bird populations, particularly birds of prey, whether in zoos or in the wild.  相似文献   

5.
A prospective cohort study was used to estimate the incidence of West Nile virus (WNV) infection in a group of unvaccinated horses (n = 37) in California and compare the effects of natural WNV infection in these unvaccinated horses to a group of co-mingled vaccinated horses (n = 155). Horses initially were vaccinated with either inactivated whole virus (n = 87) or canarypox recombinant (n = 68) WNV vaccines during 2003 or 2004, prior to emergence of WNV in the region. Unvaccinated horses were serologically tested for antibodies to WNV by microsphere immunoassay incorporating recombinant WNV E protein (rE MIA) in December 2003, December 2004, and every two months thereafter until November 2005. Clinical neurologic disease attributable to WNV infection (West Nile disease (WND)) developed in 2 (5.4%) of 37 unvaccinated horses and in 0 of 155 vaccinated horses. One affected horse died. Twenty one (67.7%) of 31 unvaccinated horses that were seronegative to WNV in December, 2004 seroconverted to WNV before the end of the study in November, 2005. Findings from the study indicate that currently-available commercial vaccines are effective in preventing WND and their use is financially justified because clinical disease only occurred in unvaccinated horses and the mean cost of each clinical case of WND was approximately 45 times the cost of a 2-dose WNV vaccination program.  相似文献   

6.
Background: The spread of lineage 2 West Nile virus (WNV) from sub‐Saharan regions to Europe and the unpredictable change in pathogenicity indicate a potential public and veterinary health threat and requires scientific awareness. Objectives: To describe the results of clinical and virological investigations of the 1st outbreak of a genetic lineage 2 WNV encephalomyelitis in horses. Animals: Seventeen horses with neurologic signs. Methods: Information regarding signalment, clinical signs, and outcome was obtained for each animal. Serology was performed in 15 cases, clinicopathological examination in 7 cases, and cerebrospinal fluid was collected from 2 horses. Histopathology was carried out in 4 horses, 2 of which were assessed for the presence of WNV in their nervous system. Results: WNV neutralizing antibody titers were between 10 and 270 (median, 90) and the results of other serological assays were in agreement with those of the plaque reduction neutralization test. Common signs included ataxia, weakness, asymmetric gait, muscle tremors, hypersensitivity, cranial nerve deficits, and recumbency. Twelve animals survived. Amplicons derived from the infection‐positive specimens allowed molecular characterization of the viral strain. Conclusions and Clinical Importance: From our results, we conclude that this outbreak was caused by a lineage 2 WNV strain, even though such strains often are considered nonpathogenic. Neurological signs and survival rates were similar to those reported for lineage 1 virus infections. The disease occurrence was not geographically limited as had been the typical case during European outbreaks; this report describes a substantial northwestern spread of the pathogen.  相似文献   

7.
8.
OBJECTIVE: To determine outcome of equids in the western United States with clinical signs of West Nile virus (WNV) infection and identify factors associated with risk of death in infected equids. DESIGN: Cross-sectional study. ANIMALS: 484 equids in Nebraska and Colorado. PROCEDURE: Owners of 484 equids with laboratory-confirmed West Nile virus infection in Nebraska and Colorado were contacted by telephone, and a questionnaire was used to obtain information on signalment, management, clinical signs, date of disease onset, duration of disease, WNV vaccination status, and health status at the time of the interview. RESULTS: 137 of 482 (28.4%) animals died or were euthanatized. Ataxia, lethargy, muscle fasciculations, and weakness were the most common clinical signs of disease. Animals > or = 3 years old were more likely to die than were animals < or = 2 years old. Unvaccinated equids were twice as likely to die as were animals that had been vaccinated at least once prior to the onset of disease. Animals that were recumbent and unable to rise were 78 times as likely to die as were animals that never lost the ability to rise. Females were 2.9 times as likely to die as males. Two hundred seventy-one of 339 (79.9%) animals that survived recovered fully; mean duration of disease for these animals was 22.3 days. CONCLUSIONS AND CLINICAL RELEVANCE: Among equids with WNV infection, age, vaccination status, an inability to rise, and sex were associated with the risk of death.  相似文献   

9.
Eastern Screech Owls (EASOs) were experimentally infected with the pathogenic New York 1999 strain of West Nile virus (WNV) by subcutaneous injection or per os. Two of nine subcutaneously inoculated birds died or were euthanatized on 8 or 9 days postinfection (DPI) after <24 hr of lethargy and recumbency. All subcutaneously inoculated birds developed levels of viremia that are likely infectious to mosquitoes, with peak viremia levels ranging from 10(5.0) to 10(9.6) plaque-forming units/ml. Despite the viremia, the remaining seven birds did not display signs of illness. All birds alive beyond 5 DPI seroconverted, although the morbid birds demonstrated significantly lower antibody titers than the clinically normal birds. Cagemates of infected birds did not become infected. One of five orally exposed EASOs became viremic and seroconverted, whereas WNV infection in the remaining four birds was not evident. All infected birds shed virus via the oral and cloacal route. Early during infection, WNV targeted skin, spleen, esophagus, and skeletal muscle. The two morbid owls had myocardial and skeletal muscle necrosis and mild encephalitis and nephritis, whereas some of the clinically healthy birds that were sacrificed on 14 DPI had myocardial arteritis and renal phlebitis. WNV is a significant pathogen of EASOs, causing pathologic lesions with varying clinical outcomes.  相似文献   

10.
11.
Two horses had a history of ataxia and weakness or recumbency. One recovered and was diagnosed with West Nile virus (WNV) infection by serologic testing. The other was euthanized; it had meningoencephalomyelitis, WNV was detected by polymerase chain reaction. West Nile virus infection is an emerging disease. Year 2002 is the first year in which cases have been seen in Saskatchewan.  相似文献   

12.
OBJECTIVE: To describe the prevalence of West Nile virus (WNV) infection and evaluate factors associated with positive IgM capture ELISA results in equids with clinical signs compatible with WNV infection. DESIGN: Retrospective case series. SAMPLE POPULATION: Laboratory submission forms from 1,104 equids tested for WNV in Colorado in 2003. PROCEDURES: Submission forms accompanying samples submitted for detection of WNV via IgM capture ELISA were obtained from the Colorado state veterinarian and diagnostic laboratories performing the tests. Data on signalment, clinical signs, history of vaccination against WNV, and assay results were collected from laboratory submission forms. Equids with clinical signs compatible with WNV infection in which IgM capture ELISA results were positive were considered as case equids. RESULTS: 1,104 equids were tested for WNV; 1,017 (92.1%) had clinical signs compatible with WNV infection. Among equids with clinical signs compatible with WNV infection, the odds of testing positive for WNV via IgM capture ELISA were lower in males and in vaccinated equids and higher in equids with moderate and severe illness, compared with females, unvaccinated equids, and equids with mild illness. CONCLUSIONS AND CLINICAL RELEVANCE: Among equids with clinical signs compatible with WNV infection, vaccination against WNV, severity of clinical signs, duration of illness, and region in Colorado were associated with increased risk of having a positive IgM capture ELISA result.  相似文献   

13.
West Nile virus (WNV) infection in 4 reindeer (Rangifer tarandus) resulted in lymphohistiocytic encephalomyelitis within the medulla oblongata and cervical spinal cord. Immunohistochemistry revealed WNV antigen within neurons and among mononuclear cell infiltrates. These represent the first known cases of clinical WNV infection in Cervidae. Clinical signs and lesions were similar to those described in horses. Nucleotide sequence of a 768-bp region of the WNV E-glycoprotein gene revealed 1 nucleotide mutation, which resulted in a single amino acid substitution from a serine to a glycine (position 227 of E-glycoprotein) when compared with the prototype WNV-NY99 strain (isolated from Bronx zoo flamingo 382-99).  相似文献   

14.
Swayne DE  Beck JR  Zaki S 《Avian diseases》2000,44(4):932-937
In the fall of 1999, West Nile virus (WNV) was isolated during an outbreak of neurologic disease in humans, horses, and wild and zoological birds in New York, Connecticut, and New Jersey. Turkeys could potentially be a large reservoir for WNV because of the high-density turkey farming and the presence of large wild turkey populations in the eastern seaboard of the United States. Little is known about the pathogenicity of WNV in domestic or wild turkeys. Specific-pathogen-free 3-wk-old turkeys were inoculated subcutaneously with 10(3.3) mean tissue culture infective doses of a WNV strain isolated fromthe index case in a New York crow. No clinical signs were observed in the turkeys over the 21 days of the experiment. One turkey died abruptly at 8 days postinoculation (DPI). Many turkeys developed viremia between 2 and 10 DPI, but the average level of virus was very low, less than needed to efficiently infect mosquitos. Low levels of WNV were detected in feces on 4 and 7 DPI, but no virus was isolated from oropharyngeal swabs. WNV wasnot transmitted from WNV-inoculated to contact-exposed turkeys. All WNV-inoculated poults seroconverted on 7 DPI. In the turkey that died, WNV was not isolated from intestine, myocardium, brain, kidney, or cloacal and oropharyngeal swabs, but sparse viral antigen was demonstrated by immunohistochemistry in the heart and spleen. Turkeys in contact with WNV-inoculated turkeys and sham-inoculated controls lacked WNV specific antibodies,and WNV was not isolated from plasma and cloacal and oropharyngeal swabs. These data suggest that WNV lacks the potential to be a major new disease of turkeys and that turkeys will not be a significant amplifying host for infecting mosquitos.  相似文献   

15.
OBJECTIVE: To describe an outbreak of encephalomyelitis caused by West Nile virus (WNV) in horses in northern Indiana. DESIGN: Case series. ANIMALS: 170 horses. PROCEDURES: Horses with clinical signs suggestive of encephalomyelitis caused by WNV were examined. Date, age, sex, breed, and survival status were recorded. Serum samples were tested for anti-WNV antibodies, and virus isolation was attempted from samples of brain tissue. Climate data from local weather recording stations were collected. An epidemic curve was constructed, and case fatality rate was calculated. RESULTS: The most common clinical signs were ataxia, hind limb paresis, and muscle tremors and fasciculations. Eight horses had been vaccinated against WNV from 2 to 21 days prior to the appearance of clinical signs. West Nile virus was isolated from brain tissue of 2 nonvaccinated horses, and anti-WNV IgM antibodies were detected in 132 nonvaccinated horses; in 2 other nonvaccinated horses, anti-WNV antibodies were detected and WNV was also isolated from brain tissue. Thirty-one (22.8%) horses died or were euthanatized. The peak of the outbreak occurred on September 6, 2002. Ambient temperatures were significantly lower after the peak of the outbreak, compared with prior to the peak. CONCLUSIONS AND CLINICAL RELEVANCE: The peak risk period for encephalomyelitis caused by WNV in northern Indiana was mid-August to mid-September. Reduction in cases coincided with decreasing ambient temperatures. Because of a substantial case fatality rate, owners of horses in northern Indiana should have their horses fully protected by vaccination against WNV before June. In other regions of the United States with a defined mosquito breeding season, vaccination of previously nonvaccinated horses should commence at least 4 months before the anticipated peak in seasonal mosquito numbers, and for previously vaccinated horses, vaccine should be administered no later than 2 months before this time.  相似文献   

16.
REASON FOR PERFORMING STUDY: West Nile virus (WNF) is a Flavivirus responsible for a life-threatening neurological disease in man and horses. Development of improved vaccines against Flavivirus infections is therefore important. OBJECTIVES: To establish that a single immunogenicity dose of live Flavivirus chimera (WN-FV) vaccine protects horses from the disease and it induces a protective immune response, and to determine the duration of the protective immunity. METHODS: Clinical signs were compared between vaccinated (VACC) and control (CTRL) horses after an intrathecal WNV challenge given at 10 or 28 days, or 12 months post vaccination. RESULTS: Challenge of horses in the immunogenicity study at Day 28 post vaccination resulted in severe clinical signs of WNV infection in 10/10 control (CTRL) compared to 1/20 vaccinated (VACC) horses (P<0.01). None of the VACC horses developed viraemia and minimal histopathology was noted. Duration of immunity (DPI) was established at 12 months post vaccination. Eight of 10 CTRL exhibited severe clinical signs of infection compared to 1 of 9 VACC horses (P<0.05). There was a significant reduction in the occurrence of viraemia and histopathology lesion in VACC horses relative to CTRL horses. Horses challenged at Day 10 post vaccination experienced moderate or severe clinical signs of WNV infection in 3/3 CTRL compared to 5/6 VACC horses (P<0.05). CONCLUSIONS: This novel WN-FV chimera vaccine generates a protective immune response to WNV infection in horses that is demonstrated 10 days after a single vaccination and lasts for up to one year. POTENTIAL RELEVANCE: This is the first USDA licensed equine WNV vaccine to utilise a severe challenge model that produces the same WNV disease observed under field conditions to obtain a label claim for prevention of viraemia and aid in the prevention of WNV disease and encephalitis with a duration of immunity of 12 months.  相似文献   

17.
In the fall of 1999, West Nile virus (WNV) was isolated for the first time in the Western Hemisphere during an outbreak of neurologic disease in humans, horses, and wild and zoo birds in the northeastern United States. Chickens are a potential reservoir for WNV, and little is known about the pathogenicity of WNV in domestic chickens. Seven-week-old chickens derived from a specific-pathogen-free flock were inoculated subcutaneously with 1.8 x 10(3) 50% tissue culture infectious dose of a crow isolate of WNV in order to observe clinical signs and evaluate the viremic phase, gross and microscopic lesions, contact transmission, and immunologic response. There were no observable clinical signs in the WNV-inoculated chickens during the 21-day observation period. However, histopathologic examination of tissues revealed myocardial necrosis, nephritis, and pneumonitis at 5 and 10 days postinoculation (DPI); moderate to severe nonsuppurative encephalitis also was observed in brain tissue from one of four inoculated birds examined at 21 DPI. WNV was recovered from blood plasma for up to 8 DPI. Virus titers as high as 10(5)/ml in plasma were observed at 4 DPI. Fecal shedding of virus was detected in cloacal swabs on 4 and 5 DPI only. The WNV also was isolated from myocardium, spleen, kidney, lung, and intestine collected from chickens euthanatized at 3, 5, and 10 DPI. No virus was isolated from inoculated chickens after 10 DPI. Antibodies specific to WNV were detected in inoculated chickens as early as 5 DPI by the plaque reduction neutralization test and 7 DPI by the indirect fluorescent antibody test. Chickens placed in contact with inoculated chickens at 1 DPI lacked WNV-specific antibodies, and no WNV was isolated from their blood plasma or cloacal swabs throughout the 21 days of the experiment.  相似文献   

18.
Efficacy of the Recombitek Equine West Nile Virus (WNV) vaccine was evaluated against a WNV intrathecal challenge model that results in WNV-induced clinical disease. Ten vaccinated (twice at days 0 and 35) and 10 control horses were challenged 2 weeks after administration of the second vaccine with a virulent WNV by intrathecal administration. After the challenge, eight of 10 controls developed clinical signs of encephalomyelitis whereas one vaccinate exhibited muscle fasciculation only once. Nine controls and one vaccinate developed a fever. Histopathology revealed mild to moderate nonsuppurative encephalitis in eight controls and one vaccinate. None of the vaccinates and all of the controls developed WNV viremia after challenge. All vaccinated horses developed antibodies to WNV after vaccination. These and results of previous studies demonstrate efficacy of the Recombitek WNV vaccine against WNV-induced clinical disease and natural challenge with WNV-infected mosquitoes.  相似文献   

19.
West Nile virus (WNV), a zoonotic mosquito transmitted Flavivirus, has had significant health effects on horses in the United States, with over 23,000 United States equine cases since the disease was first recognized in 1999. Previous research has focused on how this disease progresses and affects equids days to weeks post infection. The purpose of this study was to evaluate if permanent equine behavioral changes had occurred in horses that had recovered from acute West Nile fever or encephalitis. Specifically, we examined if surviving this disease caused changes in the defensive behaviors of the animal against biting and stinging insects, presumably because of neurological sequelae that can result from the infection. Results from behavioral observations and neurologic reflex testing suggest that long-term survivors of WNV do not show a change in the frequency or types of behaviors used compared to uninfected horses, supporting the concept that lasting deficits from WNV usually resolve within the following 1–3 years post-infection. However, microhabitat and grouping behavior did have a significant impact on the frequency of defensive behaviors, with indoor locales and larger groups of horses showing less insect avoidance behaviors. These principles may play a more pivotal role in protecting equines from biting insects and disease than thought previously.  相似文献   

20.
A case of West Nile virus (WNV) infection in a captive 4-month-old Arctic wolf (Canis lupus) is described. The animal had vomiting, anorexia, and ataxia before death. Histopathology revealed multifocal severe renal lymphoplasmacytic vasculitis, mostly affecting small arterioles, with fibrinoid degeneration of some vessel walls. Many small foci of gliosis were detected in the cerebral cortex. West Nile virus was demonstrated in the kidneys and cerebrum by immunohistochemistry and polymerase chain reaction. The described renal changes represent a novel pathological finding of WNV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号